Gene Summary

Gene:PTPRJ; protein tyrosine phosphatase receptor type J
Aliases: DEP1, SCC1, CD148, HPTPeta, R-PTP-ETA
Summary:The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes, including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region containing five fibronectin type III repeats, a single transmembrane region, and a single intracytoplasmic catalytic domain, and thus represents a receptor-type PTP. This protein is present in all hematopoietic lineages, and was shown to negatively regulate T cell receptor signaling possibly through interfering with the phosphorylation of Phospholipase C Gamma 1 and Linker for Activation of T Cells. This protein can also dephosphorylate the PDGF beta receptor, and may be involved in UV-induced signal transduction. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:receptor-type tyrosine-protein phosphatase eta
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (34)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Polymerase Chain Reaction
  • Thyroid Cancer
  • Immunohistochemistry
  • Phosphorylation
  • Single Nucleotide Polymorphism
  • RT-PCR
  • Colonic Neoplasms
  • p38 Mitogen-Activated Protein Kinases
  • Sequence Homology, Nucleic Acid
  • Signal Transduction
  • Cancer Gene Expression Regulation
  • Chromosome 11
  • Polymorphism
  • src-Family Kinases
  • fms-Like Tyrosine Kinase 3
  • Tumor Necrosis Factor Receptor Superfamily, Member 7
  • Up-Regulation
  • Alleles
  • Non-Hodgkin Lymphoma
  • Case-Control Studies
  • Transcription
  • Colorectal Cancer
  • Resting Phase, Cell Cycle
  • Neoplasm Invasiveness
  • Protein Tyrosine Phosphatases
  • Vimentin
  • Neoplastic Cell Transformation
  • Genetic Predisposition
  • Species Specificity
  • DNA Sequence Analysis
  • Chromosome Mapping
  • Breast Cancer
  • Transfection
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3
  • Cell Proliferation
  • Down-Regulation
  • Loss of Heterozygosity
  • Risk Factors
  • Messenger RNA
  • Genotype
  • VHL
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PTPRJ (cancer-related)

Wong K, van der Weyden L, Schott CR, et al.
Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma.
Nat Commun. 2019; 10(1):353 [PubMed] Free Access to Full Article Related Publications
Mucosal melanoma is a rare and poorly characterized subtype of human melanoma. Here we perform a cross-species analysis by sequencing tumor-germline pairs from 46 primary human muscosal, 65 primary canine oral and 28 primary equine melanoma cases from mucosal sites. Analysis of these data reveals recurrently mutated driver genes shared between species such as NRAS, FAT4, PTPRJ, TP53 and PTEN, and pathogenic germline alleles of BRCA1, BRCA2 and TP53. We identify a UV mutation signature in a small number of samples, including human cases from the lip and nasal mucosa. A cross-species comparative analysis of recurrent copy number alterations identifies several candidate drivers including MDM2, B2M, KNSTRN and BUB1B. Comparison of somatic mutations in recurrences and metastases to those in the primary tumor suggests pervasive intra-tumor heterogeneity. Collectively, these studies suggest a convergence of some genetic changes in mucosal melanomas between species but also distinctly different paths to tumorigenesis.

Laczmanska I, Sasiadek MM
Meta-analysis of association between Arg326Gln (rs1503185) and Gln276Pro (rs1566734) polymorphisms of PTPRJ gene and cancer risk.
J Appl Genet. 2019; 60(1):57-62 [PubMed] Free Access to Full Article Related Publications
Protein tyrosine phosphatase receptor type J (PTPRJ, DEP1) is a tumour suppressor gene that negatively regulates such processes as angiogenesis, cell proliferation and migration and is one of the genes important for tumour development. Similar to other phosphatase genes, PTPRJ is also described as an oncogene. Among various genetic changes characteristic for this gene, single nucleotide polymorphisms (SNPs) constituting benign genetic variants that can modulate its function have been described. We focused on Gln276Pro and Arg326Gln missense polymorphisms and performed a meta-analysis using data from 2930 and 852 patients for Gln276Pro and Arg326Gln respectively in different cancers. A meta-analysis was performed based on five articles accessed via the PubMed and Research Gate databases. Our meta-analysis revealed that for Arg326Gln, the presence of the Arg (C) allele was associated with lower risk of some cancers, the strongest association was observed for colorectal cancer patients, and there was no association between Gln276Pro (G>T) polymorphism and cancer risk. The polymorphisms Arg326Gln and Gln276Pro of the PTPRJ gene are not associated with an increased risk of cancer except for the Arg326Gln polymorphism in colorectal cancer. Large-scale studies should be performed to verify the impact of this SNP on individual susceptibility to colorectal cancer for given individuals.

Senis YA, Barr AJ
Targeting Receptor-Type Protein Tyrosine Phosphatases with Biotherapeutics: Is Outside-in Better than Inside-Out?
Molecules. 2018; 23(3) [PubMed] Free Access to Full Article Related Publications
Protein tyrosine phosphatases (PTPs), of the receptor and non-receptor classes, are key signaling molecules that play critical roles in cellular regulation underlying diverse physiological events. Aberrant signaling as a result of genetic mutation or altered expression levels has been associated with several diseases and treatment via pharmacological intervention at the level of PTPs has been widely explored; however, the challenges associated with development of small molecule phosphatase inhibitors targeting the intracellular phosphatase domain (the "inside-out" approach) have been well documented and as yet there are no clinically approved drugs targeting these enzymes. The alternative approach of targeting receptor PTPs with biotherapeutic agents (such as monoclonal antibodies or engineered fusion proteins; the "outside-in" approach) that interact with the extracellular ectodomain offers many advantages, and there have been a number of exciting recent developments in this field. Here we provide a brief overview of the receptor PTP family and an update on the emerging area of receptor PTP-targeted biotherapeutics for CD148, vascular endothelial-protein tyrosine phosphatase (VE-PTP), receptor-type PTPs σ, γ, ζ (RPTPσ, RPTPγ, RPTPζ) and CD45, and discussion of future potential in this area.

Bilotta A, Dattilo V, D'Agostino S, et al.
A novel splice variant of the protein tyrosine phosphatase PTPRJ that encodes for a soluble protein involved in angiogenesis.
Oncotarget. 2017; 8(6):10091-10102 [PubMed] Free Access to Full Article Related Publications
PTPRJ is a receptor protein tyrosine phosphatase with tumor suppressor activity. Very little is known about the role of PTPRJ ectodomain, although recently both physiological and synthetic PTPRJ ligands have been identified. A putative shorter spliced variant, coding for a 539 aa protein corresponding to the extracellular N-terminus of PTPRJ, is reported in several databases but, currently, no further information is available.Here, we confirmed that the PTPRJ short isoform (named sPTPRJ) is a soluble protein secreted into the supernatant of both endothelial and tumor cells. Like PTPRJ, also sPTPRJ undergoes post-translational modifications such as glycosylation, as assessed by sPTPRJ immunoprecipitation. To characterize its functional activity, we performed an endothelial cell tube formation assay and a wound healing assay on HUVEC cells overexpressing sPTPRJ and we found that sPTPRJ has a proangiogenic activity. We also showed that sPTPRJ expression down-regulates endothelial adhesion molecules, that is a hallmark of proangiogenic activity. Moreover, sPTPRJ mRNA levels in human high-grade glioma, one of the most angiogenic tumors, are higher in tumor samples compared to controls. Further studies will be helpful not only to clarify the way sPTPRJ works but also to supply clues to circumvent its activity in cancer therapy.

Laczmanska I, Skiba P, Karpinski P, et al.
Customized Array Comparative Genomic Hybridization Analysis of 25 Phosphatase-encoding Genes in Colorectal Cancer Tissues.
Cancer Genomics Proteomics. 2017; 14(1):69-74 [PubMed] Free Access to Full Article Related Publications
BACKGROUND/AIM: Molecular mechanisms of alterations in protein tyrosine phosphatases (PTPs) genes in cancer have been previously described and include chromosomal aberrations, gene mutations, and epigenetic silencing. However, little is known about small intragenic gains and losses that may lead to either changes in expression or enzyme activity and even loss of protein function.
MATERIALS AND METHODS: The aim of this study was to investigate 25 phosphatase genes using customized array comparative genomic hybridization in 16 sporadic colorectal cancer tissues.
RESULTS: The analysis revealed two unique small alterations: of 2 kb in PTPN14 intron 1 and of 1 kb in PTPRJ intron 1. We also found gains and losses of whole PTPs gene sequences covered by large chromosome aberrations.
CONCLUSION: In our preliminary studies using high-resolution custom microarray we confirmed that PTPs are frequently subjected to whole-gene rearrangements in colorectal cancer, and we revealed that non-polymorphic intragenic changes are rare.

Xu Q, Zhang Q, Ishida Y, et al.
EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect.
Oncotarget. 2017; 8(6):9557-9571 [PubMed] Free Access to Full Article Related Publications
"Warburg effect", the enhanced glycolysis or aerobic glycolysis, confers cancer cells the ability to survive and proliferate even under stressed conditions. In this study, we explored the role of epidermal growth factor (EGF) in orchestrating Warburg effect, the epithelial-mesenchymal transition (EMT) process, and the acquisition of cancer stem-like cell properties in human oral squamous cell carcinoma (OSCC) cells. Our results showed that EGF induces EMT process in OSCC cells, which correlates with the acquisition of cancer stem-like properties, including the enrichment of CD44+/CD24- population of cancer cells and an increased expression of CSC-related genes, aldehyde dehydrogenase-1 (ALDH1) and Bmi-1. We also showed that EGF concomitantly enhanced L-lactate production, while blocking glycolysis by 2-deoxy-D-glucose (2-DG) robustly reversed EGF-induced EMT process and CSC-like properties in OSCC cells. Mechanistically, we demonstrated that EGF promoted EMT process and CSC generation through EGFR/PI3K/HIF-1α axis-orchestrated glycolysis. Using an orthotopic tumor model of human OSCC (UM-SCC1) injected in the tongue of BALB/c nude mice, we showed that treatment with 2-DG in vivo significantly inhibited the metastasis of tumor cells to the regional cervical lymph nodes and reduced the expression of ALDH1 and vimentin in both in situ tumors and tumor cell-invaded regional lymph nodes. Taken together, these findings have unveiled a new mechanism that EGF drives OSCC metastasis through induction of EMT process and CSC generation, which is driven by an enhanced glycolytic metabolic program in OSCC cells.

Sun L, Liang J, Wang Q, et al.
MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion.
Cell Prolif. 2016; 49(5):628-35 [PubMed] Related Publications
OBJECTIVES: Tongue squamous cell carcinoma (TSCC) is the most frequent type of oral malignancy. Increasing evidence has shown that miRNAs play key roles in many biological processes such as cell development, invasion, proliferation, differentiation, metabolism, apoptosis and migration.
MATERIALS AND METHODS: qRT-PCR analysis was performed to measure miR-137 expression. CCK-8 analysis, cell colony formation, wound-healing analysis and invasion were performed to detect resultant cell functions. The direct target of miR-137 was labelled and measured by luciferase assay and Western blotting.
RESULTS: We demonstrated that expression of miR-137 was downregulated in TSCC tissues compared to matched normal ones. miR-137 expression was downregulated in TSCC lines (SCC4, SCC1, UM1 and Cal27) compared to the immortalized NOK16B cell line and normal oral keratinocytes in culture (NHOK). In addition, we have shown that miR-137 expression was epigenetically regulated in TSCCs. Overexpression of miR-137 suppressed TSCC proliferation and colony formation. Ectopic expression of miR-137 promoted expression of the epithelial biomarker, E-cadherin, and inhibited the mesenchymal biomarker, N-cadherin, as well as vimentin and Snail expression, indicating that miR-137 suppressed TSCC epithelial-mesenchymal transition (EMT). We also showed that ectopic expression of miR-137 inhibited TSCC invasion and migration. In addition, we identified SP1 as a direct target gene of miR-137 in SCC1 cells. SP1 overexpression rescued inhibitory effects exerted by miR-137 on cell proliferation and EMT.
CONCLUSIONS: These results indicate that miR-137 acted as a tumour suppressor in TSCC by targeting SP1.

Qiao D, Li M, Pu J, et al.
Loss of Protein Tyrosine Phosphatase Receptor J Expression Predicts an Aggressive Clinical Course in Patients with Esophageal Squamous Cell Carcinoma.
Pathol Oncol Res. 2016; 22(3):541-7 [PubMed] Related Publications
Protein Tyrosine Phosphatase Receptor J (PTPRJ) has been reported to be a tumor suppressor in various human cancers. The aim of this study was to investigate the clinical significance of PTPRJ in ESCC patients and its effects on biological behaviors of ESCC cells. PTPRJ expression, at mRNA and protein levels, were respectively detected by quantitative real-time PCR, western blot and immunohistochemistry, based on 106 newly diagnosed ESCC patients. The associations between PTPRJ expression and clinicopathological characteristics of ESCC patients were statistically analyzed. Then, the effects of PTPRJ in migration and invasion were determined by wound healing and transwell assays based on ESCC cell line transfected with siRNA or expression vector of PTPRJ. Expression of PTPRJ at mRNA and protein levels were both significantly lower in ESCC tissues than those in normal esophageal mucosa. Immunohistochemistry showed that PTPRJ protein was localized in the cytoplasm of cancer cells in ESCC tissues. In addition, PTPRJ downregulation was found to be closely correlated with advanced tumor stage (P = 0.01) and poor differentiation (P = 0.03). Moreover, knockdown of PTPRJ in KYSE510 cells could significantly promote cell migration and invasion (both P < 0.05), which were reversed by the restoration of PTPRJ expression in vitro (both P < 0.05). Our data offer the convincing evidence that loss of PTPRJ expression may predict an aggressive clinical course in ESCC patients. PTPRJ may function as a tumor suppressor and play an important role in the regulation of ESCC cell motility, suggesting its potentials as a therapeutic agent for human ESCC.

Liang JH, Gao R, Xia Y, et al.
Prognostic impact of Epstein-Barr virus (EBV)-DNA copy number at diagnosis in chronic lymphocytic leukemia.
Oncotarget. 2016; 7(2):2135-42 [PubMed] Free Access to Full Article Related Publications
Epstein-Barr virus (EBV)-DNA is detected in the blood of some persons with chronic lymphocytic leukemia (CLL) at diagnosis. Whether this is important in the development or progression of CLL is controversial. We interrogated associations between blood EBV-DNA copy number and biological and clinical variables in 243 new-diagnosed consecutive subjects with CLL. Quantification of EBV-DNA copies was done by real-time quantitative PCR (RQ-PCR). All subjects had serological evidence of prior EBV-infection. However, only 24 subjects (10%) had a EBV-DNA-positive test at diagnosis. EBV-DNA-positive subjects at diagnosis had lower hemoglobin concentrations and platelet levels, higher thymidine kinase-1 and serum ferritin levels, un-mutated IGHV genes and a greater risk of Richter transformation compared with EBV-DNA-negative subjects. Percent CD20-, CD148- and ZAP70-positive cells and mean fluorescence intensity (MFI) of each cluster designation were also increased in EBV-DNA-positive subjects at diagnosis. EBV-DNA test positivity was associated with a briefer time-to-treatment interval (HR 1.85; [95% confidence interval, 1.13, 3.03]; P=0.014) and worse survival (HR 2.77; [1.18, 6.49]; P=0.019). Reduction in EBV copies was significantly associated with therapy-response. A positive blood EBV-DNA test at diagnosis and sequential testing of EBV copies during therapy were significantly associated with biological and clinical variables, time-to-treatment, therapy-response and survival. If validated these data may be added to CLL prognostic scoring systems.

Miao Y, Wang R, Fan L, et al.
Detection of t(12;14)(p13;q32) in a patient with IGH-CCND1 negative mantle cell lymphoma resembling ultra-high risk chronic lymphocytic leukemia.
Int J Clin Exp Pathol. 2015; 8(6):7494-8 [PubMed] Free Access to Full Article Related Publications
T(12;14)(p13;q32) is a rare recurrent chromosomal translocation, which has only been identified in a small subgroup of mantle cell lymphoma (MCL) without typical t(11;14)(q13;q32). This rearrangement causes aberrant over-expression of cyclin D2 (CCND2), which disrupts the normal cell cycle. Here we report a subtle case of MCL with t(12;14)(p13;q32) that was initially misdiagnosed as ultra-high risk chronic lymphocytic leukemia (CLL). A 60-year-old male patient presented with obvious leukocytosis and progressive weakness. Morphology of peripheral blood and immunophenotyping by flow cytometry pointed to a diagnosis of chronic lymphocytic leukemia. Fluorescence in situ hybridization (FISH) using IGH-CCND1 probe was negative for CCND1 abnormality, but demonstrated IGH breakapart signals. The initial diagnosis of CLL was established and the patient was treated with six courses of immunochemotherpy with fludarabine, cyclophosphamide and rituximab (FCR). Complete remission (CR) was achieved at the end of treatment, but disease relapsed quickly. The patient was transferred to our hospital, flow cytometry using additional markers showed that the clonal cells were CD200+(dim), CD148+(strong), and chromosome analysis revealed a complex karyotype, 47, XY, t(12;14)(p13;q32), +12, del(9p21), which indicated over-expression of CCND2, and immunostaining showed strong positivity of SOX11 further confirming the characteristics of CCND1-negtive MCL. The final diagnosis was revised to rare subtype of MCL with CCND2 translocation and intensive regimens were employed. This confusable MCL case illustrates the importance of cytogenetic analysis and clinicopathologic diagnosis of this rare category of MCL.

Kaliyaperumal K, Sharma AK, McDonald DG, et al.
S-Nitrosoglutathione-mediated STAT3 regulation in efficacy of radiotherapy and cisplatin therapy in head and neck squamous cell carcinoma.
Redox Biol. 2015; 6:41-50 [PubMed] Free Access to Full Article Related Publications
S-nitrosoglutathione (GSNO) is an endogenous nitric oxide (NO) carrier that plays a critical role in redox based NO signaling. Recent studies have reported that GSNO regulates the activities of STAT3 and NF-κB via S-nitrosylation dependent mechanisms. Since STAT3 and NF-κB are key transcription factors involved in tumor progression, chemoresistance, and metastasis of head and neck cancer, we investigated the effect of GSNO in cell culture and mouse xenograft models of head and neck squamous cell carcinoma (HNSCC). For the cell culture studies, three HNSCC cell lines were tested (SCC1, SCC14a and SCC22a). All three cell lines had constitutively activated (phosphorylated) STAT3 (Tyr(705)). GSNO treatment of these cell lines reversibly decreased the STAT3 phosphorylation in a concentration dependent manner. GSNO treatment also decreased the basal and cytokine-stimulated activation of NF-κB in SCC14a cells and reduced the basal low degree of nitrotyrosine by inhibition of inducible NO synthase (iNOS) expression. The reduced STAT3/NF-κB activity by GSNO treatment was correlated with the decreased cell proliferation and increased apoptosis of HNSCC cells. In HNSCC mouse xenograft model, the tumor growth was reduced by systemic treatment with GSNO and was further reduced when the treatment was combined with radiation and cisplatin. Accordingly, GSNO treatment also resulted in decreased levels of phosphorylated STAT3. In summary, these studies demonstrate that GSNO treatment blocks the NF-κB and STAT3 pathways which are responsible for cell survival, proliferation and that GSNO mediated mechanisms complement cispaltin and radiation therapy, and thus could potentiate the therapeutic effect in HNSCC.

Bian Y, Han J, Kannabiran V, et al.
MEK inhibitor PD-0325901 overcomes resistance to CK2 inhibitor CX-4945 and exhibits anti-tumor activity in head and neck cancer.
Int J Biol Sci. 2015; 11(4):411-22 [PubMed] Free Access to Full Article Related Publications
The serine-threonine kinase CK2 exhibits genomic alterations and aberrant overexpression in human head and neck squamous cell carcinomas (HNSCC). Here, we investigated the effects of CK2 inhibitor CX-4945 in human HNSCC cell lines and xenograft models. The IC50's of CX-4945 for 9 UM-SCC cell lines measured by MTT assay ranged from 3.4-11.9 μM. CX-4945 induced cell cycle arrest and cell death measured by DNA flow cytometry, and inhibited prosurvival mediators phospho-AKT and p-S6 in UM-SCC1 and UM-SCC46 cells. CX-4945 decreased NF-κB and Bcl-XL reporter gene activities in both cell lines, but upregulated proapoptotic TP53 and p21 reporter activities, and induced phospho-ERK, AP-1, and IL-8 activity in UM-SCC1 cells. CX-4945 exhibited modest anti-tumor activity in UM-SCC1 xenografts. Tumor immunostaining revealed significant inhibition of PI3K-Akt-mTOR pathway and increased apoptosis marker TUNEL, but also induced p-ERK, c-JUN, JUNB, FOSL1 and proliferation (Ki67) markers, as a possible resistance mechanism. To overcome the drug resistance, we tested MEK inhibitor PD-0325901 (PD-901), which inhibited ERK-AP-1 activation alone and in combination with CX-4945. PD-901 alone displayed significant anti-tumor effects in vivo, and the combination of PD-901 and CX-4945 slightly enhanced anti-tumor activity when compared with PD-901 alone. Immunostaining of tumor specimens after treatment revealed inhibition of p-AKT S129 and p-AKT T308 by CX-4945, and inhibition of p-ERK T202/204 and AP-1 family member FOSL-1 by PD-901. Our study reveals a drug resistance mechanism mediated by the MEK-ERK-AP-1 pathway in HNSCC. MEK inhibitor PD-0325901 is active in HNSCC resistant to CX-4945, meriting further clinical investigation.

Petermann A, Stampnik Y, Cui Y, et al.
Deficiency of the protein-tyrosine phosphatase DEP-1/PTPRJ promotes matrix metalloproteinase-9 expression in meningioma cells.
J Neurooncol. 2015; 122(3):451-9 [PubMed] Related Publications
Brain-invasive growth of a subset of meningiomas is associated with less favorable prognosis. The molecular mechanisms causing invasiveness are only partially understood, however, the expression of matrix metalloproteinases (MMPs) has been identified as a contributing factor. We have previously found that loss of density enhanced phosphatase-1 (DEP-1, also designated PTPRJ), a transmembrane protein-tyrosine phosphatase, promotes meningioma cell motility and invasive growth in an orthotopic xenotransplantation model. We have now analyzed potential alterations of the expression of genes involved in motility control, caused by DEP-1 loss in meningioma cell lines. DEP-1 depleted cells exhibited increased expression of mRNA encoding MMP-9, and the growth factors EGF and FGF-2. The increase of MMP-9 expression in DEP-1 depleted cells was also readily detectable at the protein level by zymography. MMP-9 upregulation was sensitive to chemical inhibitors of growth factor signal transduction. Conversely, MMP-9 mRNA levels could be stimulated with growth factors (e.g. EGF) and inflammatory cytokines (e.g. TNFα). Increase of MMP-9 expression by DEP-1 depletion, or growth factor/cytokine stimulation qualitatively correlated with increased invasiveness in vitro scored as transmigration through matrigel-coated membranes. The studies suggest induction of MMP-9 expression promoted by DEP-1 deficiency, or potentially by growth factors and inflammatory cytokines, as a mechanism contributing to meningioma brain invasiveness.

Yan CM, Zhao YL, Cai HY, et al.
Blockage of PTPRJ promotes cell growth and resistance to 5-FU through activation of JAK1/STAT3 in the cervical carcinoma cell line C33A.
Oncol Rep. 2015; 33(4):1737-44 [PubMed] Related Publications
Gene therapy is a promising therapeutic approach for chemoresistant cervical cancers. Therapeutic interventions targeting the key factors contributing to the initiation and progression of cervical cancer may be a more effective treatment strategy. In the present study, we firstly determined the expression of protein tyrosine phosphatase receptor J (PTPRJ) in 8-paired human cervical tumor and non-tumor tissues. We observed a striking downregulation of PTPRJ in the human cervical tumor tissues. Next, we investigated the roles and the function mechanism of PTPRJ in the human cervical carcinoma cell line C33A by loss- and gain-of-function experiments. Our study indicated that C33A cells with loss of PTPRJ expression showed a significantly increased cell viability, rising growth and migration rate, as well as a G1-S transition. We obtained the opposite results when we overexpressed PTPRJ in C33A cells. Our further study indicated that PTPRJ levels were highly correlated with cell survival when the C33A cells were treated with 5-fluorouracil (5-FU), an important chemotherapeutic agent for cervical cancer. In addition, the signaling pathway screening assay showed an obvious alteration of the Janus kinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) pathway. PTPRJ negatively regulated the activation of the JAK1/STAT3 pathway by decreasing the phosphorylation levels of JAK1 and STAT3. In addition, PTPRJ also regulated the expression of the downstream factors of STAT3, such as cyclin D, Bax, VEGF and MMP2. Our results suggest that PTPRJ may be a promising gene therapy target and its therapeutic potential can be fulfilled when used alone, or in combination with other anticancer agents.

Pombo-de-Oliveira MS, Emerenciano M, Winn AP, et al.
Concordant B-cell precursor acute lymphoblastic leukemia in non-twinned siblings.
Blood Cells Mol Dis. 2015; 54(1):110-5 [PubMed] Related Publications
Associating the risk of childhood acute lymphoblastic leukemia (ALL) with genetic predisposition is still a challenge. Here, we discuss two non-twinned sibs (girl and boy) diagnosed with B-cell precursor (BCP-ALL) and ETV6-RUNX1. BCP-ALL clinical onset occurred 10months apart from each diagnosis. One child is alive in complete continuous remission, whereas, the other relapsed and evolved to death with resistance to ALL treatment. Despite the fact that BCP-ALL with ETV6-RUNX1 usually results in a very good prognosis, the sibs experienced divergent outcomes; a remarkable difference in one child that presented a more aggressive disease was higher leukocytosis associated with IKZF1 deletion. The familial history of cancer and genetic susceptibility was explored. The sibs were absolutely identical in all 17 loci of genes tested; GSTM1, GSTT1, NQO1, TP53, and TP63 were wild-type, whereas at least one copy of the variant allele for IKZF1, ARID5B, PTPRJ and CEBPE was present. The familial pattern of ETV6 was tested by the 12p microsatellite analysis and demonstrated that deletions occurred in one child but not the other, while heterozygous patterns were found in the parents. Altogether, our data suggest that genetic predisposition aligned with chance haa an additive effect in BCP-ALL outcome.

Katsuyama A, Konno T, Shimoyama S, Kikuchi H
The mycotoxin patulin decreases expression of density-enhanced phosphatase-1 by down-regulating PPARγ in human colon cancer cells.
Tohoku J Exp Med. 2014; 233(4):265-74 [PubMed] Related Publications
Patulin is a mycotoxin that is found mainly in apple products and causes symptoms such as bleeding from the digestive tract and diarrhea. Efforts to elucidate the mechanism of its toxicity have focused on protein tyrosine phosphatases (PTPs), which regulate the function of tight junctions (TJs) in colon epithelial cells. Patulin reacts with the conserved cysteine residues in the catalytic domains of PTP isoforms. Treatment of Caco-2 human colon cancer cells, used as a colon epithelial model, with 50 µM patulin decreased the level of density-enhanced phosphatase-1 (DEP-1) protein to 30% of the control level after 6 h. The level of DEP-1 mRNA was also decreased during 24 h after treatment with patulin. Moreover, knockdown of DEP-1 increased the level of phosphorylated claudin-4. Destruction of TJs by patulin treatment was observed by immunostaining with an antibody against zonula occludens (ZO)-1. To better understand the mechanistic basis of the decrease in DEP-1 mRNA levels, we searched for a cis-element upstream of the DEP-1 gene and found an element responsive to the peroxisome proliferator-activated receptor gamma (PPARγ) protein. Using a PPARγ-specific antibody, we showed a decrease in PPARγ abundance to 42% of the control level within 6 h after treatment with patulin. PPARγ has four cysteine residues that are involved in zinc finger formation. Our data suggest that DEP-1 affects TJ function and that PPARγ might control DEP-1 expression. Therefore, the toxicity of patulin to cellular functions might be attributable to its ability to down-regulate the expression of DEP-1 and PPARγ.

Aya-Bonilla C, Camilleri E, Haupt LM, et al.
In silico analyses reveal common cellular pathways affected by loss of heterozygosity (LOH) events in the lymphomagenesis of Non-Hodgkin's lymphoma (NHL).
BMC Genomics. 2014; 15:390 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The analysis of cellular networks and pathways involved in oncogenesis has increased our knowledge about the pathogenic mechanisms that underlie tumour biology and has unmasked new molecular targets that may lead to the design of better anti-cancer therapies. Recently, using a high resolution loss of heterozygosity (LOH) analysis, we identified a number of potential tumour suppressor genes (TSGs) within common LOH regions across cases suffering from two of the most common forms of Non-Hodgkin's lymphoma (NHL), Follicular Lymphoma (FL) and Diffuse Large B-cell Lymphoma (DLBCL). From these studies LOH of the protein tyrosine phosphatase receptor type J (PTPRJ) gene was identified as a common event in the lymphomagenesis of these B-cell lymphomas. The present study aimed to determine the cellular pathways affected by the inactivation of these TSGs including PTPRJ in FL and DLBCL tumourigenesis.
RESULTS: Pathway analytical approaches identified that candidate TSGs located within common LOH regions participate within cellular pathways, which may play a crucial role in FL and DLBCL lymphomagenesis (i.e., metabolic pathways). These analyses also identified genes within the interactome of PTPRJ (i.e. PTPN11 and B2M) that when inactivated in NHL may play an important role in tumourigenesis. We also detected genes that are differentially expressed in cases with and without LOH of PTPRJ, such as NFATC3 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3). Moreover, upregulation of the VEGF, MAPK and ERBB signalling pathways was also observed in NHL cases with LOH of PTPRJ, indicating that LOH-driving events causing inactivation of PTPRJ, apart from possibly inducing a constitutive activation of these pathways by reduction or abrogation of its dephosphorylation activity, may also induce upregulation of these pathways when inactivated. This finding implicates these pathways in the lymphomagenesis and progression of FL and DLBCL.
CONCLUSIONS: The evidence obtained in this research supports findings suggesting that FL and DLBCL share common pathogenic mechanisms. Also, it indicates that PTPRJ can play a crucial role in the pathogenesis of these B-cell tumours and suggests that activation of PTPRJ might be an interesting novel chemotherapeutic target for the treatment of these B-cell tumours.

Sundaram K, Sambandam Y, Tsuruga E, et al.
1α,25-dihydroxyvitamin D3 modulates CYP2R1 gene expression in human oral squamous cell carcinoma tumor cells.
Horm Cancer. 2014; 5(2):90-7 [PubMed] Related Publications
Oral squamous cell carcinomas (OSCC) are the most common malignant neoplasms associated with mucosal surfaces of the oral cavity and oropharynx. 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is implicated as an anticancer agent. Cytochrome P450 2R1 (CYP2R1) is a microsomal vitamin D 25-hydroxylase which plays an important role in converting dietary vitamin D to active metabolite, 25-(OH)D3. We identified high levels of CYP2R1 expression using tissue microarray of human OSCC tumor specimens compared to normal adjacent tissue. Therefore, we hypothesize that 1,25(OH)2D3 regulates CYP2R1 gene expression in OSCC tumor cells. Interestingly, real-time RT-PCR analysis of total RNA isolated from OSCC cells (SCC1, SCC11B, and SCC14a) treated with 1,25(OH)2D3 showed a significant increase in CYP2R1 and vitamin D receptor (VDR) mRNA expression. Also, Western blot analysis demonstrated that 1,25(OH)2D3 treatment time-dependently increased CYP2R1 expression in these cells. 1,25(OH)2D3 stimulation of OSCC cells transiently transfected with the hCYP2R1 promoter (-2 kb)-luciferase reporter plasmid demonstrated a 4.3-fold increase in promoter activity. In addition, 1,25(OH)2D3 significantly increased c-Fos, p-c-Jun expression, and c-Jun N-terminal kinase (JNK) activity in these cells. The JNK inhibitor suppresses 1,25(OH)2D3, inducing CYP2R1 mRNA expression and gene promoter activity in OSCC cells. Furthermore, JNK inhibitor significantly decreased 1,25(OH)2D3 inhibition of OSCC tumor cell proliferation. Taken together, our results suggest that AP-1 is a downstream effector of 1,25(OH)2D3 signaling to modulate CYP2R1 gene expression in OSCC tumor cells, and vitamin D analogs could be potential therapeutic agents to control OSCC tumor progression.

Wei W, Jiang M, Luo L, et al.
Colorectal cancer susceptibility variants alter risk of breast cancer in a Chinese Han population.
Genet Mol Res. 2013; 12(4):6268-74 [PubMed] Related Publications
Recent genome wide association studies (GWAS) and candidate gene studies have revealed many novel loci associated with colorectal cancer susceptibility. We evaluated the effect of these colorectal cancer-associated variants on the risk of breast cancer in a Chinese Han population. Seven single nucleotide polymorphisms (SNPs) (rs3856806 in PPARG, rs7014346 in POU5F1P1, rs989902 in PTPN13, rs1801278 in IRS1, rs7003146 in TCF7L2, rs1503185 in PTPRJ, and rs63750447 in MLH1) were genotyped in Han Chinese subjects, including 216 patients with breast cancer and 216 matched controls, using the Sequenom MassARRAY platform. The association of genotypes with susceptibility to breast cancer was analyzed using the odds ratio (OR), with 95% confidence interval (CI) and logistic regression. Three SNPs (rs7014346, rs989902, and rs7003146) were found to be significantly associated with the susceptibility of breast cancer. The GA and AA genotypes of rs7003146 in TCF7L2, and the CA and CC genotype of rs989902 in PTPN13 were associated with reduced breast cancer risk in the Chinese Han population based on the best-fit dominant model. The GG genotype of rs7014346 in POU5F1P1 was also significantly associated with decreased breast cancer risk under the best-fit additive model. Our results confirmed the association of rs7014346 in POU5F1P1, rs989902 in PTPN13, and rs7003146 in TCF7L2 with variations in the risk of breast cancer in a Chinese Han population.

Huang PY, Best OG, Almazi JG, et al.
Cell surface phenotype profiles distinguish stable and progressive chronic lymphocytic leukemia.
Leuk Lymphoma. 2014; 55(9):2085-92 [PubMed] Related Publications
Chronic lymphocytic leukemia (CLL) is clinically heterogeneous. While some patients have indolent disease for many years, 20-30% will progress and ultimately die of their disease. CLL may be classified by the Rai or Binet staging system, mutational status of the immunoglobulin variable heavy-chain gene (IGVH), ZAP-70 overexpression, cytogenetic abnormalities (13q-, + 12, 11q-, 17p-) and expression of several cell surface antigens (CD38, CD49d) that correlate with risk of disease progression. However, none of these markers identify all cases of CLL at risk. In a recent review, we summarized those CD antigens known to correlate with the prognosis of CLL. The present study has identified surface profiles of CD antigens that distinguish clinically progressive CLL from slow-progressive and stable CLL. Using an extended DotScan(™) CLL antibody microarray (Version 3; 182 CD antibodies), and with refined analysis of purified CD19 + B-cells, the following 27 CD antigens were differentially abundant for progressive CLL: CD11a, CD11b, CD11c, CD18, CD19, CD20 (two epitopes), CD21, CD22, CD23, CD24, CD25, CD38, CD40, CD43, CD45, CD45RA, CD52, CD69, CD81, CD84, CD98, CD102, CD148, CD180, CD196 and CD270. The extensive surface profiles obtained provide disease signatures with an accuracy of 79.2%, a sensitivity of 83.9% and a specificity of 72.5% that could provide the basis for a rapid test to triage patients with CLL according to probability of clinical progression and potential earlier requirement for treatment.

Luo D, Wilson JM, Harvel N, et al.
A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.
J Transl Med. 2013; 11:57 [PubMed] Free Access to Full Article Related Publications
In this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the invasiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in invasive cell lines when compared to normal and less invasive cell lines. Transfection of miR-200c, miR-205, and miR-375 mimics into MDA-MB-231 cells led to the inhibition of in vitro cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that miR-200c plays a pivotal role in regulating the invasiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer invasiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.

Aya-Bonilla C, Green MR, Camilleri E, et al.
High-resolution loss of heterozygosity screening implicates PTPRJ as a potential tumor suppressor gene that affects susceptibility to Non-Hodgkin's lymphoma.
Genes Chromosomes Cancer. 2013; 52(5):467-79 [PubMed] Related Publications
We employed a Hidden-Markov-Model (HMM) algorithm in loss of heterozygosity (LOH) analysis of high-density single nucleotide polymorphism (SNP) array data from Non-Hodgkin's lymphoma (NHL) entities, follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL). This revealed a high frequency of LOH over the chromosomal region 11p11.2, containing the gene encoding the protein tyrosine phosphatase receptor type J (PTPRJ). Although PTPRJ regulates components of key survival pathways in B-cells (i.e., BCR, MAPK, and PI3K signaling), its role in B-cell development is poorly understood. LOH of PTPRJ has been described in several types of cancer but not in any hematological malignancy. Interestingly, FL cases with LOH exhibited down-regulation of PTPRJ, in contrast no significant variation of expression was shown in DLBCLs. In addition, sequence screening in Exons 5 and 13 of PTPRJ identified the G973A (rs2270993), T1054C (rs2270992), A1182C (rs1566734), and G2971C (rs4752904) coding SNPs (cSNPs). The A1182 allele was significantly more frequent in FLs and in NHLs with LOH. Significant over-representation of the C1054 (rs2270992) and the C2971 (rs4752904) alleles were also observed in LOH cases. A haplotype analysis also revealed a significant lower frequency of haplotype GTCG in NHL cases, but it was only detected in cases with retention. Conversely, haplotype GCAC was over-representated in cases with LOH. Altogether, these results indicate that the inactivation of PTPRJ may be a common lymphomagenic mechanism in these NHL subtypes and that haplotypes in PTPRJ gene may play a role in susceptibility to NHL, by affecting activation of PTPRJ in these B-cell lymphomas.

Ding D, Lou X, Hua D, et al.
Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach.
PLoS Genet. 2012; 8(12):e1003065 [PubMed] Free Access to Full Article Related Publications
Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV)-related hepatocellular carcinomas (HCCs). Here we devised a massive anchored parallel sequencing (MAPS) method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV-related HCC tissues (cancer and adjacent tissues), we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs) with precise HBV-Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1) containing IPR003961 (Fibronectin, type III domain), 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1) containing IPR013032 (EGF-like region, conserved site), and three genes (PDE7A, PDE4B, PDE11A) containing IPR002073 (3', 5'-cyclic-nucleotide phosphodiesterase). Enriched pathways include hsa04512 (ECM-receptor interaction), hsa04510 (Focal adhesion), and hsa04012 (ErbB signaling pathway). Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1) and telomerase reverse transcriptase (TERT1), two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5), phosphatase and actin regulator 4 (PHACTR4), and RNA binding protein fox-1 homolog (C. elegans) 1 (RBFOX1). Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list. This global survey of HBV integration events, together with recently published whole-genome sequencing analyses, furthered our understanding of the HBV-related HCC.

Casagrande S, Ruf M, Rechsteiner M, et al.
The protein tyrosine phosphatase receptor type J is regulated by the pVHL-HIF axis in clear cell renal cell carcinoma.
J Pathol. 2013; 229(4):525-34 [PubMed] Related Publications
Mass spectrometry analysis of renal cancer cell lines recently suggested that the protein-tyrosine phosphatase receptor type J (PTPRJ), an important regulator of tyrosine kinase receptors, is tightly linked to the von Hippel-Lindau protein (pVHL). Therefore, we aimed to characterize the biological relevance of PTPRJ for clear cell renal cell carcinoma (ccRCC). In pVHL-negative ccRCC cell lines, both RNA and protein expression levels of PTPRJ were lower than those in the corresponding pVHL reconstituted cells. Quantitative RT-PCR and western blot analysis of ccRCC with known VHL mutation status and normal matched tissues as well as RNA in situ hybridization on a tissue microarray (TMA) confirmed a decrease of PTPRJ expression in more than 80% of ccRCCs, but in only 12% of papillary RCCs. ccRCC patients with no or reduced PTPRJ mRNA expression had a less favourable outcome than those with a normal expression status (p = 0.05). Sequence analysis of 32 PTPRJ mRNA-negative ccRCC samples showed five known polymorphisms but no mutations, implying other mechanisms leading to PTPRJ's down-regulation. Selective silencing of HIF-α by siRNA and reporter gene assays demonstrated that pVHL inactivation reduces PTPRJ expression through a HIF-dependent mechanism, which is mainly driven by HIF-2α stabilization. Our results suggest PTPRJ as a member of a pVHL-controlled pathway whose suppression by HIF is critical for ccRCC development.

Smart CE, Askarian Amiri ME, Wronski A, et al.
Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors.
PLoS One. 2012; 7(7):e40742 [PubMed] Free Access to Full Article Related Publications
The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.

Obara W, Ohsawa R, Kanehira M, et al.
Cancer peptide vaccine therapy developed from oncoantigens identified through genome-wide expression profile analysis for bladder cancer.
Jpn J Clin Oncol. 2012; 42(7):591-600 [PubMed] Related Publications
OBJECTIVE: The field of cancer vaccine therapy is currently expected to become the fourth option in the treatment of cancer after surgery, chemotherapy and radiation therapy. We developed a novel cancer peptide vaccine therapy for bladder cancer through a genome-wide expression profile analysis.
METHODS: Among a number of oncoproteins that are transactivated in cancer cells, we focused on M phase phosphoprotein 1 and DEP domain containing 1, both of which are cancer-testis antigens playing critical roles in the growth of bladder cancer cells, as candidate molecules for the development of drugs for bladder cancer. In an attempt to identify the peptide epitope from these oncoantigens, we conducted a clinical trial using these peptides for patients with advanced bladder cancer.
RESULTS: We identified HLA-A24-restricted peptide epitopes corresponding to parts of M phase phosphoprotein 1 and DEP domain containing 1 proteins, which could induce peptide-specific cytotoxic T lymphocytes. Using these peptides, we found that M phase phosphoprotein 1- and DEP domain containing 1-derived peptide vaccines could be well tolerated without any serious adverse events, and effectively induced peptide-specific cytotoxic T lymphocytes in vivo.
CONCLUSIONS: The novel approach adopted in the treatment with peptide vaccines is considered to be a promising therapy for bladder cancer.

Cuadrado A, Remeseiro S, Gómez-López G, et al.
The specific contributions of cohesin-SA1 to cohesion and gene expression: implications for cancer and development.
Cell Cycle. 2012; 11(12):2233-8 [PubMed] Related Publications
Besides its well-established role in sister chromatid cohesion, cohesin has recently emerged as major player in the organization of interphase chromatin. Such important function is related to its ability to entrap two DNA segments also in cis, thereby facilitating long-range DNA looping which is crucial for transcriptional regulation, organization of replication factories and V(D)J recombination. Vertebrate somatic cells have two different versions of cohesin, containing Smc1, Smc3, Rad21/Scc1 and either SA1 or SA2, but their functional specificity has been largely ignored. We recently generated a knockout mouse model for the gene encoding SA1, and found that this protein is essential to complete embryonic development. Cohesin-SA1 mediates cohesion at telomeres, which is required for their replication. Telomere defects in SA1- deficient cells provoke chromosome segregation errors resulting in aneuploidy despite robust centromere cohesion. This aneuploidy could explain why heterozygous animals have an earlier onset of tumorigenesis. In addition, the genome-wide distribution of cohesin changes dramatically in the absence of SA1, and the complex shows reduced accumulation at promoters and CTCF sites. As a consequence, gene expression is altered, leading to downregulation of biological processes related to a developmental disorder linked to cohesin function, the Cornelia de Lange Syndrome (CdLS). These results point out a prominent role of cohesin-SA1 in transcriptional regulation, with clear implications in the etiology of CdLS.

Bhatnagar R, Dabholkar J, Saranath D
Genome-wide disease association study in chewing tobacco associated oral cancers.
Oral Oncol. 2012; 48(9):831-5 [PubMed] Related Publications
With a view to identify genomic risk variants in chewing-tobacco associated oral cancer patients, a genome-wide association study was conducted in patients of Indian ethnicity with long term tobacco chewing habit. We analyzed 55 oral cancer patients and 92 healthy controls for single nucleotide polymorphisms, using high throughput microarray Illumina Infinium II Assay platform and Human CNV370k-bead chip containing 370,000 single nucleotide polymorphisms. The PLINK software platform defined 298 SNPs with minor allele frequency of several genes significantly increased in oral cancer patients as compared to the controls (p<0.001). Illumina Genome Viewer Software Version 3.2.9, further delineated 93 SNPs with p-values ranging from 9.3×10(-4) to 1.38×10(-5) and Odd's ratio of 2.18-8.48, associated with 70 genes. Analysis using Kyoto Encyclopedia of Genes and Genome Pathway database, indicated SNP association with several genes including GRIK2, RASGRP3, CAMK4, SYK, RAPTOR, FHIT, DCC, active in signal transduction; MMP2, CNTNAP2, PTPRJ associated with tumor cell migration; and apoptotic gene IRAK3. The data indicates an inherent role for the genetic constitution of individuals in oral carcinogenesis, with the genomic variants contributing to increased risk or susceptibility to oral cancer.

Godfrey R, Arora D, Bauer R, et al.
Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ.
Blood. 2012; 119(19):4499-511 [PubMed] Related Publications
Signal transduction of FMS-like tyrosine kinase 3 (FLT3) is regulated by protein-tyrosine phosphatases (PTPs). We recently identified the PTP DEP-1/CD148/PTPRJ as a novel negative regulator of FLT3. This study addressed the role of DEP-1 for regulation of the acute myeloid leukemia (AML)-related mutant FLT3 internal tandem duplication (ITD) protein. Our experiments revealed that DEP-1 was expressed but dysfunctional in cells transformed by FLT3 ITD. This was caused by enzymatic inactivation of DEP-1 through oxidation of the DEP-1 catalytic cysteine. In intact cells, including primary AML cells, FLT3 ITD kinase inhibition reactivated DEP-1. DEP-1 reactivation was also achieved by counteracting the high levels of reactive oxygen species (ROS) production detected in FLT3 ITD-expressing cell lines by inhibition of reduced NAD phosphate (NADPH)-oxidases, or by overexpression of catalase or peroxiredoxin-1 (Prx-1). Interference with ROS production in 32D cells inhibited cell transformation by FLT3 ITD in a DEP-1-dependent manner, because RNAi-mediated depletion of DEP-1 partially abrogated the inhibitory effect of ROS quenching. Reactivation of DEP-1 by stable overexpression of Prx-1 extended survival of mice in the 32D cell/C3H/HeJ mouse model of FLT3 ITD-driven myeloproliferative disease. The study thus uncovered DEP-1 oxidation as a novel event contributing to cell transformation by FLT3 ITD.

Pang LY, Bergkvist GT, Cervantes-Arias A, et al.
Identification of tumour initiating cells in feline head and neck squamous cell carcinoma and evidence for gefitinib induced epithelial to mesenchymal transition.
Vet J. 2012; 193(1):46-52 [PubMed] Related Publications
Feline oral squamous cell carcinoma is considered a highly invasive cancer that carries a high level of morbidity. Despite aggressive surgery, patients often succumb to disease, the tumour having inherent insensitivity to radiation and chemotherapy. In this study we sought to identify cells within the feline SCC1 line that have stem cell properties, including inherent resistance mechanisms. When feline cells were subjected to harsh growth conditions, they formed sphere colonies consistent with a stem cell phenotype. Utilising CD133, we were able to identify a small fraction of cells within the population that had enhanced sphere-forming ability, reduced sensitivity to radiation and conventional chemotherapy and demonstrated resistance to the EGFR-targeting drug, gefitinib. In addition, long-term culture of feline SSC1 cells in gefitinib caused a change in cell morphology and gene expression reminiscent of an epithelial to mesenchymal transition. Taken together, these results suggest that feline SCC may be driven by small subset of cancer stem cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PTPRJ, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999