ARID2

Gene Summary

Gene:ARID2; AT-rich interaction domain 2
Aliases: CSS6, p200, BAF200
Location:12q12
Summary:This gene encodes a member of the AT-rich interactive domain (ARID)-containing family of DNA-binding proteins. Members of the ARID family have roles in embryonic patterning, cell lineage gene regulation, cell cycle control, transcriptional regulation and chromatin structure modification. This protein functions as a subunit of the polybromo- and BRG1-associated factor or PBAF (SWI/SNF-B) chromatin remodeling complex which facilitates ligand-dependent transcriptional activation by nuclear receptors. Mutations in this gene are associated with hepatocellular carcinomas. A pseudogene of this gene is found on chromosome1. [provided by RefSeq, Dec 2016]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:AT-rich interactive domain-containing protein 2
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: ARID2 (cancer-related)

Chahal M, Pleasance E, Grewal J, et al.
Personalized oncogenomic analysis of metastatic adenoid cystic carcinoma: using whole-genome sequencing to inform clinical decision-making.
Cold Spring Harb Mol Case Stud. 2018; 4(2) [PubMed] Free Access to Full Article Related Publications
Metastatic adenoid cystic carcinomas (ACCs) can cause significant morbidity and mortality. Because of their slow growth and relative rarity, there is limited evidence for systemic therapy regimens. Recently, molecular profiling studies have begun to reveal the genetic landscape of these poorly understood cancers, and new treatment possibilities are beginning to emerge. The objective is to use whole-genome and transcriptome sequencing and analysis to better understand the genetic alterations underlying the pathology of metastatic and rare ACCs and determine potentially actionable therapeutic targets. We report five cases of metastatic ACC, not originating in the salivary glands, in patients enrolled in the Personalized Oncogenomics (POG) Program at the BC Cancer Agency. Genomic workup included whole-genome and transcriptome sequencing, detailed analysis of tumor alterations, and integration with existing knowledge of drug-target combinations to identify potential therapeutic targets. Analysis reveals low mutational burden in these five ACC cases, and mutation signatures that are commonly observed in multiple cancer types. Notably, the only recurrent structural aberration identified was the well-described

Hänninen UA, Katainen R, Tanskanen T, et al.
Exome-wide somatic mutation characterization of small bowel adenocarcinoma.
PLoS Genet. 2018; 14(3):e1007200 [PubMed] Free Access to Full Article Related Publications
Small bowel adenocarcinoma (SBA) is an aggressive disease with limited treatment options. Despite previous studies, its molecular genetic background has remained somewhat elusive. To comprehensively characterize the mutational landscape of this tumor type, and to identify possible targets of treatment, we conducted the first large exome sequencing study on a population-based set of SBA samples from all three small bowel segments. Archival tissue from 106 primary tumors with appropriate clinical information were available for exome sequencing from a patient series consisting of a majority of confirmed SBA cases diagnosed in Finland between the years 2003-2011. Paired-end exome sequencing was performed using Illumina HiSeq 4000, and OncodriveFML was used to identify driver genes from the exome data. We also defined frequently affected cancer signalling pathways and performed the first extensive allelic imbalance (AI) analysis in SBA. Exome data analysis revealed significantly mutated genes previously linked to SBA (TP53, KRAS, APC, SMAD4, and BRAF), recently reported potential driver genes (SOX9, ATM, and ARID2), as well as novel candidate driver genes, such as ACVR2A, ACVR1B, BRCA2, and SMARCA4. We also identified clear mutation hotspot patterns in ERBB2 and BRAF. No BRAF V600E mutations were observed. Additionally, we present a comprehensive mutation signature analysis of SBA, highlighting established signatures 1A, 6, and 17, as well as U2 which is a previously unvalidated signature. Finally, comparison of the three small bowel segments revealed differences in tumor characteristics. This comprehensive work unveils the mutational landscape and most frequently affected genes and pathways in SBA, providing potential therapeutic targets, and novel and more thorough insights into the genetic background of this tumor type.

Johncilla M, Stachler M, Misdraji J, et al.
Mutational landscape of goblet cell carcinoids and adenocarcinoma ex goblet cell carcinoids of the appendix is distinct from typical carcinoids and colorectal adenocarcinomas.
Mod Pathol. 2018; 31(6):989-996 [PubMed] Related Publications
There is limited data on the spectrum of molecular alterations in goblet cell carcinoids and adenocarcinoma ex goblet cell carcinoids of the appendix. We used next generation sequencing to determine mutations of potential pathogenetic and therapeutic significance in this rare group of tumors. Adequate DNA was successfully extracted in 34/46 cases and the final group included 18 goblet cell carcinoids and 16 adenocarcinoma ex goblet cell carcinoids. Illumina TruSeq™ was used for sequencing exons of a custom 282 gene panel using an Illumina HiSeq 2000. All cases had a minimum coverage depth of at least 50 reads. After filtering through the Exome Sequencing Project, the number of mutations per case ranged from 0-9 (mean:3). The mutational burden in adenocarcinoma ex goblet cell carcinoids was significantly higher than goblet cell carcinoids (mean 5 vs. 3; p < 0.05) but the spectrum of alterations overlapped between the two groups. The most frequent mutations included ARID1A (4/34), ARID2 (4/34), CDH1 (4/34), RHPN2 (4/34), and MLL2 (3/34). Some mutations typically seen in conventional colorectal adenocarcinomas were also identified but with much lower frequency (APC :4/34; KRAS :2/34). MLL2 and KRAS mutations were only seen in adenocarcinoma ex goblet cell carcinoids and TP53 mutations were limited to poorly differentiated adenocarcinoma ex goblet cell carcinoids (2/34). Copy number changes could be evaluated in 15/34 cases and showed low copy number gains in CDKN1B (6/15) and NFKBIA (6/15), among others. The overlapping molecular alterations suggest that goblet cell carcinoids and adenocarcinoma ex goblet cell carcinoids are best considered two grades of differentiation of the same tumor rather than two distinct histological types. Mutations in TP53, CDH1 and MLL2 mutations were predominantly present in the adenocarcinoma ex goblet cell carcinoid group consistent with transformation to a higher grade lesion. The unique mutational profile also offers an explanation for the poor chemosensitivity in these tumors and highlights the need for developing new targeted therapies.

Alpsoy A, Dykhuizen EC
Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes.
J Biol Chem. 2018; 293(11):3892-3903 [PubMed] Free Access to Full Article Related Publications
The mammalian SWI/SNF chromatin remodeling complex is a heterogeneous collection of related protein complexes required for gene regulation and genome integrity. It contains a central ATPase (BRM or BRG1) and various combinations of 10-14 accessory subunits (BAFs for

Pan D, Kobayashi A, Jiang P, et al.
A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing.
Science. 2018; 359(6377):770-775 [PubMed] Free Access to Full Article Related Publications
Many human cancers are resistant to immunotherapy, for reasons that are poorly understood. We used a genome-scale CRISPR-Cas9 screen to identify mechanisms of tumor cell resistance to killing by cytotoxic T cells, the central effectors of antitumor immunity. Inactivation of >100 genes-including

Wang L, Zhao Y, Xiong Y, et al.
K-ras mutation promotes ionizing radiation-induced invasion and migration of lung cancer in part via the Cathepsin L/CUX1 pathway.
Exp Cell Res. 2018; 362(2):424-435 [PubMed] Related Publications
K-ras mutation is involved in cancer progression including invasion and migration, but the underlying mechanism is not yet clear. Cathepsin L is a lysosomal cysteine protease and has recently been associated with invasion and migration in human cancers when it is overexpressed. Our recent studies have shown that ionizing radiation (IR) enhanced expression of cathepsin L and increased invasion and migration of tumor cells, but the molecular mechanism is still unclear. In the present study, the effects of K-ras mutation and IR induced invasion and migration of lung cancer as well as the underlying mechanisms were investigated both in vitro and in vivo. Firstly, the levels of cathepsin L and epithelial mesenchymal transition (EMT) marker proteins remarkably changed in A549 (K-ras mutant) after irradiation compared with H1299 (K-ras wild), thereby promoting invasion and migration. Additionally, cathepsin L and its downstream transcription factor CUX1/p110 were increased after irradiation in A549 transfected with CUX1/p200, and the proteolytic processing of CUX1 by cathepsin L was remarkably increased after co-transfection of CUX1/p200 and cathepsin L-lentivirus in H1299. In addition, delivery of a mutant K-ras (V12) into HEK 293 cells stimulated EMT after irradiation due to the accumulation of cathepsin L. Moreover, mutated K-ras was associated with IR-induced cathepsin L and EMT in BALB/c nude mice. Finally, the level of cathepsin L expression was higher in samples carrying a K-ras mutation than in wild-type K-ras samples and the mesenchymal markers were upregulated in the samples of mutant K-ras, whereas the epithelial marker E-cadherin was downregulated in non-small cell lung cancers tissues. In conclusion, the findings demonstrated that mutated K-ras promotes cathepsin L expression and plays a pivotal role in EMT of human lung cancer. The regulatory effect of IR-induced cathepsin L on lung cancer invasion and migration was partially attributed to the Cathepsin L /CUX1-mediated EMT signaling pathway. This study will provide cathepsin L as a potential target for tumor therapy.

Chaisaingmongkol J, Budhu A, Dang H, et al.
Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma.
Cancer Cell. 2017; 32(1):57-70.e3 [PubMed] Free Access to Full Article Related Publications
Intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are clinically disparate primary liver cancers with etiological and biological heterogeneity. We identified common molecular subtypes linked to similar prognosis among 199 Thai ICC and HCC patients through systems integration of genomics, transcriptomics, and metabolomics. While ICC and HCC share recurrently mutated genes, including TP53, ARID1A, and ARID2, mitotic checkpoint anomalies distinguish the C1 subtype with key drivers PLK1 and ECT2, whereas the C2 subtype is linked to obesity, T cell infiltration, and bile acid metabolism. These molecular subtypes are found in 582 Asian, but less so in 265 Caucasian patients. Thus, Asian ICC and HCC, while clinically treated as separate entities, share common molecular subtypes with similar actionable drivers to improve precision therapy.

Gao Q, Wang K, Chen K, et al.
HBx protein-mediated ATOH1 downregulation suppresses ARID2 expression and promotes hepatocellular carcinoma.
Cancer Sci. 2017; 108(7):1328-1337 [PubMed] Free Access to Full Article Related Publications
Hepatitis B virus X protein plays a crucial role in the pathogenesis of hepatocellular carcinoma. We previously showed that the tumor suppressor ARID2 inhibits hepatoma cell cycle progression and tumor growth. Here, we evaluated whether hepatitis B virus X protein was involved in the modulation of ARID2 expression and hepatocarcinogenesis associated with hepatitis B virus infection. ARID2 expression was downregulated in HBV-replicative hepatoma cells, HBV transgenic mice, and HBV-related clinical HCC tissues. The expression levels of HBx were negatively associated with those of ARID2 in hepatocellular carcinoma tissues. Furthermore, HBx suppressed ARID2 at transcriptional level. Mechanistically, the promoter region of ARID2 gene inhibited by HBx was located at nt-1040/nt-601 and contained potential ATOH1 binding elements. In addition, ectopic expression of ATOH1 or mutation of ATOH1 binding sites within ARID2 promoter partially abolished HBx-triggered ARID2 transcriptional repression. Functionally, ARID2 abrogated HBx-enhanced migration and proliferation of hepatoma cells, whereas depletion of ATOH1 enhanced tumorigenecity of HCC cells. Therefore, our findings suggested that deregulation of ARID2 by HBx through ATOH1 may be involved in HBV-related hepatocellular carcinoma development.

Oba A, Shimada S, Akiyama Y, et al.
ARID2 modulates DNA damage response in human hepatocellular carcinoma cells.
J Hepatol. 2017; 66(5):942-951 [PubMed] Related Publications
BACKGROUND & AIMS: Recent genomic studies have identified frequent mutations of AT-rich interactive domain 2 (ARID2) in hepatocellular carcinoma (HCC), but it is not still understood how ARID2 exhibits tumor suppressor activities.
METHODS: We established the ARID2 knockout human HCC cell lines by using CRISPR/Cas9 system, and investigated the gene expression profiles and biological functions.
RESULTS: Bioinformatic analysis indicated that UV-response genes were negatively regulated in the ARID2 knockout cells, and they were sensitized to UV irradiation. ARID2 depletion attenuated nucleotide excision repair (NER) of DNA damage sites introduced by exposure to UV as well as chemical compounds known as carcinogens for HCC, benzo[a]pyrene and FeCl
CONCLUSIONS: We provide evidence that ARID2 knockout could contribute to disruption of NER process through inhibiting the recruitment of XPG, resulting in susceptibility to carcinogens and potential hypermutation. These findings have implications for therapeutic targets in cancers harboring ARID2 mutations.
LAY SUMMARY: Recent genomic studies have identified frequent mutations of ARID2, a component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, in hepatocellular carcinoma, but it is not still understood how ARID2 exhibits tumor suppressor activities. In current study, we provided evidence that ARID2 knockout could contribute to disruption of DNA repair process, resulting in susceptibility to carcinogens and potential hypermutation. These findings have far-reaching implications for therapeutic targets in cancers harboring ARID2 mutations.

Kunz M, Hölzel M
The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies.
Cancer Metastasis Rev. 2017; 36(1):53-75 [PubMed] Related Publications
Recent attempts to characterize the melanoma mutational landscape using high-throughput sequencing technologies have identified new genes and pathways involved in the molecular pathogenesis of melanoma. Apart from mutated BRAF, NRAS, and KIT, a series of new recurrently mutated candidate genes with impact on signaling pathways have been identified such as NF1, PTEN, IDH1, RAC1, ARID2, and TP53. Under targeted treatment using BRAF and MEK1/2 inhibitors either alone or in combination, a majority of patients experience recurrences, which are due to different genetic mechanisms such as gene amplifications of BRAF or NRAS, MEK1/2 and PI3K mutations. In principle, resistance mechanisms converge on two signaling pathways, MAPK and PI3K-AKT-mTOR pathways. Resistance may be due to small subsets of resistant cells within a heterogeneous tumor mass not identified by sequencing of the bulk tumor. Future sequencing studies addressing tumor heterogeneity, e.g., by using single-cell sequencing technology, will most likely improve this situation. Gene expression patterns of metastatic lesions were also shown to predict treatment response, e.g., a MITF-low/NF-κB-high melanoma phenotype is resistant against classical targeted therapies. Finally, more recent treatment approaches using checkpoint inhibitors directed against PD-1 and CTLA-4 are very effective in melanoma and other tumor entities. Here, the mutational and neoantigen load of melanoma lesions may help to predict treatment response. Taken together, the new sequencing, molecular, and bioinformatic technologies exploiting the melanoma genome for treatment decisions have significantly improved our understanding of melanoma pathogenesis, treatment response, and resistance for either targeted treatment or immune checkpoint blockade.

Lee SH, Jung SH, Kim TM, et al.
Whole-exome sequencing identified mutational profiles of high-grade colon adenomas.
Oncotarget. 2017; 8(4):6579-6588 [PubMed] Free Access to Full Article Related Publications
Although gene-to-gene analyses identified genetic alterations such as APC, KRAS and TP53 mutations in colon adenomas, it is largely unknown whether there are any others in them. Mutational profiling of high-grade colon adenoma (HGCA) that just precedes colon carcinoma might identify not only novel adenoma-specific genes but also critical genes for its progression to carcinoma. For this, we performed whole-exome sequencing (WES) of 12 HGCAs and identified 11 non-hypermutated and one hypermutated (POLE-mutated) cases. We identified 22 genes including APC, KRAS, TP53, GNAS, NRAS, SMAD4, ARID2, and PIK3CA with non-silent mutations in the cancer Census Genes. Bi-allelic and mono-allelic APC alterations were found in nine and one HGCAs, respectively, while the other two harbored wild-type APC. Five HGCAs harbored either mono-allelic (four HGCAs) or bi-allelic (one HGCA) SMAD4 mutation or 18q loss that had been known as early carcinoma-specific changes. We identified MTOR, ACVR1B, GNAQ, ATM, CNOT1, EP300, ARID2, RET and MAP2K4 mutations for the first time in colon adenomas. Our WES data is largely matched with the earlier 'adenoma-carcinoma model' (APC, KRAS, NRAS and GNAS mutations), but there are newly identified SMAD4, MTOR, ACVR1B, GNAQ, ATM, CNOT1, EP300, ARID2, RET and MAP2K4 mutations in this study. Our findings provide resource for understanding colon premalignant lesions and for identifying genomic clues for differential diagnosis and therapy options for colon adenomas and carcinomas.

Watkins JC, Howitt BE, Horowitz NS, et al.
Differentiated exophytic vulvar intraepithelial lesions are genetically distinct from keratinizing squamous cell carcinomas and contain mutations in PIK3CA.
Mod Pathol. 2017; 30(3):448-458 [PubMed] Related Publications
Human papillomavirus-negative keratinizing vulvar cancers typically harbor TP53 mutations as do their precursors, differentiated vulvar intraepithelial neoplasia. However, atypical verruciform proliferations are also associated with these malignancies and their pathogenesis is poorly understood. This study compared 11 atypical verruciform lesions, including atypical verruciform hyperplasia, vulvar acanthosis with altered differentiation, and verruciform lichen simplex chronicus, with 14 human papillomavirus-negative keratinizing squamous cell carcinomas. Extracted tissue DNA was subjected to targeted massively parallel sequencing of the exonic regions of 300 genes. Eight (73%) and six (55%) of eleven atypical verruciform lesions contained mutations in PIK3CA and ARID2, respectively. No TP53 mutations were identified. Eleven (79%) and five (36%) of fourteen keratinizing squamous cell carcinomas tested contained TP53 and CDKN2A mutations, respectively. Keratinizing squamous cell carcinomas displayed the majority of copy number variations with some variations (7p gain and 8p loss) shared by some cases in both groups. One patient developed atypical verruciform lesions with PIK3CA mutations followed by a keratinizing carcinoma with mutations in both PIK3CA and TP53. This study, for the first time segregates atypical verruciform lesions by virtue of a unique genotype (PIK3CA mutant/TP53 wild type) illustrating an example of progression to a TP53-mutated keratinizing carcinoma. The findings indicate that although PIK3CA mutations are found in <10% of vulvar squamous cell carcinomas, they may be specific for a particular pathway involving atypical verruciform lesions, which could function as either a direct precursor or a risk factor for vulvar squamous cell carcinoma. Given the presence of a molecular signature, we propose the term 'differentiated exophytic vulvar intraepithelial lesion' for this group. Whether they function as direct precursors to a less common form of squamous cell carcinoma will require further study, but carcinomas associated with these lesions might warrant testing for PIK3CA mutations to address this question.

Lim CH, Cho YK, Kim SW, et al.
The chronological sequence of somatic mutations in early gastric carcinogenesis inferred from multiregion sequencing of gastric adenomas.
Oncotarget. 2016; 7(26):39758-39767 [PubMed] Free Access to Full Article Related Publications
Mutation profiles and intratumoral heterogeneity are not well understood for benign gastric adenomas, some of which progress into malignant gastric adenocarcinomas. In this study, we performed whole-exome sequencing of three microsatellite stable (MSS) and two microsatellite instability-high (MSI-H) gastric adenomas with three regional tumor biopsies per case. We observed that the mutation abundance of benign gastric adenomas was comparable to those of gastric adenocarcinomas, suggesting that the mutational makeup for gastric carcinogenesis may already be achieved in benign adenomas. The extent of intratumoral heterogeneity was more substantial for MSS genomes in that only 1% - 14% of somatic mutations were common across the regional biopsies or 'public', while 50% - 94% of mutations were public in MSI-H gastric adenomas. We observed biallelic, loss-of-functional events of APC with truncating mutations and/or 5q losses for all cases, mostly as public events. All MSS gastric adenomas also harbored ARID2 truncating mutations, often as multiple, region-specific ones indicative of convergent evolution. Hotspot missense mutations on known cancer genes such as ERBB2 and KRAS were largely observed as region-specific aberrations. These findings suggest that biallelic functional APC inactivation initiates the gastric carcinogenesis and is followed by mutations of histone modifiers and then activation of known cancer-related genes. As the first exome-wide multi-region mutational profiling of gastric adenomas, our study provides clues on the chronological sequence of somatic mutations and their clonal architectures in early gastric carcinogenesis.

Saleh LM, Wang W, Herman SE, et al.
Ibrutinib downregulates a subset of miRNA leading to upregulation of tumor suppressors and inhibition of cell proliferation in chronic lymphocytic leukemia.
Leukemia. 2017; 31(2):340-349 [PubMed] Related Publications
The lymph node (LN) is the site of chronic lymphocytic leukemia (CLL) cell activation and proliferation. Aberrant microRNA (miRNA) expression has been shown to have a role in CLL pathogenesis; however, a comparison of miRNA expression between CLL cells in the LN and the peripheral blood (PB) has previously not been reported. On the basis of the analysis of 17 paired LN and PB samples from CLL patients, we identify a panel of miRNAs that are increased in LN CLL cells correlating with an activation phenotype. When evaluated in CLL cells from 38 patients pre and post treatment with ibrutinib, a subset of these miRNAs (miR-22, miR-34a, miR-146b and miR-181b) was significantly decreased in response to ibrutinib. A concomitant increase in putative miRNA target transcripts (ARID1B, ARID2, ATM, CYLD, FOXP1, HDAC1, IBTK, PTEN and SMAD4) was also observed. Functional studies confirmed targets of ibrutinib-responsive miRNAs to include messenger RNA transcripts of multiple tumor suppressors. Knockdown of endogenous miR-34a and miR146b resulted in increased transcription of tumor suppressors and inhibition of cell proliferation. These findings demonstrate that ibrutinib downregulates the expression of a subset of miRNAs related to B-cell activation leading to increased expression of miRNA targets including tumor suppressors and a reduction in cell proliferation.

Hodges C, Kirkland JG, Crabtree GR
The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer.
Cold Spring Harb Perspect Med. 2016; 6(8) [PubMed] Free Access to Full Article Related Publications
During the last decade, a host of epigenetic mechanisms were found to contribute to cancer and other human diseases. Several genomic studies have revealed that ∼20% of malignancies have alterations of the subunits of polymorphic BRG-/BRM-associated factor (BAF) and Polybromo-associated BAF (PBAF) complexes, making them among the most frequently mutated complexes in cancer. Recurrent mutations arise in genes encoding several BAF/PBAF subunits, including ARID1A, ARID2, PBRM1, SMARCA4, and SMARCB1 These subunits share some degree of conservation with subunits from related adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in model organisms, in which a large body of work provides insight into their roles in cancer. Here, we review the roles of BAF- and PBAF-like complexes in these organisms, and relate these findings to recent discoveries in cancer epigenomics. We review several roles of BAF and PBAF complexes in cancer, including transcriptional regulation, DNA repair, and regulation of chromatin architecture and topology. More recent results highlight the need for new techniques to study these complexes.

Singh B, Kinne HE, Milligan RD, et al.
Important Role of FTO in the Survival of Rare Panresistant Triple-Negative Inflammatory Breast Cancer Cells Facing a Severe Metabolic Challenge.
PLoS One. 2016; 11(7):e0159072 [PubMed] Free Access to Full Article Related Publications
We have previously shown that only 0.01% cells survive a metabolic challenge involving lack of glutamine in culture medium of SUM149 triple-negative Inflammatory Breast Cancer cell line. These cells, designated as SUM149-MA for metabolic adaptability, are resistant to chemotherapeutic drugs, and they efficiently metastasize to multiple organs in nude mice. We hypothesized that obesity-related molecular networks, which normally help in cellular and organismal survival under metabolic challenges, may help in the survival of MA cells. The fat mass and obesity-associated protein FTO is overexpressed in MA cells. Obesity-associated cis-acting elements in non-coding region of FTO regulate the expression of IRX3 gene, thus activating obesity networks. Here we found that IRX3 protein is significantly overexpressed in MA cells (5 to 6-fold) as compared to the parental SUM149 cell line, supporting our hypothesis. We also obtained evidence that additional key regulators of energy balance such as ARID5B, IRX5, and CUX1 P200 repressor could potentially help progenitor-like TNBC cells survive in glutamine-free medium. MO-I-500, a pharmacological inhibitor of FTO, significantly (>90%) inhibited survival and/or colony formation of SUM149-MA cells as compared to untreated cells or those treated with a control compound MO-I-100. Curiously, MO-I-500 treatment also led to decreased levels of FTO and IRX3 proteins in the SUM149 cells initially surviving in glutamine-free medium as compared to MO-I-100 treatment. Interestingly, MO-I-500 treatment had a relatively little effect on cell growth of either the SUM149 or SUM149-MA cell line when added to a complete medium containing glutamine that does not pose a metabolic challenge. Importantly, once selected and cultured in glutamine-free medium, SUM149-MA cells were no longer affected by MO-I-500 even in Gln-free medium. We conclude that panresistant MA cells contain interconnected molecular networks that govern developmental status and energy balance, and genetic and epigenetic alterations that are selected during cancer evolution.

Duan Y, Tian L, Gao Q, et al.
Chromatin remodeling gene ARID2 targets cyclin D1 and cyclin E1 to suppress hepatoma cell progression.
Oncotarget. 2016; 7(29):45863-45875 [PubMed] Free Access to Full Article Related Publications
Exome and whole-genome sequencing studies have drawn attention to the role of somatic mutations in SWI/SNF chromatin remodeling complexes in the carcinogenesis of hepatocellular carcinoma (HCC). Here, we explored the molecular mechanisms underlying the biological roles of AT-rich interactive domain 2 (ARID2) in the pathogenesis of HCC. We found that ARID2 expression was significantly downregulated in HCC tissues compared with non-tumorous tissues. Restoration of ARID2 expression in hepatoma cells was sufficient to suppress cell proliferation and tumor growth in mice, whereas ARID2 knockdown contributed to the enhancement of cellular proliferation and tumorigenicity. Suppression of ARID2 expression accelerated G1/S transition associated with upregulation of cyclin D1, cyclin E1, CDK4, and phosphorylation of the retinoblastoma protein (Rb). Furthermore, we demonstrated that ARID2 physically interacts with E2F1 and decreases binding of E2F1/RNA Pol II to the promoters of CCND1 and CCNE1. Taken together, these results demonstrate that ARID2 suppresses tumor cell growth through repression of cyclin D1 and cyclin E1 expression, thereby retarding cell cycle progression and cell proliferation in hepatoma cells. These findings highlight the potential role of ARID2 as a tumor growth suppressor in HCC.

Liu H, Li F, Zhu Y, et al.
Whole-exome sequencing to identify somatic mutations in peritoneal metastatic gastric adenocarcinoma: A preliminary study.
Oncotarget. 2016; 7(28):43894-43906 [PubMed] Free Access to Full Article Related Publications
Peritoneal metastasis occurs in more than half of patients with unresectable or recurrent gastric cancer and is associated with the worst prognosis. The associated genomic events and pathogenesis remain ambiguous. The aim of the present study was to characterize the mutation spectrum of gastric cancer with peritoneal metastasis and provide a basis for the identification of new biomarkers and treatment targets. Matched pairs of normal gastric mucosa and peritoneal tissue and matched pairs of primary tumor and peritoneal metastasis were collected from one patient for whole-exome sequencing (WES); Sanger sequencing was employed to confirm the somatic mutations. G>A and C>T mutations were the two most frequent transversions among the somatic mutations. We confirmed 48somatic mutations in the primary site and 49 in the peritoneal site. Additionally, 25 non-synonymous somatic variations (single-nucleotide variants, SNVs) and 2 somatic insertions/deletions (INDELs) were confirmed in the primary tumor, and 30 SNVs and 5 INDELs were verified in the peritoneal metastasis. Approximately 59% of the somatic mutations were shared between the primary and metastatic site. Five genes (TP53, BAI1, THSD1, ARID2, and KIAA2022) verified in our study were also mutated at a frequency greater than 5%in the COSMIC database. We also identified 9genes (ERBB4, ZNF721, NT5E, PDE10A, CA1, NUMB, NBN, ZFYVE16, and NCAM1) that were only mutated in metastasis and are expected to become treatment targets. In conclusion, we observed that the majority of the somatic mutations in the primary site persisted in metastasis, whereas several single-nucleotide polymorphisms occurred de novo at the second site.

Fadlullah MZ, Chiang IK, Dionne KR, et al.
Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies.
Oncotarget. 2016; 7(19):27802-18 [PubMed] Free Access to Full Article Related Publications
Emerging biological and translational insights from large sequencing efforts underscore the need for genetically-relevant cell lines to study the relationships between genomic alterations of tumors, and therapeutic dependencies. Here, we report a detailed characterization of a novel panel of clinically annotated oral squamous cell carcinoma (OSCC) cell lines, derived from patients with diverse ethnicity and risk habits. Molecular analysis by RNAseq and copy number alterations (CNA) identified that the cell lines harbour CNA that have been previously reported in OSCC, for example focal amplications in 3q, 7p, 8q, 11q, 20q and deletions in 3p, 5q, 8p, 18q. Similarly, our analysis identified the same cohort of frequently mutated genes previously reported in OSCC including TP53, CDKN2A, EPHA2, FAT1, NOTCH1, CASP8 and PIK3CA. Notably, we identified mutations (MLL4, USP9X, ARID2) in cell lines derived from betel quid users that may be associated with this specific risk factor. Gene expression profiles of the ORL lines also aligned with those reported for OSCC. By focusing on those gene expression signatures that are predictive of chemotherapeutic response, we observed that the ORL lines broadly clustered into three groups (cell cycle, xenobiotic metabolism, others). The ORL lines noted to be enriched in cell cycle genes responded preferentially to the CDK1 inhibitor RO3306, by MTT cell viability assay. Overall, our in-depth characterization of clinically annotated ORL lines provides new insight into the molecular alterations synonymous with OSCC, which can facilitate in the identification of biomarkers that can be used to guide diagnosis, prognosis, and treatment of OSCC.

Zhang L, Wang W, Li X, et al.
MicroRNA-155 promotes tumor growth of human hepatocellular carcinoma by targeting ARID2.
Int J Oncol. 2016; 48(6):2425-34 [PubMed] Related Publications
Aberrant expression of microRNA-155 (miR-155) has been reported in several human cancers and is associated with prognosis of patients. However, the clinical significance of miR‑155 and its underlying mechanisms involved in hepatocarcinogenesis remain to be determined. In this study, we demonstrated that the expression of miR-155 was elevated in both hepatocellular carcinoma (HCC) tissues and cell lines. Clinical association analysis revealed that high expression of miR-155 was correlated with malignant clinicopathological characteristics including large tumor size, high Edmondson-Steiner grading and TNM tumor stage. Furthermore, its high expression conferred a reduced 5-year overall survival and disease-free survival of HCC patients. Gain- and loss-of function studies revealed that miR‑155 promoted cell cycle progression, cell proliferation and inhibited apoptosis. Mechanistically, we identified AT-rich interactive domain 2 (ARID2) as a direct downstream target and functional mediator of miR‑155 in HCC cells. Notably, alterations of ARID2 expression abrogated the effects of miR‑155 on HCC cell proliferation, cell cycle and apoptosis. Moreover, we demonstrated that Akt phosphorylation is essential for the functional roles of miR‑155 through altering Cyclin D1 and p27, which were key components of cell cycle machinery. Finally, we disclosed that the downregulation of miR‑155 suppressed tumor growth of HCC by inhibiting Akt signaling pathway. In conclusion, our results indicate that miR‑155 promotes tumor growth of HCC by targeting ARID2-mediated Akt phosphorylation pathway, and potentially serves as a novel prognostic biomarker and therapeutic target for HCC.

Yuan W, Zhang Z, Dai B, et al.
Whole-exome sequencing of duodenal adenocarcinoma identifies recurrent Wnt/β-catenin signaling pathway mutations.
Cancer. 2016; 122(11):1689-96 [PubMed] Related Publications
BACKGROUND: Genomic alterations of small bowel cancers remain poorly understood due to the rarity of these diseases. In the current study, the authors report the identification of somatic mutations from patients with duodenal adenocarcinoma by whole-exome sequencing.
METHODS: Whole-exome sequencing and follow-up analysis were conducted in 12 matched tumor-normal tissue duodenal adenocarcinoma tissue pairs to examine the genetic characteristics of this disease. Somatic mutations (single-nucleotide variants and short insertion/deletions) were obtained and filtered and then searched for recurrently mutated genes and pathways.
RESULTS: An excess of C-to-T transitions at the CpG dinucleotide was observed in the substitution of bases. The authors identified recurrent mutations in tumor protein p53 (TP53), KRAS, catenin (cadherin-associated protein) β-1 (CTNNB1), AT-rich interactive domain 2 (ARID2), adenomatous polyposis coli (APC), erb-b2 receptor tyrosine kinase 2 (ERBB2), ARID1A, cadherin-related family member 1 (CDHR1), NRAS, Bcl-2-related ovarian killer (BOK), radial spoke head 14 homolog (chlamydomonas) (RTDR1), cell division cycle 27 (CDC27), catalytic subunit of phosphoinositide-3-kinase (PIK3CA), and SMAD family member 4 (SMAD4). Pathway scan indicated that the Wnt signaling pathway, regulation of the actin cytoskeleton pathway, ErbB signaling pathway, and the pathway of focal adhesion were the most extensively affected pathways.
CONCLUSIONS: This genomic characterization of duodenal adenocarcinoma provides researchers with insight into its somatic landscape and highlights the vital role of the Wnt/β-catenin signaling pathway. The study data also indicate that duodenal adenocarcinomas have a genetic resemblance to gastric and colorectal cancers. These discoveries may benefit the future development of molecular diagnosis and personalized therapies. Cancer 2016;122:1689-96. © 2016 American Cancer Society.

Er TK, Su YF, Wu CC, et al.
Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer.
J Mol Med (Berl). 2016; 94(7):835-47 [PubMed] Related Publications
UNLABELLED: Recent molecular and pathological studies suggest that endometriosis may serve as a precursor of ovarian cancer (endometriosis-associated ovarian cancer, EAOC), especially of the endometrioid and clear cell subtypes. Accordingly, this study had two cardinal aims: first, to obtain mutation profiles of EAOC from Taiwanese patients; and second, to determine whether somatic mutations present in EAOC can be detected in preneoplastic lesions. Formalin-fixed paraffin-embedded (FFPE) tissues were obtained from ten endometriosis patients with malignant transformation. Macrodissection was performed to separate four different types of cells from FFPE sections in six patients. The four types of samples included normal endometrium, ectopic endometriotic lesion, atypical endometriosis, and carcinoma. Ultra-deep (>1000×) targeted sequencing was performed on 409 cancer-related genes to identify pathogenic mutations associated with EAOC. The most frequently mutated genes were PIK3CA (6/10) and ARID1A (5/10). Other recurrently mutated genes included ETS1, MLH1, PRKDC (3/10 each), and AMER1, ARID2, BCL11A, CREBBP, ERBB2, EXT1, FANCD2, MSH6, NF1, NOTCH1, NUMA1, PDE4DIP, PPP2R1A, RNF213, and SYNE1 (2/10 each). Importantly, in five of the six patients, identical somatic mutations were detected in atypical endometriosis and tumor lesions. In two patients, genetic alterations were also detected in ectopic endometriotic lesions, indicating the presence of genetic alterations in preneoplastic lesion. Genetic analysis in preneoplastic lesions may help to identify high-risk patients at early stage of malignant transformation and also shed new light on fundamental aspects of the molecular pathogenesis of EAOC.
KEY MESSAGES: Molecular characterization of endometriosis-associated ovarian cancer genes by targeted NGS. Candidate genes predictive of malignant transformation were identified. Chromatin remodeling, PI3K-AKT-mTOR, Notch signaling, and Wnt/β-catenin pathway may promote cell malignant transformation.

Nakazato H, Takeshima H, Kishino T, et al.
Early-Stage Induction of SWI/SNF Mutations during Esophageal Squamous Cell Carcinogenesis.
PLoS One. 2016; 11(1):e0147372 [PubMed] Free Access to Full Article Related Publications
The SWI/SNF chromatin remodeling complex is frequently inactivated by somatic mutations of its various components in various types of cancers, and also by aberrant DNA methylation. However, its somatic mutations and aberrant methylation in esophageal squamous cell carcinomas (ESCCs) have not been fully analyzed. In this study, we aimed to clarify in ESCC, what components of the SWI/SNF complex have somatic mutations and aberrant methylation, and when somatic mutations of the SWI/SNF complex occur. Deep sequencing of components of the SWI/SNF complex using a bench-top next generation sequencer revealed that eight of 92 ESCCs (8.7%) had 11 somatic mutations of 7 genes, ARID1A, ARID2, ATRX, PBRM1, SMARCA4, SMARCAL1, and SMARCC1. The SMARCA4 mutations were located in the Forkhead (85Ser>Leu) and SNF2 family N-terminal (882Glu>Lys) domains. The PBRM1 mutations were located in a bromodomain (80Asn>Ser) and an HMG-box domain (1,377Glu>Lys). For most mutations, their mutant allele frequency was 31-77% (mean 61%) of the fraction of cancer cells in the same samples, indicating that most of the cancer cells in individual ESCC samples had the SWI/SNF mutations on one allele, when present. In addition, a BeadChip array analysis revealed that a component of the SWI/SNF complex, ACTL6B, had aberrant methylation at its promoter CpG island in 18 of 52 ESCCs (34.6%). These results showed that genetic and epigenetic alterations of the SWI/SNF complex are present in ESCCs, and suggested that genetic alterations are induced at an early stage of esophageal squamous cell carcinogenesis.

Yu P, Wu D, You Y, et al.
miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression.
Exp Cell Res. 2015; 336(2):232-41 [PubMed] Related Publications
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment.

Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM
Genetic Landscape and Biomarkers of Hepatocellular Carcinoma.
Gastroenterology. 2015; 149(5):1226-1239.e4 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death. Its mortality has increased in Western populations, with a minority of patients diagnosed at early stages, when curative treatments are feasible. Only the multikinase inhibitor sorafenib is available for the management of advanced cases. During the last 10 years, there has been a clear delineation of the landscape of genetic alterations in HCC, including high-level DNA amplifications in chromosome 6p21 (VEGFA) and 11q13 (FGF19/CNND1), as well as homozygous deletions in chromosome 9 (CDKN2A). The most frequent mutations affect TERT promoter (60%), associated with an increased telomerase expression. TERT promoter can also be affected by copy number variations and hepatitis B DNA insertions, and it can be found mutated in preneoplastic lesions. TP53 and CTNNB1 are the next most prevalent mutations, affecting 25%-30% of HCC patients, that, in addition to low-frequency mutated genes (eg, AXIN1, ARID2, ARID1A, TSC1/TSC2, RPS6KA3, KEAP1, MLL2), help define some of the core deregulated pathways in HCC. Conceptually, some of these changes behave as prototypic oncogenic addiction loops, being ideal biomarkers for specific therapeutic approaches. Data from genomic profiling enabled a proposal of HCC in 2 major molecular clusters (proliferation and nonproliferation), with differential enrichment in prognostic signatures, pathway activation and tumor phenotype. Translation of these discoveries into specific therapeutic decisions is an unmet medical need in this field.

Kovac M, Navas C, Horswell S, et al.
Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cancer evolution.
Nat Commun. 2015; 6:6336 [PubMed] Free Access to Full Article Related Publications
Papillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic pathological classification and highly variable clinical behaviour. Here we sequence the genomes or exomes of 31 pRCCs, and in four tumours, multi-region sequencing is undertaken. We identify BAP1, SETD2, ARID2 and Nrf2 pathway genes (KEAP1, NHE2L2 and CUL3) as probable drivers, together with at least eight other possible drivers. However, only ~10% of tumours harbour detectable pathogenic changes in any one driver gene, and where present, the mutations are often predicted to be present within cancer sub-clones. We specifically detect parallel evolution of multiple SETD2 mutations within different sub-regions of the same tumour. By contrast, large copy number gains of chromosomes 7, 12, 16 and 17 are usually early, monoclonal changes in pRCC evolution. The predominance of large copy number variants as the major drivers for pRCC highlights an unusual mode of tumorigenesis that may challenge precision medicine approaches.

Fujimoto A, Furuta M, Shiraishi Y, et al.
Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity.
Nat Commun. 2015; 6:6120 [PubMed] Related Publications
Intrahepatic cholangiocarcinoma and combined hepatocellular cholangiocarcinoma show varying degrees of biliary epithelial differentiation, which can be defined as liver cancer displaying biliary phenotype (LCB). LCB is second in the incidence for liver cancers with and without chronic hepatitis background and more aggressive than hepatocellular carcinoma (HCC). To gain insight into its molecular alterations, we performed whole-genome sequencing analysis on 30 LCBs. Here we show, the genome-wide substitution patterns of LCBs developed in chronic hepatitis livers overlapped with those of 60 HCCs, whereas those of hepatitis-negative LCBs diverged. The subsequent validation study on 68 LCBs identified recurrent mutations in TERT promoter, chromatin regulators (BAP1, PBRM1 and ARID2), a synapse organization gene (PCLO), IDH genes and KRAS. The frequencies of KRAS and IDHs mutations, which are associated with poor disease-free survival, were significantly higher in hepatitis-negative LCBs. This study reveals the strong impact of chronic hepatitis on the mutational landscape in liver cancer and the genetic diversity among LCBs.

Shiraishi Y, Fujimoto A, Furuta M, et al.
Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.
PLoS One. 2014; 9(12):e114263 [PubMed] Free Access to Full Article Related Publications
Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV)-related hepatocellular carcinomas (HCCs) and their matched controls. Comparison of whole genome sequence (WGS) and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3), and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

Marchio A, Bertani S, Rojas Rojas T, et al.
A peculiar mutation spectrum emerging from young peruvian patients with hepatocellular carcinoma.
PLoS One. 2014; 9(12):e114912 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma usually afflicts individuals in their later years following longstanding liver disease. In Peru, hepatocellular carcinoma exists in a unique clinical presentation, which affects patients around age 25 with a normal, healthy liver. In order to deepen our understanding of the molecular processes ongoing in Peruvian liver tumors, mutation spectrum analysis was carried out on hepatocellular carcinomas from 80 Peruvian patients. Sequencing analysis focused on nine genes typically altered during liver carcinogenesis, i.e. ARID2, AXIN1, BRAF, CTNNB1, NFE2L2, H/K/N-RAS, and TP53. We also assessed the transcription level of factors involved in the control of the alpha-fetoprotein expression and the Hippo signaling pathway that controls contact inhibition in metazoans. The mutation spectrum of Peruvian patients was unique with a major class of alterations represented by Insertions/Deletions. There were no changes at hepatocellular carcinoma-associated mutation hotspots in more than half of the specimens analyzed. Furthermore, our findings support the theory of a consistent collapse in the Hippo axis, as well as an expression of the stemness factor NANOG in high alpha-fetoprotein-expressing hepatocellular carcinomas. These results confirm the specificity of Peruvian hepatocellular carcinoma at the molecular genetic level. The present study emphasizes the necessity to widen cancer research to include historically neglected patients from South America, and more broadly the Global South, where cancer genetics and tumor presentation are divergent from canonical neoplasms.

Ding L, Kim M, Kanchi KL, et al.
Clonal architectures and driver mutations in metastatic melanomas.
PLoS One. 2014; 9(11):e111153 [PubMed] Free Access to Full Article Related Publications
To reveal the clonal architecture of melanoma and associated driver mutations, whole genome sequencing (WGS) and targeted extension sequencing were used to characterize 124 melanoma cases. Significantly mutated gene analysis using 13 WGS cases and 15 additional paired extension cases identified known melanoma genes such as BRAF, NRAS, and CDKN2A, as well as a novel gene EPHA3, previously implicated in other cancer types. Extension studies using tumors from another 96 patients discovered a large number of truncation mutations in tumor suppressors (TP53 and RB1), protein phosphatases (e.g., PTEN, PTPRB, PTPRD, and PTPRT), as well as chromatin remodeling genes (e.g., ASXL3, MLL2, and ARID2). Deep sequencing of mutations revealed subclones in the majority of metastatic tumors from 13 WGS cases. Validated mutations from 12 out of 13 WGS patients exhibited a predominant UV signature characterized by a high frequency of C->T transitions occurring at the 3' base of dipyrimidine sequences while one patient (MEL9) with a hypermutator phenotype lacked this signature. Strikingly, a subclonal mutation signature analysis revealed that the founding clone in MEL9 exhibited UV signature but the secondary clone did not, suggesting different mutational mechanisms for two clonal populations from the same tumor. Further analysis of four metastases from different geographic locations in 2 melanoma cases revealed phylogenetic relationships and highlighted the genetic alterations responsible for differential drug resistance among metastatic tumors. Our study suggests that clonal evaluation is crucial for understanding tumor etiology and drug resistance in melanoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ARID2, Cancer Genetics Web: http://www.cancer-genetics.org/ARID2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999