Gene Summary

Gene:BRD4; bromodomain containing 4
Summary:The protein encoded by this gene is homologous to the murine protein MCAP, which associates with chromosomes during mitosis, and to the human RING3 protein, a serine/threonine kinase. Each of these proteins contains two bromodomains, a conserved sequence motif which may be involved in chromatin targeting. This gene has been implicated as the chromosome 19 target of translocation t(15;19)(q13;p13.1), which defines an upper respiratory tract carcinoma in young people. Two alternatively spliced transcript variants have been described. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:bromodomain-containing protein 4
Source:NCBIAccessed: 30 August, 2019


What does this gene/protein do?
Show (17)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Oncogene Proteins
  • Cancer Gene Expression Regulation
  • Carcinoma
  • Epigenetics
  • Signal Transduction
  • Adolescents
  • Protein Binding
  • Histones
  • Lung Cancer
  • FISH
  • Oncogene Fusion Proteins
  • Nuclear Proteins
  • Gene Expression Profiling
  • Sublingual Gland Neoplasms
  • BRD4
  • Transfection
  • Patents as Topic
  • Biomarkers, Tumor
  • Twist-Related Protein 1
  • Superior Vena Cava Syndrome
  • Azepines
  • Up-Regulation
  • Cell Proliferation
  • Sensitivity and Specificity
  • Molecular Targeted Therapy
  • Protein-Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-myc
  • Antineoplastic Agents
  • Papillomaviridae
  • Translocation
  • Weight Loss
  • Drug Resistance
  • Chromatin
  • Chromosome 19
  • Submandibular Gland Neoplasms
  • Squamous Cell Carcinoma
  • Breast Cancer
  • Gene Rearrangement
  • Acute Myeloid Leukaemia
  • Transcription Factors
  • Young Adult
  • Apoptosis
Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: BRD4 (cancer-related)

Bell CC, Fennell KA, Chan YC, et al.
Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia.
Nat Commun. 2019; 10(1):2723 [PubMed] Free Access to Full Article Related Publications
Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.

Picco G, Chen ED, Alonso LG, et al.
Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening.
Nat Commun. 2019; 10(1):2198 [PubMed] Free Access to Full Article Related Publications
Many gene fusions are reported in tumours and for most their role remains unknown. As fusions are used for diagnostic and prognostic purposes, and are targets for treatment, it is crucial to assess their function in cancer. To systematically investigate the role of fusions in tumour cell fitness, we utilized RNA-sequencing data from 1011 human cancer cell lines to functionally link 8354 fusion events with genomic data, sensitivity to >350 anti-cancer drugs and CRISPR-Cas9 loss-of-fitness effects. Established clinically-relevant fusions were identified. Overall, detection of functional fusions was rare, including those involving cancer driver genes, suggesting that many fusions are dispensable for tumour fitness. Therapeutically actionable fusions involving RAF1, BRD4 and ROS1 were verified in new histologies. In addition, recurrent YAP1-MAML2 fusions were identified as activators of Hippo-pathway signaling in multiple cancer types. Our approach discriminates functional fusions, identifying new drivers of carcinogenesis and fusions that could have clinical implications.

Chow RD, Wang G, Ye L, et al.
In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens.
Nat Methods. 2019; 16(5):405-408 [PubMed] Article available free on PMC after 08/10/2019 Related Publications
Systematic investigation of the genetic interactions that influence metastatic potential has been challenging. Here we developed massively parallel CRISPR-Cpf1/Cas12a crRNA array profiling (MCAP), an approach for combinatorial interrogation of double knockouts in vivo. We designed an MCAP library of 11,934 arrays targeting 325 pairwise combinations of genes implicated in metastasis. By assessing the metastatic potential of the double knockouts in mice, we unveiled a quantitative landscape of genetic interactions that drive metastasis.

Guo S, Yang J, Wu M, Xiao G
Clinical value screening, prognostic significance and key pathway identification of miR-204-5p in endometrial carcinoma: A study based on the Cancer Genome Atlas (TCGA), and bioinformatics analysis.
Pathol Res Pract. 2019; 215(5):1003-1011 [PubMed] Related Publications
BACKGROUND: Endometrial carcinoma is one of the common carcinomas in the female reproductive system. It is reported that miR-204-5p is down-regulated in endometrial carcinoma. However, the mechanism and key pathways of miR-204-5p in endometrial carcinoma have not been clarified.
MATERIAL/METHODS: We evaluated the expression profiles and prognostic value of miR-204-5p expression in endometrial carcinoma by using bioinformatics analysis of a public dataset from TCGA. Drug of endometrial carcinoma from DrugBank, GO analysis, KEGG analysis, PPI network, mutation, as well as assessment of the prognostic significance were performed to the overlapping target genes of miR-204-5p in endometrial carcinoma. The relative expression levels of miR-204-5p target genes in endometrial carcinoma, including SF3B1, FBXW7, SPOP, and BRD4, were assessed by real-time quantitative polymerase chain reaction (RT-qPCR).
RESULTS: First, through DrugBank website, we obtained target drugs for endometrial carcinoma. MiR-204-5p expression was found to be lower in the endometrial carcinoma tissues than in adjacent normal tissues from TCGA. Next, we identified 143 genes as potential targets of miR-204-5p. Then, through GO enrichment analysis, KEGG signaling pathway and PPI analysis, we revealed the key networks in endometrial carcinoma. Next, mutation and assessment of the prognostic significance of endometrial carcinoma were obtained. At last, in endometrial carcinoma, the relative expression of SF3B1 and BRD4 increased, and the relative expression of FBXW7 decreased.
CONCLUSIONS: MiR-204-5p is down-regulated in endometrial carcinoma and affects the prognostic significance of endometrial carcinoma, which might play an important role in the tumorigenesis of endometrial carcinoma.

Elkhatib SK, Neilsen BK, Sleightholm RL, et al.
A 47-year-old woman with nuclear protein in testis midline carcinoma masquerading as a sinus infection: a case report and review of the literature.
J Med Case Rep. 2019; 13(1):57 [PubMed] Article available free on PMC after 08/10/2019 Related Publications
BACKGROUND: Nuclear protein in testis midline carcinoma is a rare, highly metastatic undifferentiated carcinoma that typically arises in midline structures and is characterized by having a fusion involving the nuclear protein in testis, NUT, gene. Nuclear protein in testis midline carcinoma has been identified in patients of all ages and is often initially misdiagnosed due to the rapid timeline of symptom onset.
CASE PRESENTATION: Here we report the case of a 47-year-old Caucasian woman with a nuclear protein in testis midline carcinoma that was initially mistaken for a sinus infection. After symptom progression while on an aggressive antibiotic regimen, the source of her symptoms was correctly identified as a sella mass. Comprehensive analysis of the tumor was performed, and standard cytogenetic analysis identified a translocation of 15q and 19p. Further testing identified a NUT-BRD4 fusion and confirmed the diagnosis of nuclear protein in testis midline carcinoma. Despite definitive diagnosis and surgical, radiation, and, ultimately, systemic therapy, she progressed rapidly, developing widespread metastases, and ultimately died from the disease 5 months after diagnosis.
CONCLUSIONS: Based on this and other previous reports, aggressive therapy should be initiated once nuclear protein in testis midline carcinoma is diagnosed and close surveillance employed in an attempt to prevent and/or recognize metastases as early as possible. Aggressive therapy has shown little efficacy such that the average overall survival for patients with nuclear protein in testis midline carcinoma is very short, often less than 6 months. Thus, early enrollment into clinical trials testing novel therapies for the treatment of nuclear protein in testis midline carcinoma should be considered. Finally, additional reports of nuclear protein in testis midline carcinoma are needed to fully characterize this rare and highly aggressive cancer.

Zhao J, Meng Z, Xie C, et al.
B7-H3 is regulated by BRD4 and promotes TLR4 expression in pancreatic ductal adenocarcinoma.
Int J Biochem Cell Biol. 2019; 108:84-91 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies worldwide. PDAC is resistant to chemotherapy and radiotherapy which leads to the poor prognosis of PDAC patients and a 5-year survival rate of less than 5%. Exploring the mechanism of the pancreatic cancer tumorigenesis is the key to finding a novel therapeutic strategy for cancer treatment. B7-H3 belongs to the B7 family of immunoregulatory proteins, and the overexpression of B7-H3 is found in various types of cancer. The regulation of B7-H3 expression in pancreatic cancer is still unclear. Here, we showed that B7-H3 acted as a negative prognostic biomarker in PDAC and promoted cell proliferation, invasion and metastasis in pancreatic cancer. Next, we applied the drug screening method to identify bromodomain and extra-terminal motif (BET) inhibitors that decreased the protein and mRNA levels of B7-H3 in pancreatic cancer cells. Moreover, we verified that BRD4 was responsible for regulating the expression of B7-H3 at the transcriptional level. Finally, our data indicated that the BRD4/B7-H3 axis modulated the expression of TLR4 in pancreatic cancer cells. Taken together, our results elucidated the regulation of B7-H3 expression in pancreatic cancer and uncovered the importance of BRD4/B7-H3/TLR4 pathway. The targeting of B7-H3 by the BET inhibitors may be a novel therapeutic strategy to overcome the immunotherapy and chemotherapy resistance in pancreatic cancer.

Xiong L, Wu F, Wu Q, et al.
Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming.
Nat Commun. 2019; 10(1):335 [PubMed] Article available free on PMC after 08/10/2019 Related Publications
Hepatocellular carcinomas (HCC) exhibit distinct promoter hypermethylation patterns, but the epigenetic regulation and function of transcriptional enhancers remain unclear. Here, our affinity- and bisulfite-based whole-genome sequencing analyses reveal global enhancer hypomethylation in human HCCs. Integrative epigenomic characterization further pinpoints a recurrent hypomethylated enhancer of CCAAT/enhancer-binding protein-beta (C/EBPβ) which correlates with C/EBPβ over-expression and poorer prognosis of patients. Demethylation of C/EBPβ enhancer reactivates a self-reinforcing enhancer-target loop via direct transcriptional up-regulation of enhancer RNA. Conversely, deletion of this enhancer via CRISPR/Cas9 reduces C/EBPβ expression and its genome-wide co-occupancy with BRD4 at H3K27ac-marked enhancers and super-enhancers, leading to drastic suppression of driver oncogenes and HCC tumorigenicity. Hepatitis B X protein transgenic mouse model of HCC recapitulates this paradigm, as C/ebpβ enhancer hypomethylation associates with oncogenic activation in early tumorigenesis. These results support a causal link between aberrant enhancer hypomethylation and C/EBPβ over-expression, thereby contributing to hepatocarcinogenesis through global transcriptional reprogramming.

Tzelepis K, De Braekeleer E, Aspris D, et al.
SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4.
Nat Commun. 2018; 9(1):5378 [PubMed] Article available free on PMC after 08/10/2019 Related Publications
We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.

Lambert JP, Picaud S, Fujisawa T, et al.
Interactome Rewiring Following Pharmacological Targeting of BET Bromodomains.
Mol Cell. 2019; 73(3):621-638.e17 [PubMed] Article available free on PMC after 08/10/2019 Related Publications
Targeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1.

Luo Q, Deng W, Wang H, et al.
BRD4 interacts with PML/RARα in acute promyelocytic leukemia.
Front Med. 2018; 12(6):726-734 [PubMed] Related Publications
Bromodomain-containing 4 (BRD4) has been considered as an important requirement for disease maintenance and an attractive therapeutic target for cancer therapy. This protein can be targeted by JQ1, a selective small-molecule inhibitor. However, few studies have investigated whether BRD4 influenced acute promyelocytic leukemia (APL), and whether BRD4 had interaction with promyelocytic leukemia-retinoic acid receptor α (PML/RARα) fusion protein to some extent. Results from cell viability assay, cell cycle analysis, and Annexin-V/PI analysis indicated that JQ1 inhibited the growth of NB4 cells, an APL-derived cell line, and induced NB4 cell cycle arrest at G1 and apoptosis. Then, we used co-immunoprecipitation (co-IP) assay and immunoblot to demonstrate the endogenous interaction of BRD4 and PML/RARα in NB4 cells. Moreover, downregulation of PML/RARα at the mRNA and protein levels was observed upon JQ1 treatment. Furthermore, results from the RT-qPCR, ChIP-qPCR, and re-ChIP-qPCR assays showed that BRD4 and PML/RARα co-existed on the same regulatory regions of their target genes. Hence, we showed a new discovery of the interaction of BRD4 and PML/RARα, as well as the decline of PML/RARα expression, under JQ1 treatment.

Markman RL, Webber LP, Nascimento Filho CHV, et al.
Interfering with bromodomain epigenome readers as therapeutic option in mucoepidermoid carcinoma.
Cell Oncol (Dordr). 2019; 42(2):143-155 [PubMed] Related Publications
PURPOSE: Emerging evidence indicates that bromodomains comprise a conserved class of epigenome readers involved in cancer development and inflammation. Bromodomains are associated with epigenetic modifications of gene transcription through interactions with lysine residues of histone tails. Particularly, the bromodomain and extra-terminal domain (BET) family member BRD4 has been found to be involved in the control over oncogenes, including c-MYC, and in the maintenance of downstream inflammatory processes. The objective of this study was to evaluate the effect of pharmacologically displacing BRD4 in mucoepidermoid carcinoma (MEC) cells.
METHODS: We assessed the presence of BRD4 levels in a panel of human MEC tissue samples in conjunction with histological grading and clinical information. In vitro studies were carried out using human MEC-derived cell lines. The BET inhibitor iBET762 was administered to MEC cells to assess the impact of disrupted BRD4 signaling on colony forming capacities and cell cycle status. The activation of cellular senescence induced by iBET762 was determined by immunohistochemical staining for p16
RESULTS: We found that primary human MECs and MEC-derived cell lines are endowed with high BRD4 expression levels compared to those in normal salivary glands. We also found that, by displacing BRD4 from chromatin using the BET inhibitor iBET762, MEC cells lose their colony forming capacities and undergo G1 cell cycle arrest and senescence. Finally, we found that targeted displacement of BRD4 from chromatin results in depletion of cancer stem cells from the overall MEC cell populations.
CONCLUSIONS: Our findings indicate that bromodomain-mediated gene regulation constitutes an epigenetic mechanism that is deregulated in MEC cells and that the use of BET inhibitors may serve as a feasible therapeutic strategy to manage MECs.

Liu J, Duan Z, Guo W, et al.
Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer.
Nat Commun. 2018; 9(1):5200 [PubMed] Article available free on PMC after 08/10/2019 Related Publications
BRD4 assembles transcriptional machinery at gene super-enhancer regions and governs the expression of genes that are critical for cancer progression. However, it remains unclear whether BRD4-mediated gene transcription is required for tumor cells to develop drug resistance. Our data show that prolonged treatment of luminal breast cancer cells with AKT inhibitors induces FOXO3a dephosphorylation, nuclear translocation, and disrupts its association with SirT6, eventually leading to FOXO3a acetylation as well as BRD4 recognition. Acetylated FOXO3a recognizes the BD2 domain of BRD4, recruits the BRD4/RNAPII complex to the CDK6 gene promoter, and induces its transcription. Pharmacological inhibition of either BRD4/FOXO3a association or CDK6 significantly overcomes the resistance of luminal breast cancer cells to AKT inhibitors in vitro and in vivo. Our study reports the involvement of BRD4/FOXO3a/CDK6 axis in AKTi resistance and provides potential therapeutic strategies for treating resistant breast cancer.

Gayle SS, Sahni JM, Webb BM, et al.
Targeting BCL-xL improves the efficacy of bromodomain and extra-terminal protein inhibitors in triple-negative breast cancer by eliciting the death of senescent cells.
J Biol Chem. 2019; 294(3):875-886 [PubMed] Article available free on PMC after 18/01/2020 Related Publications
Inhibitors of bromodomain and extra-terminal proteins (BETi) suppress oncogenic gene expression and have been shown to be efficacious in many

Sharma A, Cao EY, Kumar V, et al.
Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy.
Nat Commun. 2018; 9(1):4931 [PubMed] Article available free on PMC after 18/01/2020 Related Publications
Chemo-resistance is one of the major causes of cancer-related deaths. Here we used single-cell transcriptomics to investigate divergent modes of chemo-resistance in tumor cells. We observed that higher degree of phenotypic intra-tumor heterogeneity (ITH) favors selection of pre-existing drug-resistant cells, whereas phenotypically homogeneous cells engage covert epigenetic mechanisms to trans-differentiate under drug-selection. This adaptation was driven by selection-induced gain of H3K27ac marks on bivalently poised resistance-associated chromatin, and therefore not expressed in the treatment-naïve setting. Mechanistic interrogation of this phenomenon revealed that drug-induced adaptation was acquired upon the loss of stem factor SOX2, and a concomitant gain of SOX9. Strikingly we observed an enrichment of SOX9 at drug-induced H3K27ac sites, suggesting that tumor evolution could be driven by stem cell-switch-mediated epigenetic plasticity. Importantly, JQ1 mediated inhibition of BRD4 could reverse drug-induced adaptation. These results provide mechanistic insights into the modes of therapy-induced cellular plasticity and underscore the use of epigenetic inhibitors in targeting tumor evolution.

Donati B, Lorenzini E, Ciarrocchi A
BRD4 and Cancer: going beyond transcriptional regulation.
Mol Cancer. 2018; 17(1):164 [PubMed] Article available free on PMC after 18/01/2020 Related Publications
BRD4, member of the Bromodomain and Extraterminal (BET) protein family, is largely acknowledged in cancer for its role in super-enhancers (SEs) organization and oncogenes expression regulation. Inhibition of BRD4 shortcuts the communication between SEs and target promoters with a subsequent cell-specific repression of oncogenes to which cancer cells are addicted and cell death. To date, this is the most credited mechanism of action of BET inhibitors, a class of small molecules targeting BET proteins which are currently in clinical trials in several cancer settings.However, recent evidence indicates that BRD4 relevance in cancer goes beyond its role in transcription regulation and identifies this protein as a keeper of genome stability.Indeed, a non-transcriptional role of BRD4 in controlling DNA damage checkpoint activation and repair as well as telomere maintenance has been proposed, throwing new lights into the multiple functions of this protein and opening new perspectives on the use of BETi in cancer. Here we discuss the current available information on non-canonical, non-transcriptional functions of BRD4 and on their implications in cancer biology. Integrating this information with the already known BRD4 role in gene expression regulation, we propose a "common" model to explain BRD4 genomic function. Furthermore, in light of the transversal function of BRD4, we provide new interpretation for the cytotoxic activity of BETi and we discuss new possibilities for a wide and focused employment of these drugs in clinical settings.

French CA
NUT Carcinoma: Clinicopathologic features, pathogenesis, and treatment.
Pathol Int. 2018; 68(11):583-595 [PubMed] Related Publications
NUT carcinoma (NC) is a rare, aggressive subtype of squamous cell carcinoma defined by rearrangement of the NUTM1 (aka NUT) gene. NC is driven by NUT-fusion oncoproteins resulting from chromosomal translocation, most commonly BRD4-NUT. This is a nearly uniformly lethal cancer affecting patients of all ages, but predominantly teens and young adults. The cell of origin is unknown, but NC most commonly arises within the thorax and head and neck. NC typically consists of sheets of monomorphic primitive round cells that can exhibit focal abrupt squamous differentiation. Diagnosis of NC is easy, and can be established by positive NUT nuclear immunohistochemical staining. Though characterization of the NUTM1-fusion gene is desirable by molecular analysis, it is not required for the diagnosis. The increasingly widespread availability of the NUT diagnostic test is leading to increasing diagnoses of this vastly underdiagnosed disease. The NUT midline carcinoma registry ( serves as a central repository that has provided the main source of clinical and outcomes data for NC. Currently there is no effective therapy for NC, however small molecules directly targeting the BRD4 portion of BRD4-NUT, termed BET bromodomain inhibitors, have shown activity.

Khoury JD
Blastic Plasmacytoid Dendritic Cell Neoplasm.
Curr Hematol Malig Rep. 2018; 13(6):477-483 [PubMed] Related Publications
PURPOSE OF REVIEW: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare malignancy derived from plasmacyoid dendritic cells whose biology, clinical features, and treatment options are increasingly better understood.
RECENT FINDINGS: TCF4 is a master regulator that drives donwstream transcriptional programs in BPDCN. In turn, TCF4 activity is dependent on the bromodomain and extra-terminal domain (BET) protein BRD4 whose inhibition provides a promising therapeutic vulnerability. Notably, TCF4 expression is a highly sensitive marker for BPDCN and augments diagnostic specificity alongside CD4, CD56, CD123, and TCL1. The gene expression profile of BPDCN is characterized by aberrant NF-kappaB pathway activation, while its genomic landscape is dominated by structural chromosomal alterations involving ETV6, MYC, and NR3C1, as well as mutations in epigenetic regulators particularly TET2. Advances in elucidating the biological characteristics of BPDCN are resulting in a more refined diagnostic approach and are opening novel therapeutic avenues for patients with this disease.

Meng W, Wang B, Mao W, et al.
Enhanced efficacy of histone deacetylase inhibitor combined with bromodomain inhibitor in glioblastoma.
J Exp Clin Cancer Res. 2018; 37(1):241 [PubMed] Article available free on PMC after 18/01/2020 Related Publications
BACKGROUND: Glioblastoma (GBM) is the most common and most malignant primary brain cancer in adults. Despite multimodality treatment, the prognosis is still poor. Therefore, further work is urgently required to discover novel therapeutic strategies for GBM treatment.
METHODS: The synergistic effects of cotreatment with the histone deacetylase (HDAC) inhibitor panobinostat and bromodomain inhibitor JQ1 or OTX015 were validated using cell viability assays in GBM cell lines. Furthermore, the inhibitory mechanisms were investigated via an EdU proliferation assay, an apoptosis assay, qPCR, Western blot and RNAseq analyses.
RESULTS: We found that the cotreatment with panobinostat and JQ1 or OTX015 synergistically inhibited cell viability in GBM cells. The cotreatment with panobinostat and JQ1 or OTX015 markedly inhibited cell proliferation and induced apoptosis in GBM cells. Compared with treatment with each drug alone, the cotreatment with panobinostat and JQ1 induced more profound caspase 3/7 activation and cytotoxicity. Mechanistic investigation showed that combination of panobinostat with JQ1 or OTX015 results in stronger repression of GBM-associated oncogenic genes or pathways as well as higher induction of GBM-associated tumor-suppressive genes.
CONCLUSION: Our study demonstrated that HDAC inhibitor and bromodomain inhibitor had synergistical efficacy against GBM cells. The cotreatment with HDAC inhibitor and bromodomain inhibitor warrants further attention in GBM therapy.

Tan Y, Wang L, Du Y, et al.
Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression.
Int J Oncol. 2018; 53(6):2503-2517 [PubMed] Article available free on PMC after 18/01/2020 Related Publications
Prostate cancer (PCa) is a malignant tumor with a high incidence in males. Localized tumors can be treated via surgery or radiation; however, it remains difficult to prevent disease progression. Bromodomain-containing protein 4 (BRD4) is an epigenetic reader protein that binds to acetylated lysine on histones and has been reported to serve critical roles in numerous types of cancers. In the present study, it was demonstrated that BRD4 expression levels were significantly increased in cancerous prostate tissue specimens and cells, which were associated with clinical stage and metastasis. In addition, the present study reported that inhibition of BRD4 via short hairpin RNA or JQ1 (a bromodomain inhibitor) decreased PCa cell proliferation, induced G0/G1 cell cycle arrest and apoptosis, mitigated cell invasion and migration in vitro, and impaired tumor growth in vivo. Mechanistically, BRD4 inhibition-induced suppression of cell cycle progression was associated with the upregulation of p21 and cyclin D1. c-Myc and B-cell lymphoma-2 (Bcl-2), important genes responsible for cell cycle regulation and anti-apoptotic functions, were downregulated in response to BRD4 inhibition. Furthermore, the present study revealed that c-Myc expression was negatively regulated by p21, and that the induction of p21 via BRD4 inhibition was mediated by forkhead box protein O1 (FOXO1), rather than p53. In summary, the results of the present study suggested that the aberrant expression of BRD4 in PCa may induce carcinogenesis. In addition, a mechanism by which BRD4 inhibition suppresses cell proliferation via the regulation of FOXO1-p21-Myc signaling was proposed in the present study, which may contribute to the development of novel therapeutic approaches in the management of PCa.

Cai L, Tsai YH, Wang P, et al.
ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer.
Mol Cell. 2018; 72(2):341-354.e6 [PubMed] Article available free on PMC after 18/10/2019 Related Publications
Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.

Liu X, Wu H, Huang P, Zhang F
JQ1 and PI3K inhibition synergistically reduce salivary adenoid cystic carcinoma malignancy by targeting the c-Myc and EGFR signaling pathways.
J Oral Pathol Med. 2019; 48(1):43-51 [PubMed] Related Publications
BACKGROUND: To investigate the therapeutic mechanism of the BRD4 inhibitor JQ1 in SACC-83 cells and explore strategies to enhance its therapeutic potential.
MATERIAL AND METHODS: SACC-83 cells were used in the experiment. Immunohistochemistry was used to assess BRD4 expression in SACC tissues and corresponding adjacent non-tumor tissues. Cell viability and proliferation were evaluated using the Cell Counting Kit-8 assay. Flow cytometry was used to quantitate apoptosis. Levels of cleaved caspase-3, BRD4, c-Myc, pEGFR (γ-1173), and EGFR were determined by quantitative real-time PCR and Western blot. To study the role of EGFR in JQ1 resistance, we generated EGFR knockdown SACC-83 cells by siRNA transfection.
RESULTS: Our study revealed that BRD4 was overexpressed and could be a treatment target in SACC. The BRD4 inhibitor JQ1 markedly inhibited c-Myc expression in SACC-83 cells, which produced modest therapeutic effects. Nevertheless, the EGFR pathway was strongly activated following JQ1 treatment, which led to JQ1 resistance. Combined JQ1 and PI3K inhibitor treatment effectively increased the therapeutic potential by inhibiting the EGFR and c-Myc signaling pathways in SACC-83 cells. Moreover, EGFR knockdown sensitized SACC-83 cells to JQ1.
CONCLUSION: These data demonstrate that EGFR and c-Myc signaling synergistically drive SACC progression. The JQ1 and PI3K inhibitor combination exhibited a strong synergistic effect by suppressing c-Myc and EGFR in SACC-83 cells, identifying a novel rational combinatorial treatment. Moreover, EGFR expression influences the sensitivity of SACC-83 cells to JQ1, which is useful for planning treatment.

Mio C, Gerratana L, Bolis M, et al.
BET proteins regulate homologous recombination-mediated DNA repair: BRCAness and implications for cancer therapy.
Int J Cancer. 2019; 144(4):755-766 [PubMed] Related Publications
Bromodomain and Extra-Terminal (BET) proteins are historically involved in regulating gene expression and BRD4 was recently found to be involved in DNA damage regulation. Aims of our study were to assess BRD4 regulation in homologous recombination-mediated DNA repair and to explore novel clinical strategies through the combinations of the pharmacological induction of epigenetic BRCAness in BRCA1 wild-type triple negative breast cancer (TNBC) cells by means of BET inhibitors and compounds already available in clinic. Performing a dual approach (chromatin immunoprecipitation and RNA interference), the direct relationship between BRD4 and BRCA1/RAD51 expression was confirmed in TNBC cells. Moreover, BRD4 pharmacological inhibition using two BET inhibitors (JQ1 and GSK525762A) induced a dose-dependent reduction in BRCA1 and RAD51 levels and is able to hinder homologous recombination-mediated DNA damage repair, generating a BRCAness phenotype in TNBC cells. Furthermore, BET inhibition impaired the ability of TNBC cells to overcome the increase in DNA damage after platinum salts (i.e., CDDP) exposure, leading to massive cell death, and triggered synthetic lethality when combined with PARP inhibitors (i.e., AZD2281). Altogether, the present study confirms that BET proteins directly regulate the homologous recombination pathway and their inhibition induced a BRCAness phenotype in BRCA1 wild-type TNBC cells. Noteworthy, being this strategy based on drugs already available for human use, it is rapidly transferable and could potentially enable clinicians to exploit platinum salts and PARP inhibitors-based treatments in a wider population of TNBC patients and not just in a specific subgroup, after validating clinical trials.

Choe J, Lin S, Zhang W, et al.
mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis.
Nature. 2018; 561(7724):556-560 [PubMed] Article available free on PMC after 18/10/2019 Related Publications

Zanconato F, Battilana G, Forcato M, et al.
Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4.
Nat Med. 2018; 24(10):1599-1610 [PubMed] Article available free on PMC after 18/10/2019 Related Publications
Cancer cells rely on dysregulated gene expression. This establishes specific transcriptional addictions that may be therapeutically exploited. Yet, the mechanisms that are ultimately responsible for these addictions are poorly understood. Here, we investigated the transcriptional dependencies of transformed cells to the transcription factors YAP and TAZ. YAP/TAZ physically engage the general coactivator bromodomain-containing protein 4 (BRD4), dictating the genome-wide association of BRD4 to chromatin. YAP/TAZ flag a large set of enhancers with super-enhancer-like functional properties. YAP/TAZ-bound enhancers mediate the recruitment of BRD4 and RNA polymerase II at YAP/TAZ-regulated promoters, boosting the expression of a host of growth-regulating genes. Treatment with small-molecule inhibitors of BRD4 blunts YAP/TAZ pro-tumorigenic activity in several cell or tissue contexts, causes the regression of pre-established, YAP/TAZ-addicted neoplastic lesions and reverts drug resistance. This work sheds light on essential mediators, mechanisms and genome-wide regulatory elements that are responsible for transcriptional addiction in cancer and lays the groundwork for a rational use of BET inhibitors according to YAP/TAZ biology.

Huang X, Yan J, Zhang M, et al.
Targeting Epigenetic Crosstalk as a Therapeutic Strategy for EZH2-Aberrant Solid Tumors.
Cell. 2018; 175(1):186-199.e19 [PubMed] Related Publications
Mutations or aberrant upregulation of EZH2 occur frequently in human cancers, yet clinical benefits of EZH2 inhibitor (EZH2i) remain unsatisfactory and limited to certain hematological malignancies. We profile global posttranslational histone modification changes across a large panel of cancer cell lines with various sensitivities to EZH2i. We report here oncogenic transcriptional reprogramming mediated by MLL1's interaction with the p300/CBP complex, which directs H3K27me loss to reciprocal H3K27ac gain and restricts EZH2i response. Concurrent inhibition of H3K27me and H3K27ac results in transcriptional repression and MAPK pathway dependency in cancer subsets. In preclinical models encompassing a broad spectrum of EZH2-aberrant solid tumors, a combination of EZH2 and BRD4 inhibitors, or a triple-combination including MAPK inhibition display robust efficacy with very tolerable toxicity. Our results suggest an attractive precision treatment strategy for EZH2-aberrant tumors on the basis of tumor-intrinsic MLL1 expression and concurrent inhibition of epigenetic crosstalk and feedback MAPK activation.

Fan P, Wang B, Meng Z, et al.
PES1 is transcriptionally regulated by BRD4 and promotes cell proliferation and glycolysis in hepatocellular carcinoma.
Int J Biochem Cell Biol. 2018; 104:1-8 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the mechanism underlying the tumorigenesis of HCC is still unclear. Improper recruitment of Pescadillo homologue 1 (PES1) can lead to tumorigenesis in multiple cancer types, such as gastric cancer and colon cancer. Here, we reported that PES1 was upregulated and associated with a poor prognosis in HCC specimens. Next, we found that PES1 promoted the growth of HCC in vivo and in vitro. Furthermore, we showed that the knockdown of PES1 decreased glycolysis via altering the gene expression of GLUT1, PKM2, ENO1, FBP1, and PCK1, which are related to glucose metabolism in HCC cells. Moreover, we demonstrated that PES1 is regulated by bromodomain-containing protein 4 (BRD4) and is partially responsible for modulating the antitumor effect of BET inhibitors in HCC. Taken together, our results suggest that PES1 plays an important role in promoting the proliferation of human liver cancer cells, suggesting that PES1 may be an ideal molecular target for HCC therapy.

Wang LT, Wang SN, Chiou SS, et al.
TIP60-dependent acetylation of the SPZ1-TWIST complex promotes epithelial-mesenchymal transition and metastasis in liver cancer.
Oncogene. 2019; 38(4):518-532 [PubMed] Article available free on PMC after 18/10/2019 Related Publications
Metastasis is the main cause of cancer mortality. However, the triggering mechanisms and regulation of epithelial-mesenchymal transition (EMT) factors in the commitment of metastasis have not been well characterized. Spermatogenic Zip 1 (SPZ1) acts as a proto-oncogene and an upstream regulator of EMT during tumorigenesis. Here we report that the HIV-1 Tat-interacting protein 60 kDa (Tip60) acetyltransferase mediates acetylation at lysine residues of SPZ1 at positions 369 and 374, and of TWIST1 at positions 73 and 76, which are required for SPZ1-TWIST1 complex formation and cancer cell migration in vitro and in vivo. Ectopic SPZ1 and TWIST1 expression, but not that of TWIST1 alone, enhanced vascular endothelial growth factor (VEGF) expression via the recruitment of bromodomain-containing protein 4 (BRD4), thus enhancing RNA-Pol II-dependent transcription and inducing metastasis. Neutralization of VEGF using humanized monoclonal antibodies such as Avastin, effectively abrogated the EMT and oncogenesis induced by the acetylated SPZ1-TWIST1 complex. Our findings highlight the importance of acetylation signaling in the SPZ1-TWIST1-BRD4 axis in the mediation of EMT and its regulation during tumor initiation and metastasis.

Felgenhauer J, Tomino L, Selich-Anderson J, et al.
Dual BRD4 and AURKA Inhibition Is Synergistic against MYCN-Amplified and Nonamplified Neuroblastoma.
Neoplasia. 2018; 20(10):965-974 [PubMed] Article available free on PMC after 18/10/2019 Related Publications
A majority of cases of high-risk neuroblastoma, an embryonal childhood cancer, are driven by MYC or MYCN-driven oncogenic signaling. While considered to be directly "undruggable" therapeutically, MYC and MYCN can be repressed transcriptionally by inhibition of Bromodomain-containing protein 4 (BRD4) or destabilized posttranslationally by inhibition of Aurora Kinase A (AURKA). Preclinical and early-phase clinical studies of BRD4 and AURKA inhibitors, however, show limited efficacy against neuroblastoma when used alone. We report our studies on the concomitant use of the BRD4 inhibitor I-BET151 and AURKA inhibitor alisertib. We show that, in vitro, the drugs act synergistically to inhibit viability in four models of high-risk neuroblastoma. We demonstrate that this synergy is driven, in part, by the ability of I-BET151 to mitigate reflexive upregulation of AURKA, MYC, and MYCN in response to AURKA inhibition. We then demonstrate that I-BET151 and alisertib are effective in prolonging survival in four xenograft neuroblastoma models in vivo, and this efficacy is augmented by the addition of the antitubule chemotherapeutic vincristine. These data suggest that epigenetic and posttranslational inhibition of MYC/MYCN-driven pathways may have significant clinical efficacy against neuroblastoma.

Reddy R, Woods TR, Allan RW, et al.
NUT (Nuclear Protein in Testis) Carcinoma: A Report of Two Cases With Different Histopathologic Features.
Int J Surg Pathol. 2019; 27(2):225-229 [PubMed] Related Publications
NUT (nuclear protein in testis) carcinoma (NC) is an aggressive carcinoma characterized by rearrangements of the NUT gene on chromosome 15q14. Histologically, it is a poorly differentiated carcinoma composed of monotonous, medium-sized, round cells with scant amphophilic or eosinophilic cytoplasm. Foci of abrupt keratinization are often seen. In this report, we compare the morphology of 2 cases of NC. The first case shows characteristic features of uniform, round epithelioid cells admixed with foci of abrupt keratinization. The second case demonstrates nests of epithelioid-polygonal cells that appear to be loosely cribriform within a mucoid stroma. Although considered rare, the actual incidence of NC may be underestimated, as it is likely that many go undiagnosed because the morphology deviates from what is typical. Our report demonstrates that NC should always be considered in any case of an undifferentiated carcinoma and should not be excluded if typical histologic and immunohistochemical features of squamous differentiation are lacking.

Chan HL, Beckedorff F, Zhang Y, et al.
Polycomb complexes associate with enhancers and promote oncogenic transcriptional programs in cancer through multiple mechanisms.
Nat Commun. 2018; 9(1):3377 [PubMed] Article available free on PMC after 18/10/2019 Related Publications
Polycomb repressive complex 1 (PRC1) plays essential roles in cell fate decisions and development. However, its role in cancer is less well understood. Here, we show that RNF2, encoding RING1B, and canonical PRC1 (cPRC1) genes are overexpressed in breast cancer. We find that cPRC1 complexes functionally associate with ERα and its pioneer factor FOXA1 in ER+ breast cancer cells, and with BRD4 in triple-negative breast cancer cells (TNBC). While cPRC1 still exerts its repressive function, it is also recruited to oncogenic active enhancers. RING1B regulates enhancer activity and gene transcription not only by promoting the expression of oncogenes but also by regulating chromatin accessibility. Functionally, RING1B plays a divergent role in ER+ and TNBC metastasis. Finally, we show that concomitant recruitment of RING1B to active enhancers occurs across multiple cancers, highlighting an under-explored function of cPRC1 in regulating oncogenic transcriptional programs in cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. BRD4, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999