PTPRC

Gene Summary

Gene:PTPRC; protein tyrosine phosphatase receptor type C
Aliases: LCA, LY5, B220, CD45, L-CA, T200, CD45R, GP180
Location:1q31.3-q32.1
Summary:The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitosis, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus is classified as a receptor type PTP. This PTP has been shown to be an essential regulator of T- and B-cell antigen receptor signaling. It functions through either direct interaction with components of the antigen receptor complexes, or by activating various Src family kinases required for the antigen receptor signaling. This PTP also suppresses JAK kinases, and thus functions as a regulator of cytokine receptor signaling. Alternatively spliced transcripts variants of this gene, which encode distinct isoforms, have been reported. [provided by RefSeq, Jun 2012]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:receptor-type tyrosine-protein phosphatase C
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (57)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: PTPRC (cancer-related)

Sandberg TP, Stuart MPME, Oosting J, et al.
Increased expression of cancer-associated fibroblast markers at the invasive front and its association with tumor-stroma ratio in colorectal cancer.
BMC Cancer. 2019; 19(1):284 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The tumor microenvironment has a critical role in regulating cancer cell behavior. Tumors with high stromal content are associated with poor patient outcome. The tumor-stroma ratio (TSR) identifies colorectal cancers (CRC) with poor patient prognosis based on hematoxylin & eosin stained sections. The desmoplastic reaction consists to a great extent of cancer-associated fibroblasts (CAFs) of which different subtypes are known. The aim of this study is to investigate and quantify CAFs present in the tumor stroma of CRC stratified by the TSR to possibly add prognostic significance to the TSR.
METHODS: The expression of established CAF markers was compared between stroma-low and stroma-high tumors using transcriptomic data of 71 stage I - III CRC. Based on literature, fibroblast and stromal markers were selected to perform multiplex immunofluorescent staining on formalin fixed, paraffin-embedded tumor sections of patients diagnosed with stage III colon cancer. Antibodies against the following markers were used: αSMA, PDGFR -β, FAP, FSP1 and the stromal markers CD45 and CD31 as reference. The markers were subsequently quantified in the stroma using the Vectra imaging microscope.
RESULTS: The transcriptomic data showed that all CAF markers except one were higher expressed in stroma-high compared to stroma-low tumors. Histologically, stroma-high tumors showed a decreased number of FSP1
CONCLUSIONS: The increased expression of FAP at the invasive part and in stroma-high tumors might contribute to the invasive behavior of cancer cells. Future functional experiments should investigate the contribution of FAP to cancer cell invasion. Combining the quantity of the stroma as defined by the TSR with the activity level of CAFs using the expression of FAP may result in an expanded stroma-based tool for patient stratification.

Stojanovska V, Prakash M, McQuade R, et al.
Oxaliplatin Treatment Alters Systemic Immune Responses.
Biomed Res Int. 2019; 2019:4650695 [PubMed] Free Access to Full Article Related Publications
Purpose: Oxaliplatin is a platinum-based chemotherapeutic agent demonstrating significant antitumor efficacy. Unlike conventional anticancer agents which are immunosuppressive, oxaliplatin has the capacity to stimulate immunological effects in response to the presentation of damage associated molecular patterns (DAMPs) elicited upon cell death. However, the effects of oxaliplatin treatment on systemic immune responses remain largely unknown. Aims of this study were to investigate the effects of oxaliplatin treatment on the proportions of (1) splenic T cells, B cells, macrophages, pro-/anti-inflammatory cytokines, gene expression of splenic cytokines, chemokines, and mediators; (2) double-positive and single-positive CD4
Methods: Male BALB/c mice received intraperitoneal injections of oxaliplatin (3mg/kg/d) or sterile water tri-weekly for 2 weeks. Leukocyte populations within the spleen, thymus, and bone-marrow were assessed using flow cytometry. RT-PCR was performed to characterise changes in splenic inflammation-associated genes.
Results: Oxaliplatin treatment reduced spleen size and cellularity (CD45
Conclusion: Oxaliplatin does not cause systemic immunosuppression and, instead, has the capacity to induce beneficial antitumor immune responses.

Wang JQ, Tang Y, Li QS, et al.
PARG regulates the proliferation and differentiation of DCs and T cells via PARP/NF‑κB in tumour metastases of colon carcinoma.
Oncol Rep. 2019; 41(5):2657-2666 [PubMed] Free Access to Full Article Related Publications
The present study investigated the effect of poly(ADP‑ribose) glycohydrolase (PARG) on the immune response in tumour metastases of colon carcinoma. CT26 cells were transfected with lentivirus PARG‑short hairpin RNA (shRNA). A liver metastasis model of colon carcinoma was successfully established by splenic subcapsular inoculation of the various groups of CT26 cells into BALB/c mice. Next, changes in the liver metastases of colon carcinoma nodules and alterations in the survival times were observed in tumour‑bearing mice. The numbers of B220+DEC205+ dendritic cells (B220+DEC205+DC) and CD11c+CD11b+ dendritic cells (CD11c+CD11b+DC) in the spleen and liver were measured by the double‑label immunofluorescence assay. The distribution pattern of CD4+T cells and CD8+T cells in the spleen and liver was investigated by immunofluorescence staining. The expression levels of PARG, PARP and nuclear factor‑κB (NF‑κB) proteins in spleen transplant tumours and liver metastases of colon carcinoma were detected by western blotting. An ELISA was used to detect the levels of IL‑10 and TGF‑β in the serum of tumour‑bearing mice and from the supernatant of tumour cells. The numbers and grading of metastatic liver nodules in the PARG‑silenced group were clearly lower than those in the control group. The survival time of the PARG‑silenced group mice was longer than that in the control group. In the PARG‑silenced group, the levels of B220+DEC205+DC in the spleen and liver were lower and the numbers of CD11c+CD11b+DC in the spleen and liver were more than those in the control group. The ratio of CD4+/CD8+ in the spleen and liver in the PARG‑silenced group was increased compared with that in the control group (P<0.05). The levels of PARG, PARP and NF‑κB in spleen transplant tumours and liver metastases of colon carcinoma were lower in the PARG‑silenced group than in the control group. In addition, the levels of IL‑10 and TGF‑β in the serum of tumour‑bearing mice and supernatants of tumour cells were both reduced in the PARG‑silenced group compared with those in the control group. The present research suggests that the liver metastases of colon carcinoma could be restrained by silencing PARG. Likely, the silencing of PARG could suppress the expression of PARP and NF‑κB and subsequently suppress the secretion of IL‑10 and TGF‑α, finally affecting the proliferation and differentiation of DC and T cells.

Zmetakova I, Kalinkova L, Smolkova B, et al.
A disintegrin and metalloprotease 23 hypermethylation predicts decreased disease-free survival in low-risk breast cancer patients.
Cancer Sci. 2019; 110(5):1695-1704 [PubMed] Free Access to Full Article Related Publications
A Disintegrin And Metalloprotease 23 (ADAM23), a member of the ADAM family, is involved in neuronal differentiation and cancer. ADAM23 is considered a possible tumor suppressor gene and is frequently downregulated in various types of malignancies. Its epigenetic silencing through promoter hypermethylation was observed in breast cancer (BC). In the present study, we evaluated the prognostic significance of ADAM23 promoter methylation for hematogenous spread and disease-free survival (DFS). Pyrosequencing was used to quantify ADAM23 methylation in tumors of 203 BC patients. Presence of circulating tumor cells (CTC) in their peripheral blood was detected by quantitative RT-PCR. Expression of epithelial (KRT19) or mesenchymal (epithelial-mesenchymal transition [EMT]-inducing transcription factors TWIST1, SNAI1, SLUG and ZEB1) mRNA transcripts was examined in CD45-depleted peripheral blood mononuclear cells. ADAM23 methylation was significantly lower in tumors of patients with the mesenchymal CTC (P = .006). It positively correlated with Ki-67 proliferation, especially in mesenchymal CTC-negative patients (P = .001). In low-risk patients, characterized by low Ki-67 and mesenchymal CTC absence, ADAM23 hypermethylation was an independent predictor of DFS (P = .006). Our results indicate that ADAM23 is likely involved in BC progression and dissemination of mesenchymal CTC. ADAM23 methylation has the potential to function as a novel prognostic marker and therapeutic target.

Tang D, Wu Q, Yuan Z, et al.
Identification of key pathways and gene changes in primary pancreatic stellate cells after cross-talk with pancreatic cancer cells (BXPC-3) using bioinformatics analysis.
Neoplasma. 2019; 2019(3):446-458 [PubMed] Related Publications
It is well known that as the king of cancer, pancreatic ductal adenocarcinoma (PDAC) has relatively malignant biological behavior and poor prognosis. The interaction between pancreatic stellate cells and PDAC cells promotes the development of PDAC. The aim of this study was to describe gene characteristics in pancreatic stellate cell (PSCs) after cross-talked with BXPC-3 and unravel their underlying mechanisms. The expression profiling analysis of genes in PSCs was completed after co-cultured with primary BXPC-3 for 48h. The Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis and gene ontology (GO) analysis were performed, and the differentially expressed genes (DEGs) were identified by Agilent GeneSpring GX program. In total, 1804 DEGs were filtered out in PSCs, including 958 up-regulated genes and 846 downregulated genes. GO analysis showed that the up-regulated DEGs were significantly enriched in biological processes (BP) such as defense response, immune system process and immune response; the down-regulated DEGs were significantly enriched in biological regulation and cytoskeleton organization. KEGG pathway analysis showed that 28 pathways were upregulated and 5 were downregulated. By constructing PPI network, we selected out 10 key genes (IL6,IL8, IL1B, BCL2, CCL2, CSF2, KIT, ICAM1, PTPRC and IGF1) and significant enriched pathways. In conclusion, the current study suggests that the filtered DEGs contribute to our understanding of the molecular mechanisms underlying the interaction between PSCs and pancreatic cancer cells, and might be used as molecular targets to further the study the role of tumor microenvironment in the progression of PDAC.

Flowers E, Flentje A, Levine J, et al.
A Pilot Study Using a Multistaged Integrated Analysis of Gene Expression and Methylation to Evaluate Mechanisms for Evening Fatigue in Women Who Received Chemotherapy for Breast Cancer.
Biol Res Nurs. 2019; 21(2):142-156 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
CONTEXT: Fatigue is the most common symptom associated with cancer and its treatment. Investigation of molecular mechanisms associated with fatigue may identify new therapeutic targets.
OBJECTIVE: The objective of this pilot study was to evaluate the relationships between gene expression and methylation status and evening fatigue severity in women with breast cancer who received chemotherapy.
METHODS: Latent class analysis (LCA) was used to identify evening fatigue phenotypes. In this analysis, the lowest (i.e., moderate, n = 7) and highest (i.e., very high, n = 29) fatigue-severity classes identified using LCA were analyzed via two stages. First, a total of 32,609 transcripts from whole blood were evaluated for differences in expression levels between the classes. Next, 637 methylation sites located within the putative transcription factor binding sites for those genes demonstrating differential expression were evaluated for differential methylation state between the classes.
RESULTS: A total of 89 transcripts in 75 unique genes were differentially expressed between the moderate (the lowest fatigue-severity class identified) and very high evening fatigue classes. In addition, 23 differentially methylated probes and three differentially methylated regions were found between the moderate and very high evening fatigue classes.
CONCLUSIONS: Using a multistaged integrated analysis of gene expression and methylation, differential methylation was identified in the regulatory regions of genes associated with previously hypothesized mechanisms for fatigue, including inflammation, immune function, neurotransmission, circadian rhythm, skeletal muscle energy, carbohydrate metabolism, and renal function as well as core biological processes including gene transcription and the cell-cycle regulation.

Popov A, Druy A, Shorikov E, et al.
Prognostic value of initial bone marrow disease detection by multiparameter flow cytometry in children with neuroblastoma.
J Cancer Res Clin Oncol. 2019; 145(2):535-542 [PubMed] Related Publications
PURPOSE: Multicolor flow cytometry (MFC) is widely available, fast and has an easy-to perform approach for finding neuroblastoma (NB) cells among normal bone marrow (BM) hematopoietic cells. Aim of the study was to investigate prognostic significance of initial MFC tumor cells' detection in BM of children with NB.
METHODS: 51 patients (24 boys and 27 girls) aged from 6 days to 15 years (median age 1 year 3 months) with NB were included in the study. BM samples at the time of diagnosis were obtained from 2 to 5 aspiration sites per patient. CD45(-)CD56(+)CD81(+)GD2(+)-cells were evaluated by MFC.
RESULTS: NB cells were detected in BM by FC more frequently compared to conventional cytomorphology (49.0% and 29.4% patients, respectively, р = 0.043). Patients with NB cells detected in BM by MFC had significantly worse event-free survival and cumulative incidence of relapse/progression [0.24(0.08) and 0.60(0.10), respectively] compared to children with negative result of immunophenotyping [0.85(0.07) and 0.12(0.06), respectively, p < 0.001 in both cases]. BM involvement detection by MFC maintained its prognostic significance in various patients groups. In multivariate analysis, immunophenotyping proved to be an independent prognostic factor when analyzed jointly with other NB risk factors. In 42 patients BM involvement was also studied by RQ-PCR for PHOX2B and TH genes expression. Within groups of patients divided by RQ-PCR positivity, MFC-positivity retained prognostic significance.
CONCLUSIONS: Thus flow cytometric BM involvement detection has very strong prognostic impact even stronger than RQ-PCR. It could be used in combination with other parameters for the treatment strategy choice in patients with NB.

Li L, Peng M, Xue W, et al.
Integrated analysis of dysregulated long non-coding RNAs/microRNAs/mRNAs in metastasis of lung adenocarcinoma.
J Transl Med. 2018; 16(1):372 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
BACKGROUND: Lung adenocarcinoma (LUAD), largely remains a primary cause of cancer-related death worldwide. The molecular mechanisms in LUAD metastasis have not been completely uncovered.
METHODS: In this study, we identified differentially expressed genes (DEGs), miRNAs (DEMs) and lncRNAs (DELs) underlying metastasis of LUAD from The Cancer Genome Atlas database. Intersection mRNAs were used to perform gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and co-expression network analysis. In addition, survival analyses of intersection mRNAs were conducted. Finally, intersection mRNAs, miRNAs and lncRNAs were subjected to construct miRNA-mRNA-lncRNA network.
RESULTS: A total of 1015 DEGs, 54 DEMs and 22 DELs were identified in LUAD metastasis and non-metastasis samples. GO and KEGG pathway analysis had proven that the functions of intersection mRNAs were closely related with many important processes in cancer pathogenesis. Among the co-expression interactions network, 22 genes in the co-expression network were over the degree 20. These genes imply that they have connections with many other gene nodes. In addition, 14 target genes (ARHGAP11A, ASPM, HELLS, PRC1, TMPO, ARHGAP30, CD52, IL16, IRF8, P2RY13, PRKCB, PTPRC, SASH3 and TRAF3IP3) were found to be associated with survival in patients with LUAD significantly (log-rank P < 0.05). Two lncRNAs (LOC96610 and ADAM6) acting as ceRNAs were identified based on the miRNA-mRNA-lncRNA network.
CONCLUSIONS: Taken together, the results may provide a novel perspective to develop a multiple gene diagnostic tool for LUAD prognosis, which might also provide potential biomarkers or therapeutic targets for LUAD.

Kawa MP, Baumert B, Litwińska Z, et al.
Potential Leukemic Cells Engraftment After Hematopoietic Stem Cell Transplantation From Unrelated Donors With Undiagnosed Chronic Leukemia.
Transplant Proc. 2018; 50(10):3789-3796 [PubMed] Related Publications
BACKGROUND: Donor-related neoplasms are a potential complication of treatment strategies involving stem cell transplantation. Although mechanisms for detection of short-term complications after these procedures are well developed, complications with delayed onset, notably transmission of chronic diseases such as chronic myeloid leukemia (CML), have been difficult to assess. Consequently, we studied the potential of human CML cells to engraft hematopoietic tissues after intravenous implantation in mice.
METHODS: Human peripheral blood cells, collected from CML patients presenting with moderately increased white blood cells count before treatment, were transplanted into sub-lethally irradiated, immunodeficient mice. Five weeks after transplantation the nuclear cells were isolated from the murine bone marrow, spleen, and peripheral blood and were used to quantitatively detect human CD45 antigen by flow cytometry; qRT-PCR was used to detect the BCR-ABL1 fusion gene, and the human or murine beta-glucuronidase housekeeping gene was used to examine human-murine chimerism.
RESULTS: We found that all evaluated animals had donor chimerism at the selected interval after transplant and the presence of a specific BCR-ABL1 fusion gene transcript was also detected.
CONCLUSIONS: Our results suggest that the risk of neoplasm transmission cannot be eliminated during hematopoietic stem cell transplantation from undiagnosed CML donors with borderline leukocytosis. The obtained data confirms the potential of leukemic cells to viably engraft the hematopoietic organs post-transplantation in an immunosuppressed recipient.

Eriksson BO, Gahm C, Halle M
Upregulation of Plasminogen Activator Inhibitor-1 in Irradiated Recipient Arteries and Veins from Free Tissue Transfer Reconstruction in Cancer Patients.
Mediators Inflamm. 2018; 2018:4058986 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Background: Clinical studies have shown that radiotherapy can induce vascular disease at the site of exposure but is usually not clinically evident until years after treatment. We have studied irradiated human arteries and veins to better understand the underlying biology in search of future treatments. The aim was to investigate whether radiotherapy contributed to a sustained expression of plasminogen activator inhibitor-1 (PAI-1) in human arteries and veins.
Methods: Irradiated arteries and veins were harvested, together with unirradiated control vessels, from patients undergoing free tissue transfer reconstruction at a median time of 90 weeks [5-650] following radiation exposure. Differential gene expression of PAI-1 was analysed, together with immunohistochemistry (IHC) and immunofluorescence (IF).
Results: PAI-1 gene expression was increased in both arteries (
Conclusion: The current study shows a sustained upregulation of PAI-1 in both arteries and veins after exposure to ionizing radiation, indicating a chronic inflammation mainly in the adventitia. We believe that the results contribute to further understanding of radiation-induced vascular disease, where targeting PAI-1 may be a potential treatment.

Guo L, Chen L, Wang H
CD45 correlates with adverse risk stratification, decreased treatment response and unfavorable survival profiles in elderly acute myeloid leukemia patients.
Cancer Biomark. 2018; 23(3):455-463 [PubMed] Related Publications
OBJECTIVE: This study aimed to explore the correlation of CD45 expression with clinicopathological features and treatment outcomes in elderly acute myeloid leukemia (AML) patients.
METHODS: One hundred and twenty one elderly patients with de novo AML were consecutively recruited in this prospective cohort study, bone marrow samples from all patients were collected and CD45 expression were measured with flow cytometry. Complete remission (CR), event-free survival (EFS) and overall survival (OS) were evaluated. The median follow-up duration was 15.0 (range 2.0-36.0) months.
RESULTS: CD45 high expression (CD45high) was associated with higher risk stratification in elderly AML patients (P= 0.021). The percentage of CD45high cases in CR patients was 16.4%, which was lower compared to non-CR patients (35.2%, P= 0.017), while no difference in percentage of CD45high cases was found between allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients and non-allo-HSCT patients (16.7% vs. 25.7%, P= 0.492). As to survival profiles, median EFS in CD45high patients was 6.0 (95% CI: 2.9-9.1) months, which was shorter than that in CD45 low expression (CD45low) patients (10.0 (95% CI: 7.2-12.8) months) (P= 0.002), and OS in CD45high patients was 16.0 (95% CI: 13.4-18.6) months, which was worse compared to CD45low patients (22.0 (95% CI: 17.0-27.0) months) (P= 0.010). In subgroup analysis, no difference of EFS and OS was found between CD45high patients and CD45low patients in favorable, intermediate or adverse risk subgroups.
CONCLUSIONS: CD45 correlates with adverse risk stratification, decreased treatment response and unfavorable survival profiles in elderly AML patients.

Milkina E, Ponomarenko A, Korneyko M, et al.
Interaction of hematopoietic CD34+ CD45+ stem cells and cancer cells stimulated by TGF‑β1 in a model of glioblastoma in vitro.
Oncol Rep. 2018; 40(5):2595-2607 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
The majority of modern treatment methods for malignant brain tumors are not sufficiently effective, with a median survival time varying between 9 and 14 months. Metastatic and invasive processes are the principal characteristics of malignant tumors. The most important pathogenic mechanism is epithelial‑mesenchymal transition (EMT), which causes epithelial cells to become more mobile, and capable of invading the surrounding tissues and migrating to distant organs. Transforming growth factor‑β1 (TGF‑β1) serves a key role in EMT‑inducing mechanisms. The current study presented the interaction between hematopoietic stem cells and glioblastoma cells stimulated by TGF‑β1 in vitro. The materials for the study were hematopoietic progenitor cell antigen CD34+ hematopoietic stem cells (HSCs) and U87 glioblastoma cells. Cell culture methods, automated monitoring of cell‑cell interactions, confocal laser microscopy, flow cytometry and electron microscopy were used. It was demonstrated that U87 cells have a complex communication system, including adhesive intercellular contacts, areas of interdigitation with dissolution of the cytoplasm, cell fusion, communication microtubes and microvesicles. TGF‑β1 affected glioblastoma cells by modifying the cell shape and intensifying their exocrine function. HSCs migrated to glioblastoma cells, interacted with them and exchanged fluorescent tags. Stimulation of cancer cells with TGF‑β1 weakened the ability of glioblastoma cells to attract HSCs and exchange a fluorescent tag. This process stimulated cancer cell proliferation, which is an indication of the ability of HSCs to 'switch' the proliferation and invasion processes in glioblastoma cells.

Nagant C, Casula D, Janssens A, et al.
Easy discrimination of hematogones from lymphoblasts in B-cell progenitor acute lymphoblastic leukemia patients using CD81/CD58 expression ratio.
Int J Lab Hematol. 2018; 40(6):734-739 [PubMed] Related Publications
INTRODUCTION: The discrimination of leukemia lymphoblasts (LB) in diagnosis and follow-up of B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) by multiparameter flow cytometry (MFC) may be difficult due to the presence of hematogones (HG). The aim of this study was to compare lymphoblasts of BCP-ALL and HG for the expression of the most discriminating antigens.
METHODS: A total of 82 bone marrow samples (39 BCP-ALL and 43 patients with HG) were analyzed using MFC. Mean fluorescence intensity (MFI) was measured for ten markers commonly used in hematology laboratories: CD45, CD19, CD10, CD34, CD38, CD20, CD22, CD58, CD81, and CD123. Statistical comparison of the MFI between LB and HG was performed. The presence on LB of aberrant expression of myeloid and/or T-cell markers was also investigated.
RESULTS: Qualitative pattern expression of antigens showed overexpression on LB of CD58, CD22, CD34, CD10 and underexpression of CD81, CD45, CD38 when compared to HG. Expression of CD123 was positive in 34% of BCP-ALL LB and always absent on HG. Aberrant antigen expression (myeloid and/or T-cell marker) including CD123 was observed in 58% of BCP-ALL patients. The use of a MFI antigen ratio of the most discriminating markers (CD81/CD58) (analysis of variance, P < 0.005) increased the distinction of LB versus HG with a high specificity and sensitivity as demonstrated by the use of ROC curve analysis (AUC of CD81/CD58: 0.995).
CONCLUSION: We demonstrate in this study that routine use of the MFI antigen ratio (CD81/CD58) in addition to the MFC evaluation using WHO classical criteria appears to be an efficient approach to discriminate LB from HG.

Liu X, Zhang Z, Zhang B, et al.
Circulating tumor cells detection in neuroblastoma patients by EpCAM-independent enrichment and immunostaining-fluorescence in situ hybridization.
EBioMedicine. 2018; 35:244-250 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Detecting circulating tumor cells (CTCs) has proven valuable for evaluating the prognosis of cancer patients and for studying the mechanisms of treatment resistance. Owing to the lack of universal and specific tumor markers for neuroblastoma (NB), in this prospective study, we adopted an EpCAM-independent method to detect CTCs in the peripheral blood of NB patients. We used an EpCAM-independent assay to delete leukocytes and to enrich the CTCs. CTCs were identified by immunostaining of CD45, DAPI and DNA fluorescence in situ hybridization (FISH) of the centromere of chromosome 8 probe (CEP8). Cells that were DAPI+/CD45-/CEP8 ≥ 3 were considered CTCs. We collected peripheral blood from 28 NB patients as well as clinical and follow-up data. The number of CTCs among the different risk groups were significantly different (p = .0208, Kruskal-Wallis test). Patients with metastasis had more CTCs than those without metastasis (p < .0001, Mann-Whitney test). Patients with ≥3 CTCs per 4 ml of peripheral blood had an increased likelihood of having metastasis (sensitivity, 88.89%; specificity, 78.59%), and patients with ≥10 CTCs per 4 ml of peripheral blood had poorer overall survival. The EpCAM-independent assay along with immunostaining-FISH (i-FISH) described here can detect CTCs in patients with NB at a high sensitivity and may have clinical value for prognosis evaluation and diagnosing metastasis when imaging data are ambiguous.

Hong KH, Song S, Shin W, et al.
A case of interdigitating dendritic cell sarcoma studied by whole-exome sequencing.
Genes Genomics. 2018; 40(12):1279-1285 [PubMed] Related Publications
Interdigitating dendritic cell sarcoma (IDCS) is an aggressive neoplasm and is an extremely rare disease, with a challenging diagnosis. Etiology of IDCS is also unknown and most studies with only case reports. In our case, immunohistochemistry showed that the tumor cells were positive for S100, CD45, and CD68, but negative for CD1a and CD21. This study aimed to investigate the causative factors of IDCS by sequencing the protein-coding regions of IDCS. We performed whole-exome sequencing with genomic DNA from blood and sarcoma tissue of the IDCS patient using the Illumina Hiseq 2500 platform. After that, we conducted Sanger sequencing for validation of sarcoma-specific variants and gene ontology analysis using DAVID bioinformatics resources. Through comparing sequencing data of sarcoma with normal blood, we obtained 15 nonsynonymous single nucleotide polymorphisms (SNPs) as sarcoma-specific variants. Although the 15 SNPs were not validated by Sanger sequencing due to tumor heterogeneity and low sensitivity of Sanger sequencing, we examined the function of the genes in which each SNP is located. Based on previous studies and gene ontology database, we found that POLQ encoding DNA polymerase theta enzyme and FNIP1 encoding tumor suppressor folliculin-interacting protein might have contributed to the IDCS. Our study provides potential causative genetic factors of IDCS and plays a role in advancing the understanding of IDCS pathogenesis.

Wang J, Zhang YS, Thakur K, et al.
Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest.
Food Chem Toxicol. 2018; 120:407-417 [PubMed] Related Publications
We investigated the anti-cancer activity of Licochalcone A (LCA), extracted from licorice root. LCA inhibited the proliferation of HepG

Hu X, Li YQ, Li QG, et al.
Osteoglycin-induced VEGF Inhibition Enhances T Lymphocytes Infiltrating in Colorectal Cancer.
EBioMedicine. 2018; 34:35-45 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
BACKGROUND: OGN could modify tissue inflammation and immune response via local and circulating innate immune cells, which was suggestive of a reciprocal relationship between OGN and T cell infiltration in cancer. Hence, we aim to measure the OGN expression patterns and immune cells response in colorectal cancer(CRC).
METHODS: This study enrolled three independent sets of patients from TCGA and the Fudan University Shanghai Cancer Center(FUSCC). The effect of OGN on T cell infiltration and the mechanism were examined in vitro and in vivo.
FINDINGS: Tumor OGN expression levels were positively associated with CD3, CD8, and PTPRC expressions in the training and testing sets from TCGA, respectively. In validation set from FUSCC, OGN expression level also paralleled positively with CD8+ cell density in colorectal cancer tissue (p < .001). For a unit decrease in outcome quartile categories, multivariable OR in the lowest (vs highest) OGN expression was 0.17 (95% CI 0.08-0.33). Consistently, immunofluorescence validated that OGN was preferentially expressed with CD8+ cells in both normal epithelium and cancer tissue. Xenograft tumors arising from MC38 cells with OGN-over-expression displayed a significant increase in CD8+ cells recruitment. Hence, high expression of OGN was associated with a profound longer survival (P = .009). In mechanism, elevated OGN expression inhibited the activation of the transcriptional genes HIF-1α in CRC cells, then significantly impeded the expression of VEGF. As a result of this, T cell tumor infiltration was reduced.
INTERPRETATION: OGN expression is positively associated with CD8+ cell density in colorectal cancer tissue, suggesting a possible influence of OGN expression on tumor reactive T cells in the tumor niche. FUND: No.

Lin GL, Nagaraja S, Filbin MG, et al.
Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma.
Acta Neuropathol Commun. 2018; 6(1):51 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Diffuse intrinsic pontine glioma (DIPG) is a universally fatal malignancy of the childhood central nervous system, with a median overall survival of 9-11 months. We have previously shown that primary DIPG tissue contains numerous tumor-associated macrophages, and substantial work has demonstrated a significant pathological role for adult glioma-associated macrophages. However, work over the past decade has highlighted many molecular and genomic differences between pediatric and adult high-grade gliomas. Thus, we directly compared inflammatory characteristics of DIPG and adult glioblastoma (GBM). We found that the leukocyte (CD45+) compartment in primary DIPG tissue samples is predominantly composed of CD11b + macrophages, with very few CD3+ T-lymphocytes. In contrast, T-lymphocytes are more abundant in adult GBM tissue samples. RNA sequencing of macrophages isolated from primary tumor samples revealed that DIPG- and adult GBM-associated macrophages both express gene programs related to ECM remodeling and angiogenesis, but DIPG-associated macrophages express substantially fewer inflammatory factors than their adult GBM counterparts. Examining the secretome of glioma cells, we found that patient-derived DIPG cell cultures secrete markedly fewer cytokines and chemokines than patient-derived adult GBM cultures. Concordantly, bulk and single-cell RNA sequencing data indicates low to absent expression of chemokines and cytokines in DIPG. Together, these observations suggest that the inflammatory milieu of the DIPG tumor microenvironment is fundamentally different than adult GBM. The low intrinsic inflammatory signature of DIPG cells may contribute to the lack of lymphocytes and non-inflammatory phenotype of DIPG-associated microglia/macrophages. Understanding the glioma subtype-specific inflammatory milieu may inform the design and application of immunotherapy-based treatments.

Chen J, Cao S, Situ B, et al.
Metabolic reprogramming-based characterization of circulating tumor cells in prostate cancer.
J Exp Clin Cancer Res. 2018; 37(1):127 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
BACKGROUND: Circulating tumor cells (CTCs), an advantageous target of liquid biopsy, is an important biomarker for the prognosis and monitoring of cancer. Currently, detection techniques for CTCs are mainly based on the physical and/or epithelial characteristics of tumor cells. However, biofunctional activity markers that can indicate the high metastatic capacity of CTCs are lacking.
METHODS: Functional microarray, quantitative real-time polymerase chain reaction, and Western blot were used on five prostate cancer cell lines with different metastatic capacities to identify the metastasis-related metabolic genes. The identified genes were detected in the CTCs of 64 clinical samples using the RNA in situ hybridization. A multi-criteria weighted model was used to determine the optimal metabolic markers for the CTCs test. Based on five fluorescent signals targeting DAPI, CD45, metabolic, epithelial (EpCAM/CKs), and mesenchymal (Vimentin/Twist) markers, the filtration-enriched CTCs were classified as GM
RESULTS: Eight metastasis-related metabolic genes were identified, including HK2, PDP2, G6PD, PGK1, PHKA1, PYGL, PDK1, and PKM2. Among them, PGK1 and G6PD were determined as optimal glucose metabolic (GM) markers for CTCs. GM
CONCLUSIONS: The metabolic marker (PGK1/G6PD) is determined as the indicator for the biofunctional activity analysis of CTCs, compared with the existing morphological (EMT) classification on CTCs. The metabolic characterization of CTCs demonstrates that hypermetabolic GM

Skerget M, Skopec B, Zadnik V, et al.
CD56 Expression Is an Important Prognostic Factor in Multiple Myeloma Even with Bortezomib Induction.
Acta Haematol. 2018; 139(4):228-234 [PubMed] Related Publications
OBJECTIVES: In this retrospective study, we evaluated the impact of CD56, CD117, and CD28 expression on clinical characteristics and survival in newly diagnosed myeloma patients treated with bortezomib-based induction therapy.
METHODS: We analyzed 110 myeloma patients. Immunophenotype was determined using panels consisting of CD19/CD38/CD45/CD56/CD138 and CD20, CD28, and CD117 were used additionally. All samples were tested for recurrent chromosomal aberrations.
RESULTS: CD56, CD117, and CD28 expression rates were 71, 6, and 68%, respectively. The lack of CD56 expression was associated with light chain myeloma. The lack of CD117 expression was associated with elevated creatinine levels (p = 0.037). We discovered the correlation between CD 28 expression and female gender. The median progression-free survival (PFS) for patients with revised International Staging System stage 2 disease with CD56 expression or the lack of CD56 expression was 20.5 vs. 13.8 months (p = 0.03). In patients undergoing autologous hematopoietic stem cell transplantation (aHSCT), we found no difference in PFS and overall survival regarding the CD56 expression. We found no impact of CD117 and CD28 expression on PFS in patients regarding aHSCT.
CONCLUSIONS: Induction treatment incorporating bortezomib diminishes the negative impact of the lack of CD117 expression and aberrancy of CD28 but does not overcome the negative impact of the lack of CD56 expression.

Mishra A, Sriram H, Chandarana P, et al.
Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.
Tumour Biol. 2018; 40(5):1010428318780859 [PubMed] Related Publications
The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44

Alayed K, Schweitzer K, Awadallah A, et al.
A multicolour flow cytometric assay for c-MYC protein in B-cell lymphoma.
J Clin Pathol. 2018; 71(10):906-915 [PubMed] Related Publications
AIM: Develop an objective assay to detect c-MYC protein expression using multiparametric flow cytometry (FCM) as an alternative to immunohistochemistry (IHC).
METHODS: 57 patient samples and 11 cell line samples were evaluated. Cell suspensions were obtained and c-MYC staining was performed in combination with CD45 and CD19 and, in some samples, CD10. The percentage of c-MYC+ cells by FCM was correlated with the percentage determined by IHC. The relationship between c-MYC protein expression and the presence of a
RESULTS: c-MYC expression by FCM and IHC demonstrated a high degree of correlation in a training set of 33 patient cases, r=0.92, 11 cell line samples, r=0.81 and in a validation set of 24 aggressive and high-grade B-cell lymphomas, r=0.85.
CONCLUSIONS: We have developed a reliable multicolour FCM assay to detect c-MYC expression suitable for clinical laboratories that should be helpful to accurately quantify c-MYC expression in B-cell lymphomas.

Liu T, Yang H, Fan W, et al.
Mechanisms of MAFG Dysregulation in Cholestatic Liver Injury and Development of Liver Cancer.
Gastroenterology. 2018; 155(2):557-571.e14 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
BACKGROUND & AIMS: MAF bZIP transcription factor G (MAFG) is activated by the farnesoid X receptor to repress bile acid synthesis. However, expression of MAFG increases during cholestatic liver injury in mice and in cholangiocarcinomas. MAFG interacts directly with methionine adenosyltransferase α1 (MATα1) and other transcription factors at the E-box element to repress transcription. We studied mechanisms of MAFG up-regulation in cholestatic tissues and the pathways by which S-adenosylmethionine (SAMe) and ursodeoxycholic acid (UDCA) prevent the increase in MAFG expression. We also investigated whether obeticholic acid (OCA), an farnesoid X receptor agonist, affects MAFG expression and how it contributes to tumor growth in mice.
METHODS: We obtained 7 human cholangiocarcinoma specimens and adjacent non-tumor tissues from patients that underwent surgical resection in California and 113 hepatocellular carcinoma (HCC) specimens and adjacent non-tumor tissues from China, along with clinical data from patients. Tissues were analyzed by immunohistochemistry. MAT1A, MAT2A, c-MYC, and MAFG were overexpressed or knocked down with small interfering RNAs in MzChA-1, KMCH, Hep3B, and HepG2 cells; some cells were incubated with lithocholic acid (LCA, which causes the same changes in gene expression observed during chronic cholestatic liver injury in mice), SAMe, UDCA (100 μM), or farnesoid X receptor agonists. MAFG expression and promoter activity were measured using real-time polymerase chain reaction, immunoblot, and transient transfection. We performed electrophoretic mobility shift, and chromatin immunoprecipitation assays to study proteins that occupy promoter regions. We studied mice with bile-duct ligation, orthotopic cholangiocarcinomas, cholestasis-induced cholangiocarcinoma, diethylnitrosamine-induced liver tumors, and xenograft tumors.
RESULTS: LCA activated expression of MAFG in HepG2 and MzChA-1 cells, which required the activator protein-1, nuclear factor-κB, and E-box sites in the MAFG promoter. LCA reduced expression of MAT1A but increased expression of MAT2A in cells. Overexpression of MAT2A increased activity of the MAFG promoter, whereas knockdown of MAT2A reduced it. MAT1A and MAT2A had opposite effects on the activator protein-1, nuclear factor-κB, and E-box-mediated promoter activity. Expression of MAFG and MAT2A increased, and expression of MAT1A decreased, in diethylnitrosamine-induced liver tumors in mice. SAMe and UDCA had shared and distinct mechanisms of preventing LCA-mediated increased expression of MAFG. OCA increased expression of MAFG, MAT2A, and c-MYC, but reduced expression of MAT1A. Incubation of human liver and biliary cancer cells lines with OCA promoted their proliferation; in nude mice given OCA, xenograft tumors were larger than in mice given vehicle. Levels of MAFG were increased in human HCC and cholangiocarcinoma tissues compared with non-tumor tissues. High levels of MAFG in HCC samples correlated with hepatitis B, vascular invasion, and shorter survival times of patients.
CONCLUSIONS: Expression of MAFG increases in cells and tissues with cholestasis, as well as in human cholangiocarcinoma and HCC specimens; high expression levels correlate with tumor progression and reduced survival time. SAMe and UDCA reduce expression of MAFG in response to cholestasis, by shared and distinct mechanisms. OCA induces MAFG expression, cancer cell proliferation, and growth of xenograft tumors in mice.

Morgan H, Olivero C, Patel GK
Identification of Human Cutaneous Basal Cell Carcinoma Cancer Stem Cells.
Methods Mol Biol. 2019; 1879:435-450 [PubMed] Related Publications
The cancer stem cell model states that a subset of tumor cells, called "cancer stem cells," can initiate and propagate tumor growth through self-renewal, high proliferative capacity, and their ability to recreate tumor heterogeneity. In basal cell carcinoma (BCC), we have shown that tumor cells that express the cell surface protein CD200 fulfill the cancer stem cell hypothesis. CD200+ CD45- BCC cells represent 0.05-3.96% of all BCC cells and reside in small clusters at the tumor periphery. Using a novel, reproducible in vivo xenograft growth assay, we determined that tumor-initiating cell (TIC) frequencies are approximately 1 per 1.5 million unsorted BCC cells. The CD200+ CD45- BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200+ CD45- cells, representing ~1500-fold enrichment. The methods used to identify and purify CD200+ CD45- BCC cells, as well as characterize gene expression, are described herein.

Mikó E, Vida A, Kovács T, et al.
Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness.
Biochim Biophys Acta Bioenerg. 2018; 1859(9):958-974 [PubMed] Related Publications
Our study aimed at finding a mechanistic relationship between the gut microbiome and breast cancer. Breast cancer cells are not in direct contact with these microbes, but disease could be influenced by bacterial metabolites including secondary bile acids that are exclusively synthesized by the microbiome and known to enter the human circulation. In murine and bench experiments, a secondary bile acid, lithocholic acid (LCA) in concentrations corresponding to its tissue reference concentrations (< 1 μM), reduced cancer cell proliferation (by 10-20%) and VEGF production (by 37%), aggressiveness and metastatic potential of primary tumors through inducing mesenchymal-to-epithelial transition, increased antitumor immune response, OXPHOS and the TCA cycle. Part of these effects was due to activation of TGR5 by LCA. Early stage breast cancer patients, versus control women, had reduced serum LCA levels, reduced chenodeoxycholic acid to LCA ratio, and reduced abundance of the baiH (7α/β-hydroxysteroid dehydroxylase, the key enzyme in LCA generation) gene in fecal DNA, all suggesting reduced microbial generation of LCA in early breast cancer.

Han Y, Liu Q, Hou J, et al.
Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.
Cell. 2018; 173(3):634-648.e12 [PubMed] Related Publications
Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119

Yuan L, Zeng G, Chen L, et al.
Identification of key genes and pathways in human clear cell renal cell carcinoma (ccRCC) by co-expression analysis.
Int J Biol Sci. 2018; 14(3):266-279 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Human clear cell renal cell carcinoma (ccRCC) is the most common solid lesion within kidney, and its prognostic is influenced by the progression covering a complex network of gene interactions. In our study, we screened differential expressed genes, and constructed protein-protein interaction (PPI) network and a weighted gene co-expression network to identify key genes and pathways associated with the progression of ccRCC (n = 56). Functional and pathway enrichment analysis demonstrated that upregulated differentially expressed genes (DEGs) were significantly enriched in response to wounding, positive regulation of immune system process, leukocyte activation, immune response and cell activation. Downregulated DEGs were significantly enriched in oxidation reduction, monovalent inorganic cation transport, ion transport, excretion and anion transport. In the PPI network, top 10 hub genes were identified (

Senis YA, Barr AJ
Targeting Receptor-Type Protein Tyrosine Phosphatases with Biotherapeutics: Is Outside-in Better than Inside-Out?
Molecules. 2018; 23(3) [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Protein tyrosine phosphatases (PTPs), of the receptor and non-receptor classes, are key signaling molecules that play critical roles in cellular regulation underlying diverse physiological events. Aberrant signaling as a result of genetic mutation or altered expression levels has been associated with several diseases and treatment via pharmacological intervention at the level of PTPs has been widely explored; however, the challenges associated with development of small molecule phosphatase inhibitors targeting the intracellular phosphatase domain (the "inside-out" approach) have been well documented and as yet there are no clinically approved drugs targeting these enzymes. The alternative approach of targeting receptor PTPs with biotherapeutic agents (such as monoclonal antibodies or engineered fusion proteins; the "outside-in" approach) that interact with the extracellular ectodomain offers many advantages, and there have been a number of exciting recent developments in this field. Here we provide a brief overview of the receptor PTP family and an update on the emerging area of receptor PTP-targeted biotherapeutics for CD148, vascular endothelial-protein tyrosine phosphatase (VE-PTP), receptor-type PTPs σ, γ, ζ (RPTPσ, RPTPγ, RPTPζ) and CD45, and discussion of future potential in this area.

Kunita A, Baeriswyl V, Meda C, et al.
Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.
Am J Pathol. 2018; 188(5):1276-1288 [PubMed] Related Publications
Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-β, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC.

Akhter MZ, Sharawat SK, Kumar V, et al.
Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM
Oncogene. 2018; 37(16):2089-2103 [PubMed] Related Publications
Epithelial ovarian carcinoma (EOC) patients often acquire resistance against common chemotherapeutic drugs like paclitaxel and cisplatin. The mechanism responsible for the same is ambiguous. We have identified a putative drug-resistant tumour cell phenotype (EpCAM

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PTPRC, Cancer Genetics Web: http://www.cancer-genetics.org/PTPRC.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999