SULT1A1

Gene Summary

Gene:SULT1A1; sulfotransferase family 1A member 1
Aliases: PST, STP, STP1, P-PST, ST1A1, ST1A3, TSPST1, HAST1/HAST2
Location:16p11.2
Summary:Sulfotransferase enzymes catalyze the sulfate conjugation of many hormones, neurotransmitters, drugs, and xenobiotic compounds. These cytosolic enzymes are different in their tissue distributions and substrate specificities. The gene structure (number and length of exons) is similar among family members. This gene encodes one of two phenol sulfotransferases with thermostable enzyme activity. Multiple alternatively spliced variants that encode two isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:sulfotransferase 1A1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (14)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Biomarkers, Tumor
  • Surveys and Questionnaires
  • Cytochrome P-450 CYP1A1
  • Risk Factors
  • Genetic Predisposition
  • Genotype
  • Breast Cancer
  • Registries
  • Arylsulfotransferase
  • Arylamine N-Acetyltransferase
  • Polymorphism
  • SULT1A1
  • Glucuronosyltransferase
  • Signal Transduction
  • Colorectal Cancer
  • Aromatase
  • Messenger RNA
  • Male Breast Cancer
  • CYP1B1
  • Isoenzymes
  • European Continental Ancestry Group
  • Aryl Hydrocarbon Hydroxylases
  • Polymerase Chain Reaction
  • Neoplasm Proteins
  • Glutathione Transferase
  • Cytochrome P-450 CYP1A2
  • RTPCR
  • Logistic Models
  • Lung Cancer
  • Diet
  • Case-Control Studies
  • Catechol O-Methyltransferase
  • Odds Ratio
  • Estrogens
  • Chromosome 16
  • Asian Continental Ancestry Group
  • Cancer Gene Expression Regulation
  • Haplotypes
  • CYP2D6
  • Cytochrome P-450 Enzyme System
  • Smoking
  • Alleles
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Breast CancerSULT1A1 and Breast Cancer
SULT1A1 is a drug and hormone metabolizing enzyme involved in the metabolism of a variety of potential mammary carcinogens and also in tamoxifen metabolism.
View Publications84
-Colorectal Cancer and SULT1A1?
Some studies have suggested a role of polymorphisms of SULT1A1 in colorectal cancer, but there have been conflicting reports on this, including negative results.
View Publications23
Male Breast CancerSULT1A1 deletions in Male Breast Cancer
Palli et al (2013) reported SULT1A1 gene deletion in 10 of 72 (14%) Male Breast Cancers (13.9%) and this correlated with BRCA2.
View Publications7

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SULT1A1 (cancer-related)

Wohak LE, Baranski AC, Krais AM, et al.
The impact of p53 function on the metabolic activation of the carcinogenic air pollutant 3-nitrobenzanthrone and its metabolites 3-aminobenzanthrone and N-hydroxy-3-aminobenzanthrone in human cells.
Mutagenesis. 2018; 33(4):311-321 [PubMed] Free Access to Full Article Related Publications
The tumour suppressor p53, encoded by TP53, is a key player in a wide network of signalling pathways. We investigated its role in the bioactivation of the environmental carcinogen 3-nitrobenzanthrone (3-NBA)found in diesel exhaust and its metabolites 3-aminobenzanthrone (3-ABA) and N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) in a panel of isogenic human colorectal HCT116 cells differing only with respect to their TP53 status [i.e. TP53(+/+), TP53(+/-), TP53(-/-), TP53(R248W/+) or TP53(R248W/-)]. As a measure of metabolic competence, DNA adduct formation was determined using 32P-postlabelling. Wild-type (WT) p53 did not affect the bioactivation of 3-NBA; no difference in DNA adduct formation was observed in TP53(+/+), TP53(+/-) and TP53(-/-) cells. Bioactivation of both metabolites 3-ABA and N-OH-3-ABA on the other hand was WT-TP53 dependent. Lower 3-ABA- and N-OH-3-ABA-DNA adduct levels were found in TP53(+/-) and TP53(-/-) cells compared to TP53(+/+) cells, and p53's impact was attributed to differences in cytochrome P450 (CYP) 1A1 expression for 3-ABA whereas for N-OH-3-ABA, an impact of this tumour suppressor on sulphotransferase (SULT) 1A1/3 expression was detected. Mutant R248W-p53 protein function was similar to or exceeded the ability of WT-p53 in activating 3-NBA and its metabolites, measured as DNA adducts. However, identification of the xenobiotic-metabolising enzyme(s) (XMEs), through which mutant-p53 regulates these responses, proved difficult to decipher. For example, although both mutant cell lines exhibited higher CYP1A1 induction after 3-NBA treatment compared to TP53(+/+) cells, 3-NBA-derived DNA adduct levels were only higher in TP53(R248W/-) cells but not in TP53(R248W/+) cells. Our results show that p53's influence on carcinogen activation depends on the agent studied and thereby on the XMEs that mediate the bioactivation of that particular compound. The phenomenon of p53 regulating CYP1A1 expression in human cells is consistent with other recent findings; however, this is the first study highlighting the impact of p53 on sulphotransferase-mediated (i.e. SULT1A1) carcinogen metabolism in human cells.

Sanchez-Spitman AB, Dezentjé VO, Swen JJ, et al.
Genetic polymorphisms of 3'-untranslated region of SULT1A1 and their impact on tamoxifen metabolism and efficacy.
Breast Cancer Res Treat. 2018; 172(2):401-411 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Tamoxifen has a wide inter-variability. Recently, two SNPs in the 3'-untranslated region (UTR) of the SULT1A1 gene, rs6839 and rs1042157, have been associated with decreased SULT1A1 activity. The aim of this study is to investigate the role of the rs6839 and rs1042157 on tamoxifen metabolism and relapse-free survival (RFS) in women diagnosed with early-breast cancer receiving tamoxifen.
METHODS: Samples from 667 patients collected in the CYPTAM study (NTR1509) were used for genotyping (CYP2D6, SULT1A1 rs6839 and rs1042157) and measurements of tamoxifen and metabolites. Patients were categorized in three groups depending on the decreased SULT1A1 activity due to rs6839 and rs1042157: low activity group (rs6839 (GG) and rs1042157 (TT)); high activity group (rs6839 (AA) and rs1042157 (CC)); and medium activity group (all the other combinations of rs6839 and rs1042157). Associations between SULT1A1 phenotypes and clinical outcome (RFS) were explored.
RESULTS: In the low SULT1A1 activity group, higher endoxifen and 4-hydroxy-tamoxifen concentrations were found, compared to the medium and high activity group (endoxifen: 31.23 vs. 30.51 vs. 27.00, p value: 0.016; 4-hydroxy-tamoxifen: 5.55 vs. 5.27 vs. 4.94, p value:0.05). In terms of relapse, the low activity group had a borderline better outcome compared to the medium and high SULT1A1 activity group (adjusted Hazard ratio: 0.297; 95% CI 0.088-1.000; p value: 0.05).
CONCLUSION: Our results suggested that rs6839 and rs1042157 SNPs have a minor effect on the concentrations and metabolic ratios of tamoxifen and its metabolites, and RFS in women receiving adjuvant tamoxifen.

Zheng X, Jia B, Tian XT, et al.
Correlation of Reactive Oxygen Species Levels with Resveratrol Sensitivities of Anaplastic Thyroid Cancer Cells.
Oxid Med Cell Longev. 2018; 2018:6235417 [PubMed] Free Access to Full Article Related Publications
Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid malignancy without a reliable therapeutic agent. Resveratrol possesses cancer-suppressive effects, while its effect(s) on ATC cells remains unknown. Because oxidative damage caused by increased reactive oxygen species (ROS) is one of the therapeutic effects of anticancer drugs and oxidative stress-caused mitochondria swelling is observed in resveratrol-treated cancer cells, the oxidative statuses and their relevance with resveratrol sensitivities are elucidated using THJ-16T and THJ-11T ATC cells established from two human anaplastic thyroid carcinoma cases. The results revealed that resveratrol-treated THJ-16T rather than THJ-11T cells showed remarkable growth arrest and extensive apoptosis accompanied with the elevated ROS generation and the attenuated superoxide dismutase 2 (SOD2) and catalase (CAT) levels. Mitochondrial impairment and the enhanced caspase-9/caspase-3 activation are found only in resveratrol-sensitive THJ-16T cells. Treatment with the antioxidant N-acetylcysteine (NAC) partly attenuated resveratrol-induced ROS generation and apoptosis of THJ-16T cells. The levels of resveratrol metabolic enzymes (SULT1A1 and SULT1C2) in THJ-16T cells were lower than those in THJ-11T cells and therefore reversely related with resveratrol sensitivities of ATC cells. Our findings demonstrate the ability of resveratrol to increase ROS generation and oxidative-related cellular lesions in resveratrol-sensitive THJ-16T cells presumably through activating the ROS-mitochondrial signal pathway. The levels of SULTs and ROS may reflect the response manners of ATC cells to resveratrol.

Carta A, Pavanello S, Mastrangelo G, et al.
Impact of Occupational Exposures and Genetic Polymorphisms on Recurrence and Progression of Non-Muscle-Invasive Bladder Cancer.
Int J Environ Res Public Health. 2018; 15(8) [PubMed] Free Access to Full Article Related Publications

Xia B, Wang Y, Wang X, et al.
In utero and lactational exposure of DEHP increases the susceptibility of prostate carcinogenesis in male offspring through PSCA hypomethylation.
Toxicol Lett. 2018; 292:78-84 [PubMed] Related Publications
As an ubiquitous environmental endocrine disruptor, di(2-ethylhexyl) phthalate (DEHP) has been shown to interfere with the development of reproductive organs and induce pathological changes in prostate. Our previous finding showed that in utero and lactational (IUL) DEHP exposure could disrupt the balance of testosterone and estrogen and increase the susceptibility of prostate carcinogenesis. The purpose of this study is to investigate whether the early-life specific epigenetic modifications could mediate the effect of DEHP exposure on prostate carcinogenesis in rodents, for epigenetic modifications play important roles in regulating prostate carcinogenesis. The pregnant rats were treated with corn oil (negative control) or DEHP at 0.01, 0.1 and 1 mg/kg BW/day from GD7 to PND21. On PND21, the expression and DNA methylation change of six prostate carcinogenesis-related genes (ESR2/GSTP1/NKX3.1/PSCA/PTGS2/Rassf1a) were assessed through SYBR-Green real-time PCR combined with pyrosequencing assay in F1 male offspring. On PND196, the relationship b(STP1, PSCA and PTGS2 in a dose-dependent manner, which were positively correlated with PIN scores, Gleason scores, serum PSA concentrations and negatively correlated with prostate/body weight ratio on PND196. Meanwhile, 1 mg/kg BW/day DEHP markedly reduced DNA methylation level of PSCA in all studied CpG sites. Significant inverse correlations between methylation levels of the promoter CpG site and PSCA mRNA expression were observed. These results indicated that transcriptional changes of GSTP1, PSCA and PTGS2 induced by DEHP exposure might be contribute to the increasing susceptibility of prostate carcinogenesis in late life. Moreover, hypomethylation of PSCA could mediate the effect of DEHP on prostate carcinogenesis in rats.

Bellamri M, Xiao S, Murugan P, et al.
Metabolic Activation of the Cooked Meat Carcinogen 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine in Human Prostate.
Toxicol Sci. 2018; 163(2):543-556 [PubMed] Free Access to Full Article Related Publications
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), an heterocyclic aromatic amine (HAA) formed in cooked meat, is a rodent and possible human prostate carcinogen. Recently, we identified DNA adducts of PhIP in the genome of prostate cancer patients, but adducts of 2-amino-3, 8-dimethylmidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-9 H-pyrido[2,3-b]indole (AαC), other prominent HAAs formed in cooked meats, were not detected. We have investigated the bioactivation of HAAs by Phase I and II enzymes in the human prostate (LNCaP) cell line using cytotoxicity and DNA adducts as endpoints. PhIP, MeIQx, and 2-amino-3-methylimidazo[4,5-f]quinoline, another HAA found in cooked meats, were poorly bioactivated and not toxic. The synthetic genotoxic N-hydroxylated-HAAs were also assayed in LNCaP cells with Phase II enzyme inhibitors. Notably, 2-hydroxy-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP), but not other HONH-HAAs, induced cytotoxicity. Moreover, PhIP-DNA adduct formation was 20-fold greater than adducts formed with other HONH-HAAs. Pretreatment of LNCaP cells with mefenamic acid, a specific inhibitor of sulfotransferase (SULT1A1), decreased PhIP-DNA adducts by 25%, whereas (Z)-5-(2'-hydroxybenzylidene)-2-thioxothiazolidin-4-one and pentachlorophenol, inhibitors of SULTs and N-acetyltransferases (NATs), decreased the PhIP-DNA adduct levels by 75%. NATs in cytosolic fractions of LNCaP cells and human prostate catalyzed DNA binding of HONH-PhIP by up to 100-fold greater levels than for SULT and kinase activities. Recombinant NAT2 is catalytically superior to recombinant NAT1 in the bioactivation of HONH-PhIP; however, the extremely low levels of NAT2 activity in prostate suggest that NAT1 may be the major isoform involved in PhIP-DNA damage. Thus, the high susceptibility of LNCaP cells recapitulates the DNA-damaging effect of HONH-PhIP in rodent and human prostate.

Leonetti CP, Butt CM, Stapleton HM
Disruption of thyroid hormone sulfotransferase activity by brominated flame retardant chemicals in the human choriocarcinoma placenta cell line, BeWo.
Chemosphere. 2018; 197:81-88 [PubMed] Free Access to Full Article Related Publications
Brominated flame retardants (BFRs) have been shown to disrupt thyroid hormone (TH) homeostasis through multiple mechanisms, including inhibition of enzymes that regulate intracellular levels of THs, such as sulfotransferases (SULTs). The placenta plays a critical role in helping to maintain TH levels during fetal development and expresses SULTs. This is concerning given that disruption of TH regulation within the placenta could potentially harm the developing fetus. In this study, we investigated the effects of two polybrominated diphenyl ethers (PBDEs), two hydroxylated PBDEs, and 2,4,6-tribromophenol (2,4,6-TBP) on TH SULT activity in a choriocarcinoma placenta cell line (BeWo). BeWo cells were exposed to BFR concentrations up to 1 μM for 1-24 h to investigate changes in basal SULT activity and in mRNA expression of several TH regulating genes. 2,4,6-TBP was the most potent inhibitor of basal 3,3'-T2 SULT activity at all exposure durations, decreasing activity by as much as 86% after 24 h of exposure. BDE-99, 3-OH BDE-47, and 6-OH BDE-47 also decreased 3,3'-T2 SULT activity by 23-42% at concentrations of 0.5 μM and 1.0 μM following 24 h exposures. BDE-47 had no effect on SULT activity, and there was no observed effect of any BFR exposure on expression of SULT1A1, or thyroid nuclear receptors alpha or beta. This research demonstrates that total TH SULT activity in placental cells are sensitive to BFR exposure; however, the mechanisms and consequences have yet to be fully elucidated.

Forat-Yazdi M, Jafari M, Kargar S, et al.
Association between SULT1A1 Arg213His (rs9282861) Polymorphism and Risk of Breast Cancer: A Systematic Review and Meta-Analysis.
J Res Health Sci. 2017; 17(4):e00396 [PubMed] Related Publications
BACKGROUND: The Arg213His (rs9282861) polymorphism of Sulfotransferase Family 1A Member 1 (SULT1A1) gene has been associated with risk of breast cancer in some epidemiological studies. Therefore, this systematic review and meta-analysis was conducted to evaluate the association of SULT1A1 Arg213His (rs9282861) polymorphism with susceptibility to breast cancer.
STUDY DESIGN: A systematic review and meta-analysis.
METHODS: A comprehensive literature search for eligible studies was conducted in PubMed, Elsevier, Science Direct, Scopus and Google Scholar databases up to Oct 5, 2017. Pooled odds ratios (ORs) with their corresponding 95% confidence intervals (95% CIs) were used to evaluate the strength of the association using fixed effects models and random effects models.
RESULTS: Twenty relevant case-control studies involving 11077 cases and 14798 controls were included in this meta-analysis. Overall, there was a significant association between the SULT1A1 Arg213His (rs9282861) polymorphism and risk of breast cancer in the allele mode (A vs. G: OR=1.117, 95% CI: 1.011, 1.233, P=0.029) and the homozygote model (AA vs. GG: OR=1.288, 95% CI: 1.036, 1.601, P=0.022). Subgroup analysis based on ethnicity suggested SULT1A1 Arg213His (rs9282861) polymorphism had a subtly increased breast cancer risk among Asian population, but not Caucasians. Further, subgroup analyses, significant associations were observed in hospital-based group, RFLP-PCR group, and high-quality studies subgroups.
CONCLUSIONS: SULT1A1 Arg213His (rs9282861) polymorphism might be associated with breast cancer risk, especially among Asian population. Moreover, the SULT1A1 Arg213His polymorphism is of high clinical relevance by ethnicity and would be a useful marker to identify patients who are at higher risk for breast cancer.

Tasnim T, Al-Mamun MMA, Nahid NA, et al.
Genetic variants of SULT1A1 and XRCC1 genes and risk of lung cancer in Bangladeshi population.
Tumour Biol. 2017; 39(11):1010428317729270 [PubMed] Related Publications
Lung cancer is one of the most frequently occurring cancers throughout the world as well as in Bangladesh. This study aimed to correlate the prognostic and/or predictive value of functional polymorphisms in SULT1A1 (rs9282861) and XRCC1 (rs25487) genes and lung cancer risk in Bangladeshi population. A case-control study was conducted which comprises 202 lung cancer patients and 242 healthy volunteers taking into account the age, sex, and smoking status. After isolation of genomic DNA, genotyping was done by polymerase chain reaction-restriction fragment length polymorphism method and the lung cancer risk was evaluated as odds ratio that was adjusted for age, sex, and smoking status. A significant association was found between SULT1A1 rs9282861 and XRCC1 rs25487 polymorphisms and lung cancer risk. In case of rs9282861 polymorphism, Arg/His (adjusted odds ratio = 5.06, 95% confidence interval = 3.05-8.41, p < 0.05) and His/His (adjusted odds ratio = 3.88, 95% confidence interval = 2.20-6.82, p < 0.05) genotypes were strongly associated with increased risk of lung cancer in comparison to the Arg/Arg genotype. In case of rs25487 polymorphism, Arg/Gln heterozygote (adjusted odds ratio = 4.57, 95% confidence interval = 2.79-7.46, p < 0.05) and Gln/Gln mutant homozygote (adjusted odds ratio = 4.99, 95% confidence interval = 2.66-9.36, p < 0.05) were also found to be significantly associated with increased risk of lung cancer. This study demonstrates that the presence of His allele and Gln allele in case of SULT1A1 rs9282861 and XRCC1 rs25487, respectively, involve in lung cancer prognosis in Bangladeshi population.

Xie C, Yan TM, Chen JM, et al.
LC-MS/MS quantification of sulfotransferases is better than conventional immunogenic methods in determining human liver SULT activities: implication in precision medicine.
Sci Rep. 2017; 7(1):3858 [PubMed] Free Access to Full Article Related Publications
This study aims to determine whether enzyme activities are correlated with protein amounts and mRNA expression levels of five major human sulfotransferase (SULT) enzymes in 10 matched pericarcinomatous and hepatocellular carcinoma liver samples. The MRM UHPLC-MS/MS method, Western blot and RT-PCR were used along with SULT activity measurement using probe substrates. The LC-MS/MS method was specific for all five tested SULTs, whereas Western blot was specific for only two isoforms. The activities of SULT1A1, SULT1B1, SULT1E1 and SULT2A1 in 9 of 10 samples showed a significant decrease in tumor tissues relative to matched pericarcinomatous tissues, whereas the activities of SULT1A3 in 7 of 10 samples increased. The turnover numbers of SULTs did not change, except for SULT1A1. A generally high degree of correlations was observed between SULT activities and protein amounts (r

Wang XC, Wang J, Tao HH, et al.
Combined effects of NQO1 Pro187Ser or SULT1A1 Arg213His polymorphism and smoking on bladder cancer risk: Two meta-analyses.
Int J Occup Med Environ Health. 2017; 30(5):791-802 [PubMed] Related Publications
OBJECTIVES: Objectives: Cigarette smoking is the major risk factor of bladder cancer via exposure to chemical carcinogens. Nicotinamide adenine dinucleotide phosphate (NADP+): quinine oxidoreductase 1 (NQO1) and sulfotransferase 1A1 (SULT1A1) have been reported to involve in the metabolism of polycyclic aromatic hydrocarbons (PAHs) and aromatic amines. Therefore, the risk of bladder cancer (BC) may be influenced by polymorphisms in the genes that modulate metabolic detoxification in particular by interacting with cigarette smoking. Considering the limited power by the individual studies with a relatively small sample size, especially when analyzing the combined effect of polymorphisms in NQO1 and SULT1A1 genes and smoking, these 2 meta-analyses have aimed to clarify the combined effects of them on BC risk by integrating related studies.
MATERIAL AND METHODS: Two meta-analyses included 1341 cases and 1346 controls concerning NQO1 Pro187Ser and smoking, and 1921 cases and 1882 controls on SULT1A1 Arg213His and smoking were performed. Odds ratios (OR) and 95% confidence intervals (CI) were used for assessing the strength of the association.
RESULTS: The result has demonstrated that smokers with NQO1 Pro/Ser or Ser/Ser genotypes have a prominent association with the risk of BC as compared with non-smokers with NQO1 Pro/Pro genotype, with OR equal to 3.71 (95% CI: 2.87-4.78, pheterogeneity = 0.376). Besides, smokers carrying SULT1A1 Arg/Arg genotypes were observed to confer 2.38 fold increased risk of BC (95% CI: 1.44-3.93, pheterogeneity = 0.001) when compared with non-smokers with SULT1A1 Arg/Arg or His/His genotypes.
CONCLUSIONS: These findings have suggested that the NQO1 Pro187Ser or SULT1A1 Arg213His polymorphism combination with smoking significantly confer susceptibility to BC. Int J Occup Med Environ Health 2017;30(5):791-802.

Yu J, Zhu L, Zheng H, et al.
Sulfotransferases and Breast Cancer Resistance Protein Determine the Disposition of Calycosin in Vitro and in Vivo.
Mol Pharm. 2017; 14(9):2917-2929 [PubMed] Related Publications
Sulfation is a key process of drug disposition that generally regulates drug effectiveness and toxicity. Calycosin derived from the dry root extract of Radix Astragali exhibits a variety of biological effects that easily undergo extensive phase II metabolism. However, the sulfation pathway of calycosin lacks information. We investigated the disposition mechanisms of calycosin sulfate in vitro and in vivo. We characterized the sulfation metabolism and excretion of calycosin using bidirectional transport studies. We confirmed that sulfate conjugate is breast cancer resistance protein (BCRP) substrate using the intestinal perfusion model and pharmacokinetics studies in Bcrp1

Stojanovic J, Milovanovic S, Pastorino R, et al.
Occupational exposures and genetic susceptibility to urinary tract cancers: a systematic review and meta-analysis.
Eur J Cancer Prev. 2018; 27(5):468-476 [PubMed] Related Publications
This study aims to summarize the current knowledge on the relationship between genetic polymorphisms, occupational exposures, and urinary tract cancers. We searched MEDLINE, ISI Web of science, and SCOPUS online databases for all articles published in English language up to September 2016. A meta-analysis was performed to provide summary estimates for the association between a certain genetic polymorphism, occupational exposure and bladder cancer (BC) or kidney cancer (KC), when appropriate. Fifteen studies on BC and six on KC were deemed eligible for the review. With regard to BC, an overall odds ratio (OR) of 2.07 [95% confidence interval (CI): 1.38-3.09] for those with GSTM1 and an OR of 2.07 (95% CI: 1.38-3.09) for those with GSTT1 null genotype were reported when exposed to polycyclic aromatic hydrocarbons (PAHs). NAT2 slow genotype carriers had an OR of 3.59 (95% CI: 2.62-4.93) for BC when exposed to aromatic amines and an OR of 2.07 (95% CI: 1.36-3.15) when exposed to PAHs. With regard to KC and pesticide exposure, the meta-analysis reported an OR of 4.38 (95% CI: 2.28-8.41) for GSTM1 present genotype, an OR of 2.59 (95% CI: 1.62-4.15) for GSTT1-present genotype and an OR of 6.51 (95% CI: 2.85-14.89) for combined effects of GSTM1 and GSTT1 active genotypes. This meta-analysis indicates a possible association between the variant genotypes of GSTM1, GSTT1, NAT2 and SULT1A1, occupational exposure to aromatic amines or PAHs, and development of BC. Our results suggest that polymorphisms in GSTM1 and GSTT1 genes could influence the risk for developing KC in individuals occupationally exposed to pesticides.

Yang Y, Li C, Li H, et al.
Differential sensitivities of bladder cancer cell lines to resveratol are unrelated to its metabolic profile.
Oncotarget. 2017; 8(25):40289-40304 [PubMed] Free Access to Full Article Related Publications
Resveratrol (RV) is a natural polyphenol compound with a wide range of activities, including inhibition of human bladder cancer (HBC) cell growth. Because RV is rapidly metabolized and has poor bioavailability, it is unclear whether the antitumor activity is due to RV or its metabolites. We therefore used liquid chromatography-mass spectroscopy, qRT-PCR, immunocytochemistry and western blotting to evaluate the metabolic profile and biotransformation of RV in the T24 and EJ HBC cell lines. Both T24 and EJ cells generated the same RV metabolite, RV monosulfate (RVS), and both exhibited upregulation of the RV-associated metabolic enzyme SULT1A1 (sulfotransferase). Despite these similarities, T24 cells were more sensitive to RV than EJ cells, yet T24 cells exhibited no sensitivity to an RVS mixture (84.13% RVS). Primary rat bladder epithelial cells showed no adverse effects when exposed to a therapeutic dose (100 μM) of RV. The differences in RV sensitivity between the two HBC cell lines did not reflect differences in the RV metabolic profile or SULT1A1 expression. Because RV exhibited stronger antitumor activity and better safety than RVS, we conclude that RV has significant therapeutic potential for HBC treatment, provided individual differences are considered during clinical research and application.

Bairam AF, Rasool MI, Kurogi K, Liu MC
On the Molecular Basis Underlying the Metabolism of Tapentadol Through Sulfation.
Eur J Drug Metab Pharmacokinet. 2017; 42(5):793-800 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: Previous studies reported that tapentadol-sulfate represented one of the major metabolites of tapentadol excreted in urine. The current study aimed to identify the human cytosolic sulfotransferases (SULTs) that is(are) capable of sulfating tapentadol and to examine whether human cells and human organ specimens are capable of sulfating tapentadol.
METHODS: Thirteen human SULTs, previously expressed and purified, as well as human organ cytosols, were analyzed for tapentadol-sulfating activity using an established sulfotransferase assay. Cultured HepG2 human hepatoma cells and Caco-2 human colon carcinoma cells were labeled with [
RESULTS: Three of the thirteen human SULTs, SULT1A1, SULT1A3, and SULT1C4, were found to display sulfating activity toward tapentadol. Kinetic analysis revealed that SULT1A3 displayed the highest catalytic efficiency in mediating the sulfation of tapentadol, followed by SULT1A1 and SULT1C4. Using cultured HepG2 and Caco-2 cells, the generation and release of sulfated tapentadol under metabolic conditions was demonstrated. Moreover, of the four human organ specimens (kidney, liver, lung, and small intestine) tested, the cytosols prepared from small intestine and liver showed significant tapentadol-sulfating capacity (at 0.0203 and 0.0054 nmol/min/mg, respectively).
CONCLUSION: Taken together, the results derived from the current study provided a molecular basis underlying the sulfation of tapentadol in humans.

Fernández-Santander A, Novillo A, Gaibar M, et al.
Cytochrome and sulfotransferase gene variation in north African populations.
Pharmacogenomics. 2016; 17(13):1415-23 [PubMed] Related Publications
AIM: To describe the diversity of four cytochrome and four sulfotransferase polymorphisms in six north African samples. Scarce data have been compiled for these samples despite the rich genetic background of north African populations.
MATERIALS & METHODS: CYP3A4*1B, CYP3A4*17, CYP3A4*3, CYP3A5*3, SULT1A1*2, SULT1A2*2, SULT1A2*3 and SULT1E1*2 polymorphisms were explored in 556 individuals from Morocco, Algeria, Tunisia and Libya.
RESULTS: Allele frequencies in our samples largely exceeded the variation ranges described for European populations, especially for CYP3A4*1B, SULT1A1*2 and SULT1A2*3.
CONCLUSION: North African populations are heterogeneous, genetically diverse and show a considerable sub-Saharan African contribution for markers associated with increased risk of prostate cancer and with differential drug metabolism.

Charoenchokthavee W, Ayudhya DP, Sriuranpong V, Areepium N
Effects of SULT1A1 Copy Number Variation on Estrogen Concentration and Tamoxifen-Associated Adverse Drug Reactions in Premenopausal Thai Breast Cancer Patients: A Preliminary Study.
Asian Pac J Cancer Prev. 2016; 17(4):1851-5 [PubMed] Related Publications
Tamoxifen is a pharmacological estrogen inhibitor that binds to the estrogen receptor (ER) in breast cells. However, it shows an estrogenic effect in other organs, which causes adverse drug reactions (ADRs). The sulfotransferase 1A1 (SULT1A1) enzyme encoded by the SULT1A1 gene is involved in estrogen metabolism. Previous research has suggested that the SULT1A1 copy number is linked with the plasma estradiol (E2) concentration. Here, a total of 34 premenopausal breast cancer patients, selected from the Thai Tamoxifen (TTAM) Project, were screened for their SULT1A1 copy number, plasma E2 concentration and ADRs. The mean age was 44.3±11.1 years, and they were subtyped as ER+/ progesterone receptor (PR) + (28 patients), ER+/ PR- (5 patients) and ER-/PR- (1 patient). Three patients reported ADRs, which were irregular menstruation (2 patients) and vaginal discharge (1 patient). Most (33) patients had two SULT1A1 copies, with one patient having three copies. The median plasma E2 concentration was 1,575.6 (IQR 865.4) pg/ml. Patients with ADRs had significantly higher plasma E2 concentrations than those patients without ADRs (p = 0.014). The plasma E2 concentration was numerically higher in the patient with three SULT1A1 copies, but this lacked statistical significance.

Sak K, Everaus H
Sulfotransferase 1A1 as a Biomarker for Susceptibility to Carcinogenesis: From Molecular Genetics to the Role of Dietary Flavonoids.
Curr Drug Metab. 2016; 17(6):528-41 [PubMed] Related Publications
BACKGROUND: Sulfotransferase (SULT) 1A1 is a phase II metabolic enzyme that catalyzes sulfate conjugation of various phenolic compounds, including endogenous substances, such as estrogens and thyroid hormones, but also different xenobiotics. Although sulfation is classically considered as a detoxification event facilitating the excretion of more water soluble metabolites from the body, in some cases such bioconversion may also lead to bioactivation of promutagens, producing highly reactive intermediates which are capable of damaging DNA and promoting carcinogenesis. The most common polymorphism in SULT1A1 (Arg213His) has an important functional impact by affecting the capacity to sulfate diverse substrates and numerous case-control studies have shown associations between SULT1A1 variants and susceptibility to different malignancies. Several factors may significantly influence such relationships, including ethnicity, gender, parity, menopausal status, use of estrogen replacement therapy, exposure to tobacco smoke or occupational chemicals.
RESULTS AND CONCLUSION: In this review article, we show that one more important determinant should be considered as a stratifying factor in studies of possible associations between SULT1A1 variants and cancer risk, i.e., the dietary intake of different flavonoids. As sulfation of bioactive plant polyphenols can change their potential anticancer activities and, on the other hand, these phytochemicals are capable to behave also as potent SULT1A1 inhibitors, the regular dietary exposure of humans to these compounds can make a great contribution to the impact of sulfation capacity on individual susceptibility to carcinogenesis. The effect of specific flavonoids as well as their interactions with other factors on associations between SULT1A1 alleles and cancer risk certainly needs further thorough studies.

Antonova O, Toncheva D, Grigorov E
Bladder cancer risk from the perspective of genetic polymorphisms in the carcinogen metabolizing enzymes.
J BUON. 2015 Nov-Dec; 20(6):1397-406 [PubMed] Related Publications
Urinary bladder cancer is a socially significant healthcare problem. A diverse array of aromatic and heterocyclic amines, derived from the chemical and transport industry, diet, and cigarette smoke are considered carcinogens for the bladder. To exert their carcinogenic effect and to initiate the carcinogenic response, the arylamines require a metabolic activation by the host enzymes to chemically reactive compounds. The aim of this article was to review the latest and basic research developments on the role of the polymorphisms in the carcinogen metabolizing enzymes N-acetyltransferase (NAT), Glutathione S-transferases (GST), and Soluble sulfotransferases (SULT), with emphasis on the susceptibility to urinary bladder cancer. A PubMed search was conducted to identify original and review articles containing information about these polymophic variants in different populations and according to their prevalence in bladder cancer patients. We noticed that some genotypes were found to be predisposing and some protective for bladder cancer development. The NAT2 slow genotype, together with GSTM1 null genotype facilitated the development of bladder cancer in almost all ethnic groups. The 213His allele of the SULT1A1 gene which is associated with lower enzyme activity and decreased mutagen activation was reported to protect from bladder cancer in almost all studies.

Høie AH, Svendsen C, Rasmussen T, et al.
Intestinal Tumor Development in C57BL/6J-ApcMin/+ Mice Expressing Human Sulphotransferases 1A1 and 1A2 After Oral Exposure to 2,5-Dimethylfuran.
Anticancer Res. 2016; 36(2):545-53 [PubMed] Related Publications
BACKGROUND: 2,5-dimethylfuran (DMF) is formed during heating of foods. Following side chain hydroxylation, DMF could be a substrate for human sulphotransferases (SULTs), which may lead to formation of a DNA reactive electrophile. Only few conflicting in vitro and no in vivo studies on DMF currently exist.
MATERIALS AND METHODS: The tumorigenic potential of DMF was studied in multiple intestinal neoplasia Apc(Min/+) (Min) mice that are sensitive to intestinal carcinogenesis and express hSULTs 1A1 and 1A2 (Min/hSULT). Min and Min/hSULT mice were orally exposed to DMF for six weeks.
RESULTS: The intestinal tumor development of untreated female Min/hSULT mice was significantly lower compared to that of untreated Min females. No such effects of hSULTs were seen in males. DMF had a weak tumorigenic potential in the colon of female Min/hSULT mice, but not in males. Tumor development in Min mice was not affected.
CONCLUSION: Overall, the tumorigenic potential of DMF in a metabolically competent mouse model was not convincing.

Usarek E, Graboń W, Kaźmierczak B, Barańczyk-Kuźma A
Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.
Exp Mol Pathol. 2016; 100(1):82-6 [PubMed] Related Publications
Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen.

Kalmár A, Péterfia B, Hollósi P, et al.
DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer.
BMC Cancer. 2015; 15:736 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) development is accompanied by changes in expression for several genes; but the details of the underlying regulatory procesess remain unknown. Our aims were to assess the role of epigenetic processes in tumour formation and to identify characteristic DNA methylation and miRNA alterations in the colorectal adenoma-carcinoma sequence.
METHODS: Whole genome expression profiling was performed on colonic biopsy samples (49 healthy normal, 49 colorectal adenoma (AD), 49 CRC); on laser capture microdissected (LCM) epithelial and stromal cells from 6 CRC-normal adjacent tissue (NAT) samples pairs, and on demethylated human CRC cell lines using HGU133 Plus 2.0 microarrays (Affymetrix). Methylation status of genes with gradually altering expression along the AD-CRC sequence was further analysed on 10-10 macrodissected and 5-5 LCM samples from healthy colon, from adenoma and from CRC biopsy samples using bisulfite-sequencing PCR (BS-PCR) followed by pyrosequencing. In silico miRNA prediction for the selected genes was performed with miRWALK algorithm, miRNA expression was analysed on 3 CRC-NAT sample pairs and 3 adenoma tissue samples using the Human Panel I + II (Exiqon). SFRP1 immunohistochemistry experiments were performed.
RESULTS: A set of transcripts (18 genes including MAL, SFRP1, SULT1A1, PRIMA1, PTGDR) showed decreasing expression (p < 0.01) in the biopsy samples along the adenoma-carcinoma sequence. Three of those (COL1A2, SFRP2, SOCS3) showed hypermethylation and THBS2 showed hypomethylation both in AD and in CRC samples compared to NAT, while BCL2, PRIMA1 and PTGDR showed hypermethylation only in the CRC group. miR-21 was found to be significantly (p < 0.01) upregulated in adenoma and tumour samples compared to the healthy colonic tissue controls and could explain the altered expression of genes for which DNA methylation changes do not appear to play role (e.g. BCL2, MAL, PTGS2). Demethylation treatment could upregulate gene expression of genes that were found to be hypermethylated in human CRC tissue samples. Decreasing protein levels of SFRP1 was also observed along the adenoma-carcinoma sequence.
CONCLUSION: Hypermethylation of the selected markers (MAL, PRIMA1, PTGDR and SFRP1) can result in reduced gene expression and may contribute to the formation of colorectal cancer.

Shah IA, Bhat GA, Mehta P, et al.
Genotypes of CYP1A1, SULT1A1 and SULT1A2 and risk of squamous cell carcinoma of esophagus: outcome of a case-control study from Kashmir, India.
Dis Esophagus. 2016; 29(8):937-943 [PubMed] Related Publications
Studies on associations of various polymorphism in xenobiotic metabolizing genes with different cancers including esophageal squamous cell carcinoma (ESCC) are mixed and inconclusive. To evaluate the association of CYP1A1*4, SULT1A1*2 and SULT1A2*2 genotypes with ESCC risk and their modifying effects on different risk factors of ESCC, we conducted a case-control study in Kashmir, India, an area with relative high incidence of ESCC. We recruited 404 histopathologically confirmed ESCC cases, and equal number of controls, individually matched for sex, age and district of residence to respective case. Information was obtained on various dietary, lifestyle and environmental factors in face-to-face interviews, using a structured questionnaire, from each subject. Genotypes were analyzed by polymerase chain reaction, restriction fragment length polymorphism and direct sequencing. Conditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). A higher risk was observed in the subjects who harbored variant genotype of CYP1A1*4 (OR = 2.06; 95% CI: 1.28-3.32); and the risk was further enhanced in ever smokers (OR = 3.47; 95% CI: 1.62-7.42), adobe dwellers (OR = 6.71; 95% CI: 3.02-14.89), and biomass fuel users (OR = 5.11; 95% CI: 1.34-19.50). We did not find any significant differences in the polymorphic variants of SULT1A1*2 and SULT1A2*2 between cases and controls. The study indicates that, unlike SULT1A1*2 and SULT1A2*2, the polymorphism of CYP1A1*4 is associated with ESCC risk. However, replicative studies with larger sample size are needed to substantiate our findings.

Rudolph A, Fasching PA, Behrens S, et al.
A comprehensive evaluation of interaction between genetic variants and use of menopausal hormone therapy on mammographic density.
Breast Cancer Res. 2015; 17:110 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Mammographic density is an established breast cancer risk factor with a strong genetic component and can be increased in women using menopausal hormone therapy (MHT). Here, we aimed to identify genetic variants that may modify the association between MHT use and mammographic density.
METHODS: The study comprised 6,298 postmenopausal women from the Mayo Mammography Health Study and nine studies included in the Breast Cancer Association Consortium. We selected for evaluation 1327 single nucleotide polymorphisms (SNPs) showing the lowest P-values for interaction (P int) in a meta-analysis of genome-wide gene-environment interaction studies with MHT use on risk of breast cancer, 2541 SNPs in candidate genes (AKR1C4, CYP1A1-CYP1A2, CYP1B1, ESR2, PPARG, PRL, SULT1A1-SULT1A2 and TNF) and ten SNPs (AREG-rs10034692, PRDM6-rs186749, ESR1-rs12665607, ZNF365-rs10995190, 8p11.23-rs7816345, LSP1-rs3817198, IGF1-rs703556, 12q24-rs1265507, TMEM184B-rs7289126, and SGSM3-rs17001868) associated with mammographic density in genome-wide studies. We used multiple linear regression models adjusted for potential confounders to evaluate interactions between SNPs and current use of MHT on mammographic density.
RESULTS: No significant interactions were identified after adjustment for multiple testing. The strongest SNP-MHT interaction (unadjusted P int <0.0004) was observed with rs9358531 6.5kb 5' of PRL. Furthermore, three SNPs in PLCG2 that had previously been shown to modify the association of MHT use with breast cancer risk were found to modify also the association of MHT use with mammographic density (unadjusted P int <0.002), but solely among cases (unadjusted P int SNP×MHT×case-status <0.02).
CONCLUSIONS: The study identified potential interactions on mammographic density between current use of MHT and SNPs near PRL and in PLCG2, which require confirmation. Given the moderate size of the interactions observed, larger studies are needed to identify genetic modifiers of the association of MHT use with mammographic density.

Lopes BA, Emerenciano M, Gonçalves BA, et al.
Polymorphisms in CYP1B1, CYP3A5, GSTT1, and SULT1A1 Are Associated with Early Age Acute Leukemia.
PLoS One. 2015; 10(5):e0127308 [PubMed] Free Access to Full Article Related Publications
Based on observational studies, early age leukemia (EAL) was associated with maternal hormone exposure during pregnancy. We studied the association between genetic polymorphisms of estrogen metabolism and EAL. Using data from the Brazilian Collaborative Study Group of Infant Acute Leukemia (2000-2012), 350 cases and 404 age-matched controls and 134 mothers of cases and controls were genotyped to explore polymorphisms in genes of the estrogen metabolism pathway: CYP1B1 (c.1294C>G, rs1056836), CYP3A4 (c.-392A>G, rs2740574), CYP3A5 (c.219-237G>A, rs776746), GSTM1/GSTT1 deletions, and SULT1A1 (c.638G>A, rs9282861; and c.667A>G, rs1801030). Logistic regression was used to calculate the odds ratios (OR) with 95% confidence intervals (CIs), and unconditional logistic regression was used to estimate adjusted odds ratios (aORs) by ethnicity. Because of multiple testing, p values < 0.01 were significant after Bonferroni correction. SULT1A1 (c.638G>A) was associated to infant acute lymphoblastic leukemia and acute myeloid leukemia (AML) risk in males (additive model: aOR = 0.52; 95% CI: 0.29-0.95, p = 0.03; dominant model: aOR = 2.18; 95% CI: 1.17-4.05, p = 0.01, respectively). CYP1B1 polymorphism was associated with a decreased risk of AML either for non-white or female children (additive model: OR = 0.24; 95% CI: 0.08-0.76, p < 0.01; additive model: aOR = 0.27; 95% CI: 0.08-0.89, p = 0.03, respectively). Since polymorphisms of Cytochrome P450 genes presented gender-specific risk associations, we also investigated their expression. CYP1B1 was not expressed in 57.1% of EAL cases, and its expression varied by genotype, gender, and leukemia subtype. Maternal-fetal GSTT1 null genotype was associated with risk of EAL. This study shows that polymorphisms in genes of estrogen metabolism confer genetic susceptibility to EAL, mainly in males, and maternal susceptibility genes modify the risk for developing EAL in newborns.

Siamakpour-Reihani S, Owzar K, Jiang C, et al.
Genomic profiling in locally advanced and inflammatory breast cancer and its link to DCE-MRI and overall survival.
Int J Hyperthermia. 2015; 31(4):386-95 [PubMed] Free Access to Full Article Related Publications
PURPOSE: We have previously reported that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion patterns obtained from locally advanced breast cancer (LABC) patients prior to neoadjuvant therapy predicted pathologic clinical response. Genomic analyses were also independently conducted on the same patient population. This retrospective study was performed to test two hypotheses: (1) gene expression profiles are associated with DCE-MRI perfusion patterns, and (2) association between long-term overall survival data and gene expression profiles can lead to the identification of novel predictive biomarkers.
METHODS: We utilised RNA microarray and DCE-MRI data from 47 LABC patients, including 13 inflammatory breast cancer (IBC) patients. Association between gene expression profile and DCE-MRI perfusion patterns (centrifugal and centripetal) was determined by Wilcoxon rank sum test. Association between gene expression level and survival was assessed using a Cox rank score test. Additional genomic analysis of the IBC subset was conducted, with a period of follow-up of up to 11 years. Associations between gene expression and overall survival were further assessed in The Cancer Genome Atlas Data Portal.
RESULTS: Differences in gene expression profiles were seen between centrifugal and centripetal perfusion patterns in the sulphotransferase family, cytosolic, 1 A, phenol-preferring, members 1 and 2 (SULT1A1, SULT1A2), poly (ADP-ribose) polymerase, member 6 (PARP6), and metastasis tumour antigen1 (MTA1). In the IBC subset our analyses demonstrated that differential expression of 45 genes was associated with long-term survival.
CONCLUSIONS: Here we have demonstrated an association between DCE-MRI perfusion patterns and gene expression profiles. In addition we have reported on candidate prognostic biomarkers in IBC patients, with some of the genes being significantly associated with survival in IBC and LABC.

Boccia S, Miele L, Panic N, et al.
The effect of CYP, GST, and SULT polymorphisms and their interaction with smoking on the risk of hepatocellular carcinoma.
Biomed Res Int. 2015; 2015:179867 [PubMed] Free Access to Full Article Related Publications
Aim. The aim of our study was to assess whether selected single nucleotide polymorphisms of CYP1A1 and 2E1, GSTM1, GSTT1, and SULT1A1 influence susceptibility towards HCC, considering their interaction with cigarette smoking. Methods. We recruited HCC cases and controls among patients admitted to the hospital "Agostino Gemelli," from January 2005 until July 2010. Odds ratios (OR) of HCC were derived from unconditional multiple logistic regression. Gene-gene and gene-smoking interaction were quantified by computing the attributable proportion (AP) due to biological interaction. Results. The presence of any CYP2E1 (*) 5B variant allele (OR: 0.23; 95% CI: 0.06-0.71) and CYP2E1 (*) 6 variant allele (OR: 0.08; 95% CI: 0.01-0.33) was inversely related to HCC. There was a borderline increased risk among carriers of combined CYP1A1 (*) 2A and SULT1A1 variant alleles (OR: 1.67; 95% CI: 0.97-3.24). A significant biological interaction was observed between GSTT1 and smoking (AP = 0.48; 95% CI: 0.001-0.815), with an OR of 3.13 (95% CI: 1.69-5.82), and borderline significant interaction was observed for SULT1A1 and smoking (AP = 0.36; 95% CI: -0.021-0.747), with an OR of 3.05 (95% CI: 1.73-5.40). Conclusion. CYP2E1 (*) 5B and CYP2E1 (*) 6 polymorphisms have a favourable effect on the development of HCC, while polymorphisms of GSTT1 and SULT1A1 might play role in increasing the susceptibility among smokers.

Savukaitytė A, Ugenskienė R, Jankauskaitė R, et al.
Investigation of prognostic value of polymorphisms within estrogen metabolizing genes in Lithuanian breast cancer patients.
BMC Med Genet. 2015; 16:2 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Breast cancer is the most frequent oncological disease among women. Estrogens are known to play an important role in breast cancer development. Recognition of the relationship between polymorphisms within estrogen metabolizing genes and conventional prognostic factors of breast cancer might improve our knowledge on individualized breast cancer prognosis. Therefore, we aimed to investigate possible associations between germline genetic polymorphisms within GSTM1, GSTT1, GSTP1, SULT1A1 and UGT1A1 genes and breast cancer clinicopathological characteristics together with disease progression.
METHODS: Our study involved 80 young (younger than 50 years of age) breast cancer patients. PCR-based Restriction Fragment Length Polymorphism (RFLP) assay was used to determine GSTP1 and SULT1A1 genotypes. GSTM1 and GSTT1 null genotypes were detected by multiplex PCR. UGT1A1 polymorphism was investigated with microsatellite analysis. Relationships between genotypes and breast cancer clinicopathological features along with disease progression were estimated by Pearson's Chi-square test. Logistic regression analyses were performed to estimate the odds ratios associating different genotypes with clinicopathological characteristics and disease progression.
RESULTS: The study showed individuals with GSTT1 null genotype to have approximately 3.5 times higher risk for breast cancer progression than those with wild type genotype (OR = 3.472, 95% CI 1.043-11.559, P = 0.043). Moreover, SULT1A1 G638A AA genotype significantly increased the chances of HER2 molecular subtype breast cancer when compared to GG genotype (OR = 19.971, 95% CI 1.716-232.480, P = 0.017). Heterozygotes for GSTP1 A313G genotype were more likely to have positive lymph nodes in comparison to AA genotype carriers (OR = 2.803, 95% CI 1.049-7.487, P = 0.040). No significant correlation was determined for UGT1A1 A(TA)nTAA and GSTM1 +/- polymorphism alone or combined GTTT1 null and GSTM1 null genotype.
CONCLUSIONS: Conclusively, our findings suggest that GSTT1 null genotype and SULT1A1 G638A AA genotype could be uselful genetic markers for breast cancer prognosis. Further analyses on larger sample size are required to highlight the effect of GSTP1 G allele on breast cancer prognosis.

Hevir-Kene N, Rižner TL
The endometrial cancer cell lines Ishikawa and HEC-1A, and the control cell line HIEEC, differ in expression of estrogen biosynthetic and metabolic genes, and in androstenedione and estrone-sulfate metabolism.
Chem Biol Interact. 2015; 234:309-19 [PubMed] Related Publications
Estrogens have important roles in the pathogenesis of endometrial cancer. They can have carcinogenic effects through stimulation of cell proliferation or formation of DNA-damaging species. To characterize model cell lines of endometrial cancer, we determined the expression profiles of the estrogen receptors (ERs) ESR1, ESR2 and GPER, and 23 estrogen biosynthetic and metabolic genes, and investigated estrogen biosynthesis in the control HIEEC cell line and the Ishikawa and HEC-1A EC cell lines. HIEEC and Ishikawa expressed all ERs to different extents, while HEC-1A cells lacked expression of ESR1. Considering the estrogen biosynthetic and metabolic enzymes, these cells showed statistically significant different gene expression profiles for SULT2B1, HSD3B2, CYP19A1, AKR1C3, HSD17B1, HSD17B7, HSD17B12, CYP1B1, CYP3A5, COMT, SULT1A1, GSTP1 and NQO2. In these cells, E2 was formed from E1S and E1, while androstenedione was not converted to estrogens. HIEEC and Ishikawa had similar profiles of androstenedione and E1 metabolism, but hydrolysis of E1S to E1 was weaker in Ishikawa cells. HEC-1A cells were less efficient for activation of E1 into the potent E2, but metabolized androstenedione to other androgenic metabolites better than HIEEC and Ishikawa cells. This study reveals that HIEEC, Ishikawa, and HEC-1A cells can all form estrogens only via the sulfatase pathway. HIEEC, Ishikawa, and HEC-1A cells expressed all the major genes in the production of hydroxyestrogens and estrogen quinones, and in their conjugation. Significantly higher CYP1B1 mRNA levels in Ishikawa cells compared to HEC-1A cells, together with lack of UGT2B7 expression, indicate that Ishikawa cells can accumulate more toxic estrogen-3,4-quinones than HEC-1A cells, as also for HIEEC cells. This study provides further characterization of HIEEC, Ishikawa, and HEC-1A cells, and shows that they differ greatly in expression of the genes investigated and in their capacity for E2 formation, and thus they represent different in vitro models.

Rangel LB, Taraba JL, Frei CR, et al.
Pharmacogenomic diversity of tamoxifen metabolites and estrogen receptor genes in Hispanics and non-Hispanic whites with breast cancer.
Breast Cancer Res Treat. 2014; 148(3):571-80 [PubMed] Free Access to Full Article Related Publications
Ethnic differences in patient genetics and breast cancer (BC) biology contribute to ethnic disparities in cancer presentation and patient outcome. We prospectively evaluated SNPs within phase I and phase II tamoxifen (TAM) metabolizing enzymes, and the estrogen receptor gene (ESR1), aiming to identify potential pharmacogenomic ethnicity patterns in an ER-positive BC cohort constituted of Hispanic and Non-Hispanic White (NHW) women in South Texas. Plasma concentrations of TAM/metabolites were measured using HPLC. CYP2C9, CYP2D6 and SULT1A1 genotypes were determined by DNA sequencing/Pyrosequencing technology. ESR1 PvuII and XbaI SNPs were genotyped using Applied Biosystems Taqman Allelic Discrimination Assay. Hispanics had higher levels of TAM, 4-hydroxytamoxifen, and endoxifen than NHWs. There was a higher prevalence of CYP2D6 EM within Hispanics than NHWs, which corresponded to higher endoxifen levels, but no differences were verified with regard to CYP2C9 and SULT1A1. We found a higher incidence of the wild type forms of the ESR1 in Hispanics than NHWs. The performance status, the disease stage at diagnosis, and the use of aromatase inhibitors might have overcome the overall favorable pharmacogenomics profile of Hispanics when compared to NHWs in relation to TAM therapy responsiveness. Our data strongly point to ethnical peculiarities related to pharmacogenomics and demographic features of TAM treated Hispanics and NHWs. In the era of pharmacogenomics and its ultimate goal of individualized, efficacious and safe therapy, cancer studies focused on the Hispanic population are warranted because this is the fastest growing major demographic group, and an understudied segment in the U.S.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SULT1A1, Cancer Genetics Web: http://www.cancer-genetics.org/SULT1A1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999