PCSK7

Gene Summary

Gene:PCSK7; proprotein convertase subtilisin/kexin type 7
Aliases: LPC, PC7, PC8, SPC7
Location:11q23.3
Summary:This gene encodes a member of the subtilisin-like proprotein convertase family, which includes proteases that process protein and peptide precursors trafficking through regulated or constitutive branches of the secretory pathway. It encodes a type 1 membrane bound protease that is expressed in many tissues, including neuroendocrine, liver, gut, and brain. The encoded protein undergoes an initial autocatalytic processing event in the ER and then sorts to the trans-Golgi network through endosomes where a second autocatalytic event takes place and the catalytic activity is acquired. This gene encodes one of the seven basic amino acid-specific members which cleave their substrates at single or paired basic residues. It can process proalbumin and is thought to be responsible for the activation of HIV envelope glycoproteins gp160 and gp140. This gene has been implicated in the transcriptional regulation of housekeeping genes and plays a role in the regulation of iron metabolism. A t(11;14)(q23;q32) chromosome translocation associated with B-cell lymphoma occurs between this gene and its inverted counterpart. [provided by RefSeq, Feb 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:proprotein convertase subtilisin/kexin type 7
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PCSK7 (cancer-related)

Fukushima K, Otagaki S, Takahashi K, et al.
Promotion of cell-invasive activity through the induction of LPA receptor-1 in pancreatic cancer cells.
J Recept Signal Transduct Res. 2018; 38(4):367-371 [PubMed] Related Publications
Lysophosphatidic acid (LPA) is a simple biological lipid and mediates several biological functions with LPA receptors (LPA

Bolli N, Maura F, Minvielle S, et al.
Genomic patterns of progression in smoldering multiple myeloma.
Nat Commun. 2018; 9(1):3363 [PubMed] Free Access to Full Article Related Publications
We analyzed whole genomes of unique paired samples from smoldering multiple myeloma (SMM) patients progressing to multiple myeloma (MM). We report that the genomic landscape, including mutational profile and structural rearrangements at the smoldering stage is very similar to MM. Paired sample analysis shows two different patterns of progression: a "static progression model", where the subclonal architecture is retained as the disease progressed to MM suggesting that progression solely reflects the time needed to accumulate a sufficient disease burden; and a "spontaneous evolution model", where a change in the subclonal composition is observed. We also observe that activation-induced cytidine deaminase plays a major role in shaping the mutational landscape of early subclinical phases, while progression is driven by APOBEC cytidine deaminases. These results provide a unique insight into myelomagenesis with potential implications for the definition of smoldering disease and timing of treatment initiation.

Lee SR, Choi YD, Cho NH
Association between pathologic factors and ERG expression in prostate cancer: finding pivotal networking.
J Cancer Res Clin Oncol. 2018; 144(9):1665-1683 [PubMed] Related Publications
PURPOSE: To evaluate associations between pathologic factors and erythroblast transformation-specific (ETS)-related gene (ERG) expression in prostate cancer patients. Using next-generation sequencing, we identified target genes and regulatory networks.
METHODS: ERG expression in 60 radical prostatectomies was compared with pathological findings by association rule mining with the Apriori algorithm. Whole-exome and RNA sequencing were performed on three formalin-fixed, paraffin-embedded ERG-positive and negative prostate cancer samples. A network diagram identifying dominant altered genes was constructed using Cytoscape open-source bioinformatics platform and GeneMania plugin.
RESULTS: Pathologic conditions positive for perineural invasion, apical margins, and Gleason score 3 + 4 = 7 were significantly more likely to be ERG-positive than other pathologic conditions (p = 0.0008), suggesting an association between ERG positivity, perineural invasion, apical margins, and Gleason score 3 + 4 = 7 (Firth's logistic regression: OR 42.565, 95% CI 1.670-1084.847, p = 0.0232). Results of whole-exome and RNA sequencing identified 97 somatic mutations containing common mutated genes. Regulatory network analysis identified NOTCH1, MEF2C, STAT3, LCK, CACNA2D3, PCSK7, MEF2A, PDZD2, TAB1, and ASGR1 as pivotal genes. NOTCH1 appears to function as a hub, because it had the highest node degree and betweenness. NOTCH1 staining was found 8 of 60 specimens (13%), with a significant association between ERG and NOTCH1 positivity (p = 0.001).
CONCLUSIONS: Evaluating the association between ERG expression and pathologic factors, and identifying the regulatory network and pivotal hub may help to understand the clinical significance of ERG-positive prostate cancer.

Mitchell TJ, Turajlic S, Rowan A, et al.
Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal.
Cell. 2018; 173(3):611-623.e17 [PubMed] Free Access to Full Article Related Publications
Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.

Ginefra P, Filippi BGH, Donovan P, et al.
Compartment-Specific Biosensors Reveal a Complementary Subcellular Distribution of Bioactive Furin and PC7.
Cell Rep. 2018; 22(8):2176-2189 [PubMed] Related Publications
Furin trafficking, and that of related proprotein convertases (PCs), may regulate which substrates are accessible for endoproteolysis, but tools to directly test this hypothesis have been lacking. Here, we develop targeted biosensors that indicate Furin activity in endosomes is 10-fold less inhibited by decanoyl-RVKR-chloromethylketone and enriched >3-fold in endosomes compared to the trans-Golgi network (TGN). Endogenous PC7, which resists this inhibitor, was active in distinct vesicles. Only overexpressed PC7 activity reached the cell surface, endosomes, and the TGN. A PLC motif in the cytosolic tail of PC7 was dispensable for endosomal activity, but it was specifically required for TGN recycling and to rescue proActivin-A cleavage in Furin-depleted B16F1 melanoma cells. In sharp contrast, PC7 complemented Furin in cleaving Notch1 independently of PLC-mediated TGN access. Our study provides a proof in principle that compartment-specific biosensors can be used to gain insight into the regulation of PC trafficking and to map the tropism of PC-specific inhibitors.

Martincorena I, Raine KM, Gerstung M, et al.
Universal Patterns of Selection in Cancer and Somatic Tissues.
Cell. 2017; 171(5):1029-1041.e21 [PubMed] Free Access to Full Article Related Publications
Cancer develops as a result of somatic mutation and clonal selection, but quantitative measures of selection in cancer evolution are lacking. We adapted methods from molecular evolution and applied them to 7,664 tumors across 29 cancer types. Unlike species evolution, positive selection outweighs negative selection during cancer development. On average, <1 coding base substitution/tumor is lost through negative selection, with purifying selection almost absent outside homozygous loss of essential genes. This allows exome-wide enumeration of all driver coding mutations, including outside known cancer genes. On average, tumors carry ∼4 coding substitutions under positive selection, ranging from <1/tumor in thyroid and testicular cancers to >10/tumor in endometrial and colorectal cancers. Half of driver substitutions occur in yet-to-be-discovered cancer genes. With increasing mutation burden, numbers of driver mutations increase, but not linearly. We systematically catalog cancer genes and show that genes vary extensively in what proportion of mutations are drivers versus passengers.

Tarpey PS, Behjati S, Young MD, et al.
The driver landscape of sporadic chordoma.
Nat Commun. 2017; 8(1):890 [PubMed] Free Access to Full Article Related Publications
Chordoma is a malignant, often incurable bone tumour showing notochordal differentiation. Here, we defined the somatic driver landscape of 104 cases of sporadic chordoma. We reveal somatic duplications of the notochordal transcription factor brachyury (T) in up to 27% of cases. These variants recapitulate the rearrangement architecture of the pathogenic germline duplications of T that underlie familial chordoma. In addition, we find potentially clinically actionable PI3K signalling mutations in 16% of cases. Intriguingly, one of the most frequently altered genes, mutated exclusively by inactivating mutation, was LYST (10%), which may represent a novel cancer gene in chordoma.Chordoma is a rare often incurable malignant bone tumour. Here, the authors investigate driver mutations of sporadic chordoma in 104 cases, revealing duplications in notochordal transcription factor brachyury (T), PI3K signalling mutations, and mutations in LYST, a potential novel cancer gene in chordoma.

Yates LR, Knappskog S, Wedge D, et al.
Genomic Evolution of Breast Cancer Metastasis and Relapse.
Cancer Cell. 2017; 32(2):169-184.e7 [PubMed] Free Access to Full Article Related Publications
Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole genomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from primary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in the primary tumor. Most distant metastases acquired driver mutations not seen in the primary tumor, drawing from a wider repertoire of cancer genes than early drivers. These include a number of clinically actionable alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.

Campbell PJ
Cliques and Schisms of Cancer Genes.
Cancer Cell. 2017; 32(2):129-130 [PubMed] Related Publications
With a few exceptions, cancers typically carry more than one driver mutation, sometimes five, ten, or more, and these driver mutations do not necessarily assort randomly. In this issue of Cancer Cell, Mina et al. systematically characterize patterns of co-mutation and mutual exclusivity in 6,456 cancers across 23 tumor types.

Du Y, Wang Q, Zhang X, et al.
Lysophosphatidylcholine acyltransferase 1 upregulation and concomitant phospholipid alterations in clear cell renal cell carcinoma.
J Exp Clin Cancer Res. 2017; 36(1):66 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The involvement of lipid metabolism in tumourigenesis and the progression of clear cell renal cell carcinoma (ccRCC) have been reported. However, the role of phospholipid profile alterations in ccRCC has not yet been systematically explored. In the present study, we compared the phospholipid compositions between ccRCC and paired normal renal tissues.
METHODS: The phospholipid compositions of paired ccRCC and normal renal tissues were evaluated using liquid chromatography tandem mass spectrometry (LC/MS/MS). To evaluate the mRNA and protein levels of lysophosphatidylcholine acyltransferase (LPCAT), which converts lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), qRT-PCR, western blotting and immunohistochemistry were performed. The correlations of LPCAT1 expression with clinicopathological features and prognosis were assessed. In addition, siRNAs were used to knockdown LPCAT1 expression in ccRCC cell lines, and its effect on cell proliferation, cell cycle, migration and invasion were investigated.
RESULTS: The phospholipid compositions of ccRCC and normal renal tissues were significantly different. Multiple LPC species were decreased and corresponding PC species were increased in cancer tissues. The mRNA and protein levels of LPCAT1 were up-regulated in ccRCC tissues compared with normal renal tissues, and LPCAT1 expression was significantly correlated with unfavourable pathological features (higher tumour grade, higher TNM stage and larger tumour size) and overall survival. In cell line experiments, LPCAT1 knockdown depleted PCs, inhibited cell proliferation, migration and invasion and induced cell cycle arrest at the G0/G1 phase.
CONCLUSION: Selective changes in PC and LPC composition were observed in ccRCC tissues. The overexpression of LPCAT1 promotes the development and progression of ccRCC, likely through the conversion of LPC to PC.

Guy J, Wagner-Ballon O, Pages O, et al.
A 5-color flow cytometric method for extended 8-part leukocyte differential.
Cytometry B Clin Cytom. 2017; 92(6):498-507 [PubMed] Related Publications
OBJECTIVES: Microscopic leukocyte differentials display many drawbacks. Several single 5 to 8-color tubes using multiparameter flow cytometry (MFC) are able to provide extended differentials with sequential gating-based analysis strategies. We investigated a new 5-color MFC method to perform an extended 8-part differential with a simplified gating strategy.
METHODS: Whole blood was stained with a combination of antibodies including HLA-DR-FITC/CD19-PE/CD45-ECD/CD16-PC5 + CD71-PC5/CD5-PC7.
RESULTS: An original approach was developed to exclude debris and straightforwardly gate the cells to identify sixteen populations. Strong correlations were obtained with the analyzer for neutrophils, lymphocytes, monocytes, and eosinophils (R
CONCLUSIONS: Here a new cytometric differential is proposed with a robust gating strategy which may be used even by unskilled cytometrists and can be easily automated. © 2017 International Clinical Cytometry Society.

Shlien A, Raine K, Fuligni F, et al.
Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer.
Cell Rep. 2016; 16(7):2032-46 [PubMed] Free Access to Full Article Related Publications
Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER)-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.

Wei L, Guo XY, Yang T, et al.
Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles.
Int J Pharm. 2016; 510(1):394-405 [PubMed] Related Publications
Treatment of brain tumor remains a great challenge worldwide. Development of a stable, safe, and effective siRNA delivery system which is able to cross the impermeable blood-brain barrier (BBB) and target glioma cells is necessary. This study aims to investigate the therapeutic effects of intravenous administration of T7 peptide modified core-shell nanoparticles (named T7-LPC/siRNA NPs) on brain tumors. Layer-by-layer assembling of protamine/chondroitin sulfate/siRNA/cationic liposomes followed by T7 peptide modification has been carried out in order to obtain a targeted siRNA delivery system. In vitro cellular uptake experiments demonstrated a higher intracellular fluorescence intensity of siRNA in brain microvascular endothelial cells (BMVECs) and U87 glioma cells when treated with T7-LPC/siRNA NPs compared with PEG-LPC/siRNA NPs. In the co-culture model of BMVECs and U87 cells, a significant down-regulation of EGFR protein expression occurred in the U87 glioma cells after treatment with the T7-LPC/siEGFR NPs. Moreover, the T7-LPC/siRNA NPs had an advantage in penetrating into a deep region of the tumor spheroid compared with PEG-LPC/siRNA NPs. In vivo imaging revealed that T7-LPC/siRNA NPs accumulated more specifically in brain tumor tissues than the non-targeted NPs. Also, in vivo tumor therapy experiments demonstrated that the longest survival period along with the greatest downregulation of EGFR expression in tumor tissues was observed in mice with an intracranial U87 glioma treated with T7-LPC/siEGFR NPs compared with mice receiving other formulations. Therefore, we believe that these transferrin receptor-mediated core-shell nanoparticles are an important potential siRNA delivery system for brain tumor-targeted therapy.

Yu MZ, Pang WH, Yang T, et al.
Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer.
Eur J Pharm Sci. 2016; 92:39-48 [PubMed] Related Publications
Systemic delivery of siRNA is the most challenging step to transfer RNAi to clinical application for breast cancer therapy. In this study, the tumor targeted, T7 peptide modified core-shell nanoparticles (named as T7-LPC/siRNA NPs) were constructed to achieve effective systemic delivery of siRNA. The core-shell structure of T7-LPC/siRNA NPs enables them to encapsulate siRNA in the core and protect it from RNase degradation during circulation. In vitro cellular uptake and gene silencing experiments demonstrated that T7-LPC/siEGFR NPs could deliver EGFR siRNA into breast cancer cells through receptor mediated endocytosis and effectively down-regulate the EGFR expression. In vivo distribution study proved the T7-LPC/siRNA NPs could deliver fluorescence labeled siRNA to the tumor site more efficiently than the non-targeted PEG-LPC/siRNA NPs after intravenous administration. Furthermore, the experiments of in vivo tumor therapy confirmed that intravenous administration of T7-LPC/siEGFR NPs led to an effective EGFR down-regulation and an obvious inhibition of breast tumor growth, with little activation of immune responses and negligible body weight loss. These results suggested that T7-LPC/siRNA NPs could be an effective and safe systemic siRNA delivery system for RNAi-based breast cancer therapy.

Pelucchi S, Galimberti S, Greni F, et al.
Proprotein convertase 7 rs236918 associated with liver fibrosis in Italian patients with HFE-related hemochromatosis.
J Gastroenterol Hepatol. 2016; 31(7):1342-8 [PubMed] Related Publications
BACKGROUND AND AIM: p.Cys282Tyr homozygosity is the prevalent genotype in (HFE)-related Hereditary Hemochromatosis with low penetrance and variable expression. However, liver cirrhosis and hepatocellular carcinoma remain the main causes of mortality in these patients. Detection of genetic modifiers identifying patients at risk for liver damage would be relevant for their clinical management. We evaluated proprotein convertase 7 (PCSK7) rs236918 as genetic marker of risk of liver fibrosis in an Italian cohort of p.Cys282Tyr homozygotes.
METHODS: Liver fibrosis was histologically assessed by Ishak score. We evaluated PCSK7 alleles and genotypes frequencies according to single or grouped staging scores: absent/mild fibrosis (stage: 0-2), moderate (stage: 3-4), and severe fibrosis/cirrhosis (stage: 5-6). Single nucleotide polymorphism genotyping was performed by restriction fragment length polymorphism or Taqman 5'-nuclease assays.
RESULTS: The rs236918 allele C frequency increased from stages 0-2 to 5-6 (7.1% vs 13.6%, vs 21.9%, P = 0.003). The wild-type genotype was significantly more frequent in the absent/mild fibrosis group (54.2%) compared with only 17% in patients with severe fibrosis/cirrhosis. At univariate proportional odds model, patients with GC + CC genotypes were 2.77 times (P = 0.0018) more likely to have worse liver staging scores than wild-type patients. In the adjusted analysis, odds ratio was 2.37 (P = 0.0218), and 2.56 (P = 0.0233) when the analysis was restricted to males. An exploratory mediation analysis suggested a direct effect of genotype on severe fibrosis/cirrhosis (odds ratio = 3.11, P = 0.0157), and a mild non-significant indirect effect mediated through iron accounting for 28%.
CONCLUSIONS: These findings confirm that PCSK7 rs236918 C allele is a risk factor for cirrhosis development in Italian patients with HFE-Hemochromatosis.

Matthai SM, Ramakrishna B
Cancer stem cells in hepatocellular carcinoma--an immunohistochemical study with histopathological association.
Indian J Med Res. 2015; 142(4):391-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & OBJECTIVES: Cancer stem cells (CSCs) may be responsible for tumour recurrence and resistance to chemotherapy in hepatocellular carcinoma (HCC). This study was carried out to evaluate the association between histological parameters and liver CSCs (LCSC) in HCC, and to compare distribution of liver CSCs in HCC associated with and without hepatitis B virus (HBV) infection.
METHODS: Seventy nine tumours (49 surgical resections from 46 patients, and 30 from autopsy) were reviewed. Immunohistochemical staining for the LCSC marker EpCAM (epithelial cell adhesion molecule), liver progenitor cell (LPC) markers CK19 (cytokeratin 19) and neural cell adhesion molecule (NCAM) were performed and were associated with histological features of tumour behaviour.
RESULTS: Thirty three tumours (41.8%) showed positive staining for EpCAM. CK19 and NCAM expression were seen in 26 (32.9%) and four (5.1%) tumours, respectively. The expression of EpCAM and CK19 was significantly associated with each other ( P<0.001). EpCAM expression was significantly associated with clinical and histological features indicating aggressive tumour behaviour, including younger age of onset, higher serum alpha foetoprotein (AFP) levels, tumour cell dedifferentiation, increased mitotic activity, and vascular invasiveness. There was no significant difference in expression of EpCAM, CK19 and NCAM between HBV positive and negative HCC.
INTERPRETATION & CONCLUSIONS: The LCSC marker EpCAM was expressed in less than half of HCC, was independent of HBV aetiology, and was strongly associated with clinical and histological features of aggressive tumour behaviour. Positive staining for CK19 suggests a possible LPC origin of the EpCAM positive HCCs.

Yin MZ, Tan S, Li X, et al.
Identification of phosphatidylcholine and lysophosphatidylcholine as novel biomarkers for cervical cancers in a prospective cohort study.
Tumour Biol. 2016; 37(4):5485-92 [PubMed] Related Publications
Metabolites are the end products of cellular regulatory processes. Squamous cervical cancer (SCC) can alter the level of certain small molecular metabolite in plasma through modulating gene expression. In this study, we identified two metabolites, phosphatidylcholine (PC) and lysophosphatidylcholine (LPC), which are significantly down- and upregulated in plasma of SCC as compared to uterine fibroid (UF) patients via ultra-performance liquid chromatographic-mass spectrometry (UPLC-MS). In external prospective cohort, our assay has a sensitivity of 93.2 %, a specificity of 91.3 %, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.972. The level of LPC is significantly higher in SCC than in UF patients. An opposite result was observed in PC level. Our findings suggest that the PC and lysoPC could be used as novel biomarkers to facilitate SCC diagnosis.

Martincorena I, Campbell PJ
Somatic mutation in cancer and normal cells.
Science. 2015; 349(6255):1483-9 [PubMed] Related Publications
Spontaneously occurring mutations accumulate in somatic cells throughout a person's lifetime. The majority of these mutations do not have a noticeable effect, but some can alter key cellular functions. Early somatic mutations can cause developmental disorders, whereas the progressive accumulation of mutations throughout life can lead to cancer and contribute to aging. Genome sequencing has revolutionized our understanding of somatic mutation in cancer, providing a detailed view of the mutational processes and genes that drive cancer. Yet, fundamental gaps remain in our knowledge of how normal cells evolve into cancer cells. We briefly summarize a number of the lessons learned over 5 years of cancer genome sequencing and discuss their implications for our understanding of cancer progression and aging.

Cholia RP, Nayyar H, Kumar R, Mantha AK
Understanding the Multifaceted Role of Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) and its Altered Behaviour in Human Diseases.
Curr Mol Med. 2015; 15(10):932-43 [PubMed] Related Publications
Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) also known as Autotaxin, is a secreted lysophospholipase D, which hydrolyzes lysophosphatidylcholine (LPC) into Lysophosphatidic acid (LPA). LPA is the bioactive product of ENPP2 enzyme, which induces diverse signalling pathways via six LPA-G-protein coupled receptors (GPCRs). ENPP2 is an essential protein for normal development and its altered expression is associated with various human diseases. Cellular ENPP2 silencing results in lethality at the embryonic stage in mice. Initially, it is identified as an autocrine factor in melanoma cells. Different research groups are currently exploring to understand the multifaceted role of ENPP2 in various processes such as embryonic and neural development, migration, invasion, differentiation, proliferation, angiogenesis, and survival. Altered expression of ENPP2 is also associated with various diseases like inflammation, cancer, fibrosis, rheumatoid arthritis and neural defects. In this article, we have summarized structural aspects of ENPP2 and biochemical functions associated with its diverse cellular roles in various human diseases including cancer and Alzheimer's disease (AD). In addition, keeping in view and advocating findings, a note on various phytochemicals and synthetic inhibitors, which are currently explored as therapeutic agents targeting functions of ENPP2 for the treatment of various human diseases is also presented.

Martincorena I, Roshan A, Gerstung M, et al.
Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin.
Science. 2015; 348(6237):880-6 [PubMed] Free Access to Full Article Related Publications
How somatic mutations accumulate in normal cells is central to understanding cancer development but is poorly understood. We performed ultradeep sequencing of 74 cancer genes in small (0.8 to 4.7 square millimeters) biopsies of normal skin. Across 234 biopsies of sun-exposed eyelid epidermis from four individuals, the burden of somatic mutations averaged two to six mutations per megabase per cell, similar to that seen in many cancers, and exhibited characteristic signatures of exposure to ultraviolet light. Remarkably, multiple cancer genes are under strong positive selection even in physiologically normal skin, including most of the key drivers of cutaneous squamous cell carcinomas. Positively selected mutations were found in 18 to 32% of normal skin cells at a density of ~140 driver mutations per square centimeter. We observed variability in the driver landscape among individuals and variability in the sizes of clonal expansions across genes. Thus, aged sun-exposed skin is a patchwork of thousands of evolving clones with over a quarter of cells carrying cancer-causing mutations while maintaining the physiological functions of epidermis.

Shimizu R, Kanno K, Sugiyama A, et al.
Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesis.
J Hepatobiliary Pancreat Sci. 2015; 22(9):675-82 [PubMed] Related Publications
BACKGROUND: The incidence of biliary tract cancer in patients with pancreaticobiliary maljunction or intrahepatic cholelithiasis is markedly high with undefined mechanism. In these diseases, biliary lysophosphatidylcholine (LPC) level is reportedly increased. This study investigated the influence of LPC on cholangiocytes focusing on cellular senescence and its potential contribution to carcinogenesis.
METHODS: Cultured MMNK-1, an immortalized human cholangiocyte was treated with LPC in vitro and its effect was evaluated.
RESULTS: Lysophosphatidylcholine demonstrated cytotoxicity with generation of intracellular reactive oxygen species. Accordingly, LPC provoked oxidative DNA injury, whereas the gene expressions of DNA repair enzyme (OGG1, MUTYH, MTH1) remained unchanged. Interestingly, LPC caused global DNA hypomethylation, which is frequently observed in cancer tissues. Microarray analysis identified differentially regulated genes in response to LPC, which included the components of senescence-associated secretory phenotype (SASP) including interleukin-8 (IL-8), IL-6, transforming growth factor-β and plasminogen activator inhibitor-1. Significant induction of these genes was further confirmed by quantitative real-time polymerase chain reaction. In addition to upregulation of p21 gene expression, senescence-associated beta-galactosidase activity, a widely used marker of cellular senescence was significantly induced by the treatment of LPC.
CONCLUSIONS: Based on these data, cholangiocyte senescence and SASP caused by LPC are potential pathogenic mechanisms in the development of biliary tract cancer.

Priolo C, Ricoult SJ, Khabibullin D, et al.
Tuberous sclerosis complex 2 loss increases lysophosphatidylcholine synthesis in lymphangioleiomyomatosis.
Am J Respir Cell Mol Biol. 2015; 53(1):33-41 [PubMed] Free Access to Full Article Related Publications
Lymphangioleiomyomatosis (LAM) is a destructive lung disease affecting women. LAM is caused by mutations in the tuberous sclerosis complex (TSC) genes. The TSC protein complex inhibits the mechanistic/mammalian target of rapamycin complex 1 (mTORC1), which is a master regulator of cellular metabolism. Using mass spectrometry-based lipid profiling, we analyzed plasma from patients with LAM and discovered elevated levels of four lysophosphatidylcholine (LPC) species (C16:0, C18:0, C18:1, and C20:4) compared with those in healthy control women. To investigate whether these lipids are generated in a TSC2-dependent manner, we profiled in vitro preclinical models of TSC/LAM and found significant LPC accumulation in TSC2-deficient cells relative to TSC2-expressing control cells. These lysoglycerophospholipid changes occurred alongside changes in other phospholipid and neutral lipid species. Treatment with rapamycin or torin1 or down-regulation of sterol regulatory element-binding protein (SREBP), a lipogenic transcription factor, did not suppress LPC in TSC2-deficient cells. Inhibition of distinct isoforms of phospholipase A2 decreased the proliferation of TSC2-deficient cells. Collectively, these results demonstrate that TSC2-deficient cells have enhanced choline phospholipid metabolism and reveal a novel function of the TSC proteins in choline lysoglycerophospholipid metabolism, with implications for disease pathogenesis and targeted therapeutic strategies.

Jajosky AN, Coad JE, Vos JA, et al.
RepSox slows decay of CD34+ acute myeloid leukemia cells and decreases T cell immunoglobulin mucin-3 expression.
Stem Cells Transl Med. 2014; 3(7):836-48 [PubMed] Free Access to Full Article Related Publications
Despite initial response to therapy, most acute myeloid leukemia (AML) patients relapse. To eliminate relapse-causing leukemic stem/progenitor cells (LPCs), patient-specific immune therapies may be required. In vitro cellular engineering may require increasing the "stemness" or immunogenicity of tumor cells and activating or restoring cancer-impaired immune-effector and antigen-presenting cells. Leukapheresis samples provide the cells needed to engineer therapies: LPCs to be targeted, normal hematopoietic stem cells to be spared, and cancer-impaired immune cells to be repaired and activated. This study sought to advance development of LPC-targeted therapies by exploring nongenetic ways to slow the decay and to increase the immunogenicity of primary CD34(+) AML cells. CD34(+) AML cells generally displayed more colony-forming and aldehyde dehydrogenase activity than CD34(-) AML cells. Along with exposure to bone marrow stromal cells and low (1%-5%) oxygen, culture with RepSox (a reprogramming tool and inhibitor of transforming growth factor-β receptor 1) consistently slowed decline of CD34(+) AML and myelodysplastic syndrome (MDS) cells. RepSox-treated AML cells displayed higher CD34, CXCL12, and MYC mRNA levels than dimethyl sulfoxide-treated controls. RepSox also accelerated loss of T cell immunoglobulin mucin-3 (Tim-3), an immune checkpoint receptor that impairs antitumor immunity, from the surface of AML and MDS cells. Our results suggest RepSox may reduce Tim-3 expression by inhibiting transforming growth factor-β signaling and slow decay of CD34(+) AML cells by increasing CXCL12 and MYC, two factors that inhibit AML cell differentiation. By prolonging survival of CD34(+) AML cells and reducing Tim-3, RepSox may promote in vitro immune cell activation and advance development of LPC-targeted therapies.

Zhou Y, Liu X, Xu L, et al.
Transcriptional repression of plasma cell differentiation is orchestrated by aberrant over-expression of the ETS factor SPIB in Waldenström macroglobulinaemia.
Br J Haematol. 2014; 166(5):677-89 [PubMed] Related Publications
In Waldenström macroglobulinaemia (WM), the mechanism(s) responsible for repression of B-cell differentiation remains unknown. We found that expression of SPIB and ID2 were significantly increased and decreased, respectively, in WM lymphoplasmacytic cells (LPC). Ectopic expression of SPIB in healthy donor CD19(+) cells inhibited plasmacytic differentiation in conjunction with decreased transcription of IRF4 and XBP1 spliced form. In primary WM LPC, knock-down of SPIB induced plasmacytic differentiation in conjunction with increased transcription of PRDM1, XBP1 spliced form, IRF4 and ID2. Knock-down of SPIB also led to decreased BCL2 expression. Given that SPIB is a direct target of POU2AF1 (OBF1) in complex with POU2F2 or POU2F1, we next examined their expression in WM LPC. POU2F2 transcription, as well as POU2F2 and POU2AF1 protein expression was higher in WM LPC. Ectopic expression of POU2F2 in healthy donor CD19(+) cells induced transcription of SPIB and suppressed transcription of PRDM1 and IRF4. Chromatin immunoprecipitation analysis in BCWM.1 WM cells confirmed binding of POU2F2 and POU2AF1 in SPIB and ID2 promoters. These findings establish a molecular hierarchy among POU2F2, SPIB and ID2 during B-cell differentiation, and suggest that aberrant expression of these transcription factors plays an important role in arresting plasmacytic differentiation in WM.

Fu J, Zhang J, Gong Y, et al.
Regulation of HIF-1 alpha by the proprotein convertases furin and PC7 in human squamous carcinoma cells.
Mol Carcinog. 2015; 54(9):698-706 [PubMed] Free Access to Full Article Related Publications
Proprotein convertases (PC), a family of serine proteases, process cancer-related substrates such as growth factors, growth factor receptors, cell adhesion molecules, metalloproteinases, etc. HIF-1α is a major transcription factor involved in tumorigenesis by sensing intratumoral hypoxia. Furin (PCSK3) is one of the numerous target genes regulated by HIF-1α transactivation and its distribution into endosomal compartments and onto the cell surface can be triggered by hypoxia via HIF-1α. siRNAs to knockdown PCs were transfected into cells alone or in combination with different drug treatments. Protein and RNA expression levels were analyzed by Western blotting or RT-PCR, respectively. PC7 (PCSK7) and furin siRNAs upregulated HIF-1α protein under normoxic condition to a level similar to that obtained by cobalt chloride treatment, eventually leading to activation of VEGF-A synthesis in two human head and neck squamous cell carcinoma cell lines. The unchanged levels of HIF-1α mRNA expression under siRNA treatment and the additive HIF-1α induction of PC siRNAs and either cobalt chloride or the 26S ribosome inhibitor, MG-132, suggested a post-transcriptional PC-mediated regulation. Furthermore, cycloheximide chase showed that PC7/furin siRNA regulation occurred at the level of HIF-1α translation. A specific IGF-1R signaling inhibitor was able to attenuate the PC siRNA induction of HIF-1α, suggesting the involvement of the IGF-1R pathway. Thus, the data show that PCs regulate HIF-1α. Furin and PC7 siRNAs induced HIF-1α protein by increasing its translation, resulting in upregulation of VEGF-A. This finding may provide insight into intricate PC functions that seem to be independent from their substrate-processing activity.

Fang BA, Kovačević Ž, Park KC, et al.
Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy.
Biochim Biophys Acta. 2014; 1845(1):1-19 [PubMed] Related Publications
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.

Miao L, Fraefel C, Sia KC, et al.
The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy.
Br J Cancer. 2014; 110(1):94-106 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy.
METHODS: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression.
RESULTS: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively.
CONCLUSION: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers.

Ren J, Jin W, Gao YE, et al.
Relations between GPR4 expression, microvascular density (MVD) and clinical pathological characteristics of patients with epithelial ovarian carcinoma (EOC).
Curr Pharm Des. 2014; 20(11):1904-16 [PubMed] Related Publications
G-protein coupled receptor 4 (GPR4) is a G protein-coupled receptor (GPCR) activated by sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC). Later studies indicated that GPR4 can serve as a proton sensor. GPR4 has been known to play a critical role in the tube formation of vascular endothelial cells, and GPR4 overexpression is observed in various types of malignancies, suggesting its involvement in the cancer-related angiogenesis. In this study, we examined the GPR4 expression levels in blood vessels of ovarian cancer, and analyzed the relationship between GPR4 expression and the clinical and pathological characteristics of patients with epithelial ovarian carcinomas (EOC). Results from immunohistochemistry showed that GPR4 is detectable in the endothelium of vessels of both EOC and benign ovarian tumor tissue, but the expression levels were significantly increased in EOC. Moreover the increased expression is accompanied by a higher microvascular density (MVD) in EOC compared to that in the benign ovarian tumors. We demonstrated a positive correlation between GPR4 expression density and MVD in EOC, but not benign ovarian tumor tissues. Further analyses indicated that GPR4 expression and MVD in EOC were correlated to the status of lymph node metastasis and clinical stage, but not significantly correlated to the pathological classifications, histopathological grades, the amounts of ascites, status of peritoneal cytology, tumor sizes, or patients' ages. These results suggested that GPR4 may play an important role in the development of EOC, and its overexpression might be required for the angiogenesis, tumor growth, and metastasis of EOC.

Louie SM, Roberts LS, Mulvihill MM, et al.
Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids.
Biochim Biophys Acta. 2013; 1831(10):1566-72 [PubMed] Free Access to Full Article Related Publications
De novo lipogenesis is considered the primary source of fatty acids for lipid synthesis in cancer cells, even in the presence of exogenous fatty acids. Here, we have used an isotopic fatty acid labeling strategy coupled with metabolomic profiling platforms to comprehensively map palmitic acid incorporation into complex lipids in cancer cells. We show that cancer cells and tumors robustly incorporate and remodel exogenous palmitate into structural and oncogenic glycerophospholipids, sphingolipids, and ether lipids. We also find that fatty acid incorporation into oxidative pathways is reduced in aggressive human cancer cells, and instead shunted into pathways for generating structural and signaling lipids. Our results demonstrate that cancer cells do not solely rely on de novo lipogenesis, but also utilize exogenous fatty acids for generating lipids required for proliferation and protumorigenic lipid signaling. This article is part of a special issue entitled Lipid Metabolism in Cancer.

Jung JH, Jeong SJ, Kim JH, et al.
Inactivation of HDAC3 and STAT3 is critically involved in 1-stearoyl-sn-glycero-3-phosphocholine-induced apoptosis in chronic myelogenous leukemia K562 cells.
Cell Biochem Biophys. 2013; 67(3):1379-89 [PubMed] Related Publications
We here investigated the anticancer mechanism of 1-stearoyl-sn-glycero-3-phosphocholine (LPC), one of the lysophosphatidylcholines, in chronic myelogenous leukemia (CML) K562 cells. LPC significantly showed cytotoxicity at 80 μM and induced apoptosis by sub-G1 accumulation, increase in Annexin V positive and caspase activation. LPC enhanced histone H3 acetylation but decreased histone deacetylase (HDAC) activity and HDAC3 expression. LPC also inhibited phosphorylation of STAT3, its DNA binding activity and nuclear co-localization of HDAC3 and STAT3. In addition, LPC effectively attenuated the expression of survival genes such as Cyclin D1, Cyclin E, Bcl-xL, Bcl-2 and survivin but did not affect COX-2 expression in K562 cells. Furthermore, LPC suppressed phosphorylation of Src and Janus activated kinase 2 while promoted the expression of tyrosine phosphatase Src homology 2 domain-containing phosphatase 1 (SHP-1). Consistently, silencing SHP-1 and pervanadate, an inhibitor of protein tyrosine phosphatase, reversed inactivation of HDAC and STAT3, cleavages of caspase 3 and poly (ADP-ribose) polymerase in LPC-induced apoptosis. Of note, chromatin immunoprecipitation assay revealed that LPC suppressed the binding of HDAC3 and STAT3 to Bcl-xL, Bcl-2 and survivin promoter. Overall, our findings indicate that inactivation of STAT3 and HDAC mediates LPC-induced apoptosis in CML K562 cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PCSK7, Cancer Genetics Web: http://www.cancer-genetics.org/PCSK7.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999