KIF14

Gene Summary

Gene:KIF14; kinesin family member 14
Aliases: MKS12, MCPH20
Location:1q32.1
Summary:This gene encodes a member of the kinesin-3 superfamily of microtubule motor proteins. These proteins are involved in numerous processes including vesicle transport, chromosome segregation, mitotic spindle formation, and cytokinesis. In human HeLa-S3 and 293T cells, this protein is localized to the cytoplasm during interphase, to the spindle poles and spindle microtubules during mitosis, and to the midbody during cytokinesis. An internal motor domain displays microtubule-dependent ATPase activity, consistent with its function as a microtubule motor protein. Knockdown of this gene results in failed cytokinesis with endoreplication, which results in multinucleated cells. This gene has been identified as a likely oncogene in breast, lung and ovarian cancers, as well as retinoblastomas and gliomas. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:kinesin-like protein KIF14
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Adenocarcinoma
  • Retinoblastoma
  • RTPCR
  • Tropomyosin
  • Gene Expression Profiling
  • Disease Progression
  • Temozolomide
  • Breast Cancer
  • Oligonucleotide Array Sequence Analysis
  • Cell Movement
  • Biomarkers, Tumor
  • Cancer Gene Expression Regulation
  • Xenograft Models
  • Young Adult
  • Retinal Neoplasms
  • Chromosome 1
  • Survival Rate
  • Kinesin
  • rho-Specific Guanine Nucleotide Dissociation Inhibitors
  • Triple Negative Breast Cancer
  • Gene Knockdown Techniques
  • siRNA
  • Statistics, Nonparametric
  • Childhood Cancer
  • Apoptosis
  • Messenger RNA
  • YY1 Transcription Factor
  • Cell Proliferation
  • Cell Cycle Proteins
  • rap1 GTP-Binding Proteins
  • Lung Cancer
  • Polymerase Chain Reaction
  • MicroRNAs
  • KIF14
  • Prostate Cancer
  • Immunohistochemistry
  • RNA Interference
  • Trisomy
  • Repressor Proteins
  • Oncogene Proteins
  • Ovarian Cancer
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: KIF14 (cancer-related)

Rahane CS, Kutzner A, Heese K
A cancer tissue-specific FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-mutation signature.
J Neurooncol. 2019; 141(1):57-70 [PubMed] Related Publications
INTRODUCTION: Glioblastoma multiform (GBM) is a neural stem cell (NSC)-derived malignant brain tumor with complex genetic alterations challenging clinical treatments. FAM72 is a NSC-specific protein comprised of four paralogous genes (FAM72 A-D) in the human genome, but its functional tumorigenic significance is unclear.
METHODS: We conducted an in-depth expression and somatic mutation data analysis of FAM72 (A-D) in GBM using the comprehensive human clinical cancer study database cBioPortal [including The Cancer Genome Atlas (TCGA)].
RESULTS: We established a FAM72 transcription profile across TCGA correlated with the expression of the proliferative marker MKI67 and a tissue-specific gene-mutation signature represented by pivotal genes involved in driving the cell cycle. FAM72 paralogs are overexpressed in cancer cells, specifically correlating with the mitotic cell cycle genes ASPM, KIF14, KIF23, CENPE, CENPE, CEP55, SGO1, and BUB1, thereby contributing to centrosome and mitotic spindle formation. FAM72 expression correlation identifies a novel GBM-specific gene set (SCN9A, MXRA5, ADAM29, KDR, LRP1B, and PIK3C2G) in the de novo pathway of primary GBM predestined as viable targets for therapeutics.
CONCLUSION: Our newly identified primary GBM-specific gene-mutation signature, along with FAM72, could thus provide a new basis for prognostic biomarkers for diagnostics of GBM and could serve as potential therapeutic targets.

Yang Z, Li C, Yan C, et al.
KIF14 promotes tumor progression and metastasis and is an independent predictor of poor prognosis in human gastric cancer.
Biochim Biophys Acta Mol Basis Dis. 2019; 1865(1):181-192 [PubMed] Related Publications
The kinesin family member 14 (KIF14) is a potential oncogene and is involved in the metastasis of various cancers. Nevertheless, its function in gastric cancer (GC) remains poorly defined. The expression of KIF14 was examined in GC cell lines and a clinical cohort of GC specimens by qPCR, western blotting and immunohistochemistry (IHC) staining. The relationship between KIF14 expression and the clinicopathological features was analyzed. The effect of KIF14 on cell proliferation, colony formation, invasion and migration were investigated in vitro and in vivo. The expression of KIF14 was significantly increased in the GC tissues and cell lines. High KIF14 expression was associated with tumor stage, tumor-node-metastasis (TNM) stage and metastasis. KIF14 was an independent prognostic factor for the overall survival of GC, and a higher expression of KIF14 predicted a poorer survival. KIF14 silencing resulted in attenuated proliferation, invasion and migration in human gastric cancer cells, whereas KIF14 ectopic expression facilitated these biological abilities. Notably, the depressed expression of KIF14 inhibited Akt phosphorylation, while overexpressed KIF14 augmented Akt phosphorylation. Additionally, there was a significant correlation between the expression of KIF14 and p‑Akt in GC tissues. Importantly, the proliferation, invasion and migration of the GC cells, which was promoted by KIF14 overexpression, was abolished by the Akt inhibitor MK-2206, while Akt overexpression greatly rescued the effects induced by KIF14 knockdown. Our findings are the first to demonstrate that KIF14 is overexpressed in GC, is correlated with poor prognosis and plays a crucial role in the progression and metastasis of GC.

Wang ZZ, Yang J, Jiang BH, et al.
KIF14 promotes cell proliferation via activation of Akt and is directly targeted by miR-200c in colorectal cancer.
Int J Oncol. 2018; 53(5):1939-1952 [PubMed] Free Access to Full Article Related Publications
As a mitotic kinesin, kinesin family member 14 (KIF14) has been reported to serve oncogenic roles in a variety of malignancies; however, its functional role and regulatory mechanisms in colorectal cancer (CRC) remain unclear. In the present study, KIF14 was observed to be markedly overexpressed in CRC, and this upregulation was associated with tumor size and marker of proliferation Ki-67 immunostaining scores. Gain- and loss-of-function experiments were applied to identify the function of KIF14 in CRC progression. In vitro and in vivo assays revealed that KIF14 promoted CRC cell proliferation and accelerated the cell cycle via activation of protein kinase B. In addition, the present study investigated the potential mechanisms underlying KIF14 overexpression in CRC. Bioinformatics analyses and validation experiments, including reverse transcription-quantitative polymerase chain reaction, western blotting and a Dual-Luciferase reporter assay, demonstrated that, in addition to genomic amplification and transcriptional activation, KIF14 was regulated by microRNA (miR)-200c at the post-transcriptional level. Rescue experiments further demonstrated that decreased miR-200c expression could facilitate KIF14 to exert its pro-proliferative role. The expression of miR-200c was negatively correlated with KIF14 in CRC specimens. Collectively, the findings of the present study demonstrated the oncogenic role of KIF14 in colorectal tumorigenesis, and also revealed a complexity of regulatory mechanisms mediating KIF14 overexpression, which may provide insight for developing novel treatments for patients with CRC.

Schiewek J, Schumacher U, Lange T, et al.
Clinical relevance of cytoskeleton associated proteins for ovarian cancer.
J Cancer Res Clin Oncol. 2018; 144(11):2195-2205 [PubMed] Related Publications
PURPOSE: Ovarian cancer has a high mortality rate and up to now no reliable molecular prognostic biomarkers have been established. During malignant progression, the cytoskeleton is strongly altered. Hence we analyzed if expression of certain cytoskeleton-associated proteins is correlated with clinical outcome of ovarian cancer patients.
METHODS: First, in silico analysis was performed using the cancer genome atlas (TCGA), the human expression atlas and Pubmed. Selected candidates were validated on 270 ovarian cancer patients by qRT-PCR and/or by western blotting.
RESULTS: In silico analysis revealed that mRNAs of 214 cytoskeleton-associated proteins are detectable in ovarian cancer tissue. Among these, we selected 17 proteins that participate in cancer disease progression and cytoskeleton modulation: KIF14, KIF20A, KIF18A, ASPM, CEP55, DLGAP5, MAP9, EB1, KATNA1, DIAPH1, ANLN, SCIN, CCDC88A, FSCN1, GSN, VASP and CDC42. The first ten candidates interact with microtubules (MTs) and the others bind to actin filaments. Validation on clinical samples of ovarian cancer patients revealed that the expression levels of DIAPH1, EB1, KATNA1, KIF14 and KIF18A significantly correlated with clinical and histological parameters of ovarian cancer. High DIAPH1, EB1, KATNA1 and KIF14 protein levels were associated with increased overall survival (OAS) of ovarian cancer patients, while high DIAPH1 and EB1 protein levels were also associated with low differentiation of respective tumors (G2/3). Moreover, DIAPH1 was the only protein, whose expression significantly correlated with increased recurrence-free interval (RFI).
CONCLUSION: Mainly the expression levels of the MT-associated proteins analyzed in this study, correlated with prolonged survival of ovarian cancer patients. From > 200 genes initially considered, 17 cytoskeletal proteins are involved in cancer progression according to the literature. Among these, four proteins significantly correlated with improved survival of ovarian cancer patients.

Lang PY, Gershon TR
A New Way to Treat Brain Tumors: Targeting Proteins Coded by Microcephaly Genes?: Brain tumors and microcephaly arise from opposing derangements regulating progenitor growth. Drivers of microcephaly could be attractive brain tumor targets.
Bioessays. 2018; 40(5):e1700243 [PubMed] Free Access to Full Article Related Publications
New targets for brain tumor therapies may be identified by mutations that cause hereditary microcephaly. Brain growth depends on the repeated proliferation of stem and progenitor cells. Microcephaly syndromes result from mutations that specifically impair the ability of brain progenitor or stem cells to proliferate, by inducing either premature differentiation or apoptosis. Brain tumors that derive from brain progenitor or stem cells may share many of the specific requirements of their cells of origin. These tumors may therefore be susceptible to disruptions of the protein products of genes that are mutated in microcephaly. The potential for the products of microcephaly genes to be therapeutic targets in brain tumors are highlighted hereby reviewing research on EG5, KIF14, ASPM, CDK6, and ATR. Treatments that disrupt these proteins may open new avenues for brain tumor therapy that have increased efficacy and decreased toxicity.

Zhou Z, Cheng Y, Jiang Y, et al.
Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis.
Int J Biol Sci. 2018; 14(2):124-136 [PubMed] Free Access to Full Article Related Publications
Since the five-year survival rate is less than 5%, pancreatic ductal adenocarcinoma (PDAC) remains the 4th cause of cancer-related death. Although PDAC has been repeatedly researched in recent years, it is still predicted to be the second leading cause of cancer death by year 2030. In our study, the differentially expressed genes in dataset GSE62452 were used to construct a co-expression network by WGCNA. The yellow module related to grade of PDAC was screened. Combined with co-expression network and PPI network, 36 candidates were screened. After survival and regression analysis by using GSE62452 and TCGA dataset, we identified 10 real hub genes (

Zhang Y, Yuan Y, Liang P, et al.
Overexpression of a novel candidate oncogene KIF14 correlates with tumor progression and poor prognosis in prostate cancer.
Oncotarget. 2017; 8(28):45459-45469 [PubMed] Free Access to Full Article Related Publications
Prostate cancer (PCa) is the second leading cause of death from cancer in men. The mechanism underlying tumorigenesis and development of PCa is largely unknown. Here, we identified Kinesin family member 14 (KIF14) as a novel candidate oncogene in PCa. We found that KIF14 was overexpressed in multiple PCa cell lines and primary PCa tissues. Knockdown of KIF14 in DU145 and PC3 prostate cancer cells suppressed cell proliferation, induced cell cycle arrest and apoptosis. Transcriptome analysis by RNA-sequencing demonstrated that KIF4 suppression led to transcriptional changes of genes involved in p53 and TGF-beta signaling pathway. In addition, upregulated expression of GADD45A, GADD45B, p21, PIDD and Shisa5, which contribute to growth arrest and apoptosis induction, and downregulated CCNB1 that promotes cell cycle progression were confirmed by quantitative real-time PCR after KIF4 knockdown. We further found that KIF14 protein level was positively correlated with T stage and Gleason Score. Patients with higher KIF14 expression had shorter overall survival time than those with lower KIF14 expression. Thus, our data indicate that KIF14 could act as a potential oncogene that contributes to tumor progression and poor prognosis in PCa, which may represent a novel and useful prognostic biomarker for PCa.

Li KK, Qi Y, Xia T, et al.
The kinesin KIF14 is overexpressed in medulloblastoma and downregulation of KIF14 suppressed tumor proliferation and induced apoptosis.
Lab Invest. 2017; 97(8):946-961 [PubMed] Related Publications
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. At present, there is no well-established targeted drug for majority of patients. The kinesin family member 14 (KIF14) is a novel oncogene located on chromosome 1q and is dysregulated in multiple cancers. The objectives of this study were to evaluate KIF14 expression and chromosome 1q copy number in MB, and to delineate its biological functions in MB pathogenesis. By quantitative RT-PCR and immunohistochemistry, we found KIF14 was overexpressed in MB. Increased KIF14 expression at protein level was strongly associated with shorter progression-free survival (P=0.0063) and overall survival (P=0.0083). Fluorescence in situ hybridization (FISH) analysis confirmed genomic gain of chromosome 1q in 17/93 (18.3%) of MB. Combined genetic and immunohistochemical analyses revealed that 76.5% of MB with 1q gain showed consistent overexpression of KIF14, and a tight link between chromosome 1q gain and KIF14 overexpression (P=0.03). Transient, siRNAs-mediated downregulation of KIF14 suppressed cell proliferation and induced apoptosis in two MB cell lines. Stably KIF14 knockdown by shRNAs inhibited cell viability, colony formation, migration and invasion, and tumor sphere formation in MB cells. We conclude that KIF14 is dysregulated in MB and is an adverse prognostic factor for survival. Furthermore, KIF14 is part of MB biology and is a potential therapeutic target for MB.

Thole TM, Lodrini M, Fabian J, et al.
Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival.
Cell Death Dis. 2017; 8(3):e2635 [PubMed] Free Access to Full Article Related Publications
The number of long-term survivors of high-risk neuroblastoma remains discouraging, with 10-year survival as low as 20%, despite decades of considerable international efforts to improve outcome. Major obstacles remain and include managing resistance to induction therapy, which causes tumor progression and early death in high-risk patients, and managing chemotherapy-resistant relapses, which can occur years after the initial diagnosis. Identifying and validating novel therapeutic targets is essential to improve treatment. Delineating and deciphering specific functions of single histone deacetylases in neuroblastoma may support development of targeted acetylome-modifying therapeutics for patients with molecularly defined high-risk neuroblastoma profiles. We show here that HDAC11 depletion in MYCN-driven neuroblastoma cell lines strongly induces cell death, mostly mediated by apoptotic programs. Genes necessary for mitotic cell cycle progression and cell division were most prominently enriched in at least two of three time points in whole-genome expression data combined from two cell systems, and all nine genes in these functional categories were strongly repressed, including CENPA, KIF14, KIF23 and RACGAP1. Enforced expression of one selected candidate, RACGAP1, partially rescued the induction of apoptosis caused by HDAC11 depletion. High-level expression of all nine genes in primary neuroblastomas significantly correlated with unfavorable overall and event-free survival in patients, suggesting a role in mediating the more aggressive biological and clinical phenotype of these tumors. Our study identified a group of cell cycle-promoting genes regulated by HDAC11, being both predictors of unfavorable patient outcome and essential for tumor cell viability. The data indicate a significant role of HDAC11 for mitotic cell cycle progression and survival of MYCN-amplified neuroblastoma cells, and suggests that HDAC11 could be a valuable drug target.

Qiu HL, Deng SZ, Li C, et al.
High expression of KIF14 is associated with poor prognosis in patients with epithelial ovarian cancer.
Eur Rev Med Pharmacol Sci. 2017; 21(2):239-245 [PubMed] Related Publications
OBJECTIVE: Kinesin family member 14 (KIF14) is a mitotic kinesin and plays an important role in tumor progression. KIF14 overexpression has been observed in multiple cancers and has been correlated with a poor prognosis. However, its protein expression and prognostic significance in epithelial ovarian cancer (EOC) remain unclear. In this research, we aimed to explore the relationship of KIF14 expression with clinicopathological parameters and prognosis in EOC.
MATERIALS AND METHODS: In this study, we measured KIF14 expression in 170 EOC carcinoma tissue samples with immunohistochemistry and correlated these data with clinicopathological characteristics.
RESULTS: The expression of KIF14 in EOC tissues was significantly higher than that in normal tissues. Furthermore, KIF14 expression was significantly associated with metastasis (p = 0.047), histological type (p = 0.001), Ki67 expression (p = 0.004) and residual tumor (p = 0.038). Also, Kaplan-Meir survival curves showed that a high level of KIF14 expression was a predictor for worse PFS (p = 0.013) and OS (p = 0.009) in patients with EOC.
CONCLUSIONS: KIF14 expression may be associated with poor prognosis, suggesting that it has potential value as an effective prognostic predictor in EOC patients.

Tong H, Wang J, Chen H, et al.
Transcriptomic analysis of gene expression profiles of stomach carcinoma reveal abnormal expression of mitotic components.
Life Sci. 2017; 170:41-49 [PubMed] Related Publications
AIMS: In order to explore the etiology of gastric cancer on global gene expression level, we developed advanced bioinformatic analysis to investigate the variations of global gene expression and the interactions among them.
MAIN METHODS: We downloaded the dataset GSE63288 from Gene Expression Omnibus (GEO) database which included 22 human gastric cancer and 22 healthy control samples. We identified the differential expression genes, and explored the Gene ontology (GO) and pathways of the differentially expressed genes. Furthermore, integrative interaction network and co-expression network were employed to identify the key genes which may contribute to gastric cancer progression.
KEY FINDINGS: The results indicated that 5 kinases including BUB1, TTK protein kinase, Citron Rho-interacting kinase (CIT), ZAK and NEK2 were upregulated in gastric cancer. Interestingly, BUB1, TTK, CIT and NEK2 have shown high expression similarities and bound with each other, and participated in multiple phases of mitosis. Moreover, a subnet of co-expression genes e.g. KIF14, PRC1, CENPF and CENPI was also involved in mitosis which was functionally coupled with the kinases above. By validation assays, the results indicated that CIT, PRC1, TTK and KIF14 were significantly upregulated in gastric cancer.
SIGNIFICANCE: These evidences have suggested that aberrant expression of these genes may drive gastric cancer including progression, invasion and metastasis. Although the causal relationships between gastric cancer and the genes are still lacking, it was reasonable to take them as biomarkers for diagnosis of gastric cancer.


A Genome-Wide Assay for MSI.
Cancer Discov. 2016; 6(12):OF3 [PubMed] Related Publications
A recent study from the University of Washington in Seattle indicates that microsatellite instability, classically associated with colorectal, stomach, and endometrial cancers, is a much more extensive phenotype than previously appreciated. The researchers developed MOSAIC, a method to assess microsatellite instability on a comprehensive, genome-wide scale, and identified tumors positive for this phenotype in 14 of 18 different cancers evaluated.

Osako Y, Seki N, Kita Y, et al.
Regulation of MMP13 by antitumor microRNA-375 markedly inhibits cancer cell migration and invasion in esophageal squamous cell carcinoma.
Int J Oncol. 2016; 49(6):2255-2264 [PubMed] Free Access to Full Article Related Publications
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies. Recently developed molecular targeted therapies are not available for patients with ESCC. After curative surgical resection, patients frequently suffer distant metastasis and recurrence. Exploration of novel ESCC metastatic pathways may lead to the development of new treatment protocols for this disease. Accordingly, we have sequentially identified microRNA (miRNA)-mediated metastatic pathways in several cancers. Our past studies of miRNA expression signatures have shown that microRNA-375 (miR-375) is frequently reduced in several types of cancers, including ESCC. In the present study, we aimed to investigate novel miR-375-mediated metastatic pathways in ESCC cells. The expression of miR-375 was downregulated in ESCC tissues, and ectopic expression of this miRNA markedly inhibited cancer cell migration and invasion, suggesting that miR-375 acted as an antimetastatic miRNA in ESCC cells. Our strategies for miRNA target searching demonstrated that matrix metalloproteinase 13 (MMP13) was directly regulated by miR-375 in ESCC cells. Overexpression of MMP13 was observed in ESCC clinical tissues, and the expression of MMP13 promoted cancer cell aggressiveness. Moreover, oncogenic genes, including CENPF, KIF14 and TOP2A, were shown to be regulated downstream of MMP13. Taken together, these findings demonstrated that the antitumor miR-375/oncogenic MMP13 axis had a pivotal role in ESCC aggressiveness. These results provide novel insights into the potential mechanisms of ESCC pathogenesis.

Brynychova V, Ehrlichova M, Hlavac V, et al.
Genetic and functional analyses do not explain the association of high PRC1 expression with poor survival of breast carcinoma patients.
Biomed Pharmacother. 2016; 83:857-864 [PubMed] Related Publications
Microtubules are vitally important for eukaryotic cell division. Therefore, we evaluated the relevance of mitotic kinesin KIF14, protein-regulating cytokinesis 1 (PRC1), and citron kinase (CIT) for the prognosis of breast carcinoma patients. Transcript levels were assessed by quantitative real-time PCR in tissues from two independent groups of breast carcinoma patients and compared with clinical data. Tissue PRC1 protein levels were estimated using immunoblotting, and the PRC1 tagged haplotype was analyzed in genomic DNA. A functional study was performed in MDA-MB-231 cells in vitro. KIF14, PRC1, and CIT transcripts were overexpressed in tumors compared with control tissues. Tumors without expression of hormonal receptors or high-grade tumors expressed significantly higher KIF14 and PRC1 levels than hormonally-positive or low-grade tumors. Patients with high intra-tumoral PRC1 levels had significantly worse disease-free survival than patients with low levels. PRC1 rs10520699 and rs11852999 polymorphisms were associated with PRC1 transcript levels, but not with patientś survival. Paclitaxel-induced PRC1 expression, but PRC1 knockdown did not modify the paclitaxel cytotoxicity in vitro. PRC1 overexpression predicts poor disease-free survival of patients with breast carcinomas. Genetic variability of PRC1 and the protein interaction with paclitaxel cytotoxicity do not explain this association.

O'Hare M, Shadmand M, Sulaiman RS, et al.
Kif14 overexpression accelerates murine retinoblastoma development.
Int J Cancer. 2016; 139(8):1752-8 [PubMed] Free Access to Full Article Related Publications
The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo.

Wang W, Shi Y, Li J, et al.
Up-regulation of KIF14 is a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in cervical cancer.
Biosci Rep. 2016; 36(2) [PubMed] Free Access to Full Article Related Publications
Kinesin family member 14 (KIF14) is a member of kinesin family proteins which have been found to be dysregulated in various cancer types. However, the expression of KIF14 and its potential prognostic significance have not been investigated in cervical cancer. Real-time PCR was performed to assess the expression levels of KIF14 in 47 pairs of cervical cancer tissues and their matched normal tissues from patients who had not been exposed to chemotherapy as well as tissue samples from 57 cervical cancer patients who are sensitive to paclitaxel treatment and 53 patients who are resistant. The association between KIF14 expression levels in tissue and clinicopathological features or chemosensitivity was examined. Kaplan-Meier analysis and Cox proportional hazards model were applied to assess the correlation between KIF14 expression levels and overall survival (OS) of cervical cancer patients. KIF14 expression levels were significantly increased in cervical cancer tissues compared with matched non-cancerous tissues and it was higher in tissues of patients who are chemoresistant compared with those who are chemosensitive. KIF14 expression was positively associated with high tumour stage (P=0.0044), lymph node metastasis (P=0.0034) and chemoresistance (P<0.0001). Kaplan-Meier analysis showed that high KIF14 expression levels predicted poor survival in patients with (P=0.0024) or without (P=0.0028) paclitaxel treatment. Multivariate analysis revealed that KIF14 was an independent prognostic factor for OS. Our study suggests that KIF14 may serve as a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in cervical cancer.

Liang ML, Hsieh TH, Ng KH, et al.
Downregulation of miR-137 and miR-6500-3p promotes cell proliferation in pediatric high-grade gliomas.
Oncotarget. 2016; 7(15):19723-37 [PubMed] Free Access to Full Article Related Publications
Pediatric high-grade gliomas (pHGGs) are aggressive brain tumors affecting children, and outcomes have remained dismal, even with access to new multimodal therapies. In this study, we compared the miRNomes and transcriptomes of pediatric low- (pLGGs) and high-grade gliomas (pHGGs) using small RNA sequencing (smRNA-Seq) and gene expression microarray, respectively. Through integrated bioinformatics analyses and experimental validation, we identified miR-137 and miR-6500-3p as significantly downregulated in pHGGs. miR-137 or miR-6500-3p overexpression reduced cell proliferation in two pHGG cell lines, SF188 and UW479. CENPE, KIF14 and NCAPG levels were significantly higher in pHGGs than pLGGs, and were direct targets of miR-137 or miR-6500-3p. Furthermore, knockdown of CENPE, KIF14 or NCAPG combined with temozolomide treatment resulted in a combined suppressive effect on pHGG cell proliferation. In summary, our results identify novel mRNA/miRNA interactions that contribute to pediatric glioma malignancy and represent potential targets for the development of new therapeutic strategies.

Huang W, Wang J, Zhang D, et al.
Inhibition of KIF14 Suppresses Tumor Cell Growth and Promotes Apoptosis in Human Glioblastoma.
Cell Physiol Biochem. 2015; 37(5):1659-70 [PubMed] Related Publications
BACKGROUND/AIMS: The mitotic kinesin superfamily protein KIF14 is essential for cytokinesis and chromosome segregation, and increased KIF14 expression is related to a variety of human cancers. However, the role of KIF14 in the development and malignant progression of astrocytomas and the underlying mechanisms remain unclear. The present study examined the relation between KIF14 and the pathogenesis of malignant astrocytoma.
METHODS AND RESULTS: The role of KIF14 in astrocytoma development and progression was investigated by analyzing KIF14 expression using SYBR Green quantitative real-time RT-PCR, western blotting and immunohistochemistry in human astrocytoma and normal brain tissues. KIF14 expression was higher in astrocytoma samples, and was positively correlated with pathological grade and proliferative activity indicated by Ki-67 staining. SiRNA knockdown of KIF14 inhibited tumor growth in vitro and in vivo, attenuated anchorage-independent growth, and induced G2/M phase arrest, cytokinesis failure and apoptosis in glioblastoma cell lines in association with decreased AKT phosphorylation and activity.
CONCLUSIONS: The upregulation of KIF14 in astrocytoma is associated with disease severity, and suppression of KIF14 inhibits cell proliferation and induces apoptosis through a mechanism involving the inactivation of AKT signaling, suggesting that KIF14 plays an important role in astrocytoma tumorigenesis and could be a promising molecular target for anticancer therapy.

Thériault BL, Cybulska P, Shaw PA, et al.
The role of KIF14 in patient-derived primary cultures of high-grade serous ovarian cancer cells.
J Ovarian Res. 2014; 7:123 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Previously, it has been shown that KIF14 mRNA is overexpressed in ovarian cancer (OvCa), regardless of histological subtype. KIF14 levels are independently predictive of poor outcome and increased rates of recurrence in serous OvCa patients. Furthermore, it has been shown that KIF14 also controls the in vivo tumorigenicity of OvCa cell lines. In this study, we evaluate the potential of KIF14 as a therapeutic target through selective inhibition of KIF14 in primary high-grade serous patient-derived OvCa cells.
METHODS: To assess the dependence of primary serous OvCa cultures on KIF14, protein levels in 11 prospective high grade serous ovarian cancer samples were increased (KIF14 overexpression by transfection) or decreased (anti-KIF14 shRNA) in vitro, and proliferative capacity, anchorage independence and xenograft growth were assessed.
RESULTS: Seven of eleven samples demonstrated increased/decreased in vitro proliferation in response to KIF14 overexpression/knockdown, respectively. When examining in vitro tumorigenicity (colony formation) and in vivo growth (subcutaneous xenografts) in response to KIF14 manipulation, none of the samples demonstrated growth in soft agar (11 samples), or xenograft growth (4 samples).
CONCLUSIONS: Although primary high-grade serous OvCa cells may depend on KIF14 for in vitro proliferation we were unable to demonstrate a role for KIF14 on tumorigenicity or develop an in vivo model for assessment. We have, however developed an effective in vitro method to evaluate the effect of target gene manipulation on the proliferative capacity of primary OvCa cultures.

Yang T, Li XN, Li L, et al.
Sox17 inhibits hepatocellular carcinoma progression by downregulation of KIF14 expression.
Tumour Biol. 2014; 35(11):11199-207 [PubMed] Related Publications
Sox17, an antagonist of canonical Wnt/β-catenin signaling, inhibits several malignant carcinogenesis and progression. However, little is known about Sox17 in hepatocellular carcinoma (HCC). Here, we found that Sox17 is downregulated in HCC tissue. Furthermore, Sox17 inhibits cell proliferation and migration in HCC. KIF14, a member of kinesin superfamily protein (KIFs), is an oncogene in a variety of malignant tumors including HCC. We demonstrated that Sox17 is negatively related to KIF14 expression in HCC tissue and Sox17 inhibits HCC cell proliferation and migration by transcriptional downregulation of KIF14 expression. Our results may provide a strategy for blocking HCC carcinogenesis and progression.

Xu H, Choe C, Shin SH, et al.
Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma.
Exp Mol Med. 2014; 46:e97 [PubMed] Free Access to Full Article Related Publications
Although it has been suggested that kinesin family member 14 (KIF14) has oncogenic potential in various cancers, including hepatocellular carcinoma (HCC), the molecular mechanism of this potential remains unknown. We aimed to elucidate the role of KIF14 in hepatocarcinogenesis by knocking down KIF14 in HCC cells that overexpressed KIF14. After KIF14 knockdown, changes in tumor cell growth, cell cycle and cytokinesis were examined. We also examined cell cycle regulatory molecules and upstream Skp1/Cul1/F-box (SCF) complex molecules. Knockdown of KIF14 resulted in suppression of cell proliferation and failure of cytokinesis, whereas KIF14 overexpression increased cell proliferation. In KIF14-silenced cells, the levels of cyclins E1, D1 and B1 were profoundly decreased compared with control cells. Of the cyclin-dependent kinase inhibitors, the p27(Kip1) protein level specifically increased after KIF14 knockdown. The increase in p27(Kip1) was not due to elevation of its mRNA level, but was due to inhibition of the proteasome-dependent degradation pathway. To explore the pathway upstream of this event, we measured the levels of SCF complex molecules, including Skp1, Skp2, Cul1, Roc1 and Cks1. The levels of Skp2 and its cofactor Cks1 decreased in the KIF14 knockdown cells where p27(Kip1) accumulated. Overexpression of Skp2 in the KIF14 knockdown cells attenuated the failure of cytokinesis. On the basis of these results, we postulate that KIF14 knockdown downregulates the expression of Skp2 and Cks1, which target p27(Kip1) for degradation by the 26S proteasome, leading to accumulation of p27(Kip1). The downregulation of Skp2 and Cks1 also resulted in cytokinesis failure, which may inhibit tumor growth. To the best of our knowledge, this is the first report that has identified the molecular target and oncogenic effect of KIF14 in HCC.

Singel SM, Cornelius C, Zaganjor E, et al.
KIF14 promotes AKT phosphorylation and contributes to chemoresistance in triple-negative breast cancer.
Neoplasia. 2014; 16(3):247-56, 256.e2 [PubMed] Free Access to Full Article Related Publications
Despite evidence that kinesin family member 14 (KIF14) can serve as a prognostic biomarker in various solid tumors, how it contributes to tumorigenesis remains unclear. We observed that experimental decrease in KIF14 expression increases docetaxel chemosensitivity in estrogen receptor-negative/progesterone receptor-negative/human epidermal growth factor receptor 2-negative, "triple-negative" breast cancers (TNBC). To investigate the oncogenic role of KIF14, we used noncancerous human mammary epithelial cells and ectopically expressed KIF14 and found increased proliferative capacity, increased anchorage-independent grown in vitro, and increased resistance to docetaxel but not to doxorubicin, carboplatin, or gemcitabine. Seventeen benign breast biopsies of BRCA1 or BRCA2 mutation carriers showed increased KIF14 mRNA expression by fluorescence in situ hybridization compared to controls with no known mutations in BRCA1 or BRCA2, suggesting increased KIF14 expression as a biomarker of high-risk breast tissue. Evaluation of 34 cases of locally advanced TNBC showed that KIF14 expression significantly correlates with chemotherapy-resistant breast cancer. KIF14 knockdown also correlates with decreased AKT phosphorylation and activity. Live-cell imaging confirmed an insulin-induced temporal colocalization of KIF14 and AKT at the plasma membrane, suggesting a potential role of KIF14 in promoting activation of AKT. An experimental small-molecule inhibitor of KIF14 was then used to evaluate the potential anticancer benefits of downregulating KIF14 activity. Inhibition of KIF14 shows a chemosensitizing effect and correlates with decreasing activation of AKT. Together, these findings show an early and critical role for KIF14 in the tumorigenic potential of TNBC, and therapeutic targeting of KIF14 is feasible and effective for TNBC.

Thériault BL, Basavarajappa HD, Lim H, et al.
Transcriptional and epigenetic regulation of KIF14 overexpression in ovarian cancer.
PLoS One. 2014; 9(3):e91540 [PubMed] Free Access to Full Article Related Publications
KIF14 (kinesin family member 14) is a mitotic kinesin and an important oncogene in several cancers. Tumor KIF14 expression levels are independently predictive of poor outcome, and in cancer cells KIF14 can modulate metastatic behavior by maintaining appropriate levels of cell adhesion and migration proteins at the cell membrane. Thus KIF14 is an exciting potential therapeutic target. Understanding KIF14's regulation in cancer cells is crucial to the development of effective and selective therapies to block its tumorigenic function(s). We previously determined that close to 30% of serous ovarian cancers (OvCa tumors) exhibit low-level genomic gain, indicating one mechanism of KIF14 overexpression in tumors. We now report on transcriptional and epigenetic regulation of KIF14. Through promoter deletion analyses, we identified one cis-regulatory region containing binding sites for Sp1, HSF1 and YY1. siRNA-mediated knockdown of these transcription factors demonstrated endogenous regulation of KIF14 overexpression by Sp1 and YY1, but not HSF1. ChIP experiments confirmed an enrichment of both Sp1 and YY1 binding to the endogenous KIF14 promoter in OvCa cell lines with high KIF14 expression. A strong correlation was seen in primary serous OvCa tumors between Sp1, YY1 and KIF14 expression, further evidence that these transcription factors are important players in KIF14 overexpression. Hypomethylation patterns were observed in primary serous OvCa tumors, suggesting a minor role for promoter methylation in the control of KIF14 gene expression. miRNA expression analysis determined that miR-93, miR-144 and miR-382 had significantly lower levels of expression in primary serous OvCa tumors than normal tissues; treatment of an OvCa cell line with miRNA mimics and inhibitors specifically modulated KIF14 mRNA levels, pointing to potential novel mechanisms of KIF14 overexpression in primary tumors. Our findings reveal multiple mechanisms of KIF14 upregulation in cancer cells, offering new targets for therapeutic interventions to reduce KIF14 in tumors, aiming at improved prognosis.

Cohen Y, Gutwein O, Garach-Jehoshua O, et al.
The proliferation arrest of primary tumor cells out-of-niche is associated with widespread downregulation of mitotic and transcriptional genes.
Hematology. 2014; 19(5):286-92 [PubMed] Related Publications
In recording the changes acquired in gene expression profile during culture of fresh bone marrow samples from patients with multiple myeloma or acute myeloid leukemia, the most remarkable finding in both instances was widespread downregulation of mitotic and transcriptional genes (e.g. MKI67, CCNB1, ASPM, SGOL1, DLGAP5, CENPF, BUB1, KIF23, KIF18a, KIF11, KIF14, KIF4, NUF2, KIF1, AE2FB, TOP2A, NCAPG, TTK, CDC20, and AURKB), which could account for the ensuing proliferation arrest. Many of these genes were also underexpressed in leukemic cells from the blood or myeloma cells from an extramedullary site compared with their expression in the aspirates. Taken together, our results exhibited mitotic and transcriptional gene subsets where their expression appears to be coordinated and niche dependent. In addition, the genes induced during culture specified a variety of angiogenic factors (e.g. interleukin-8 and CXCL-5) and extracellular matrix proteins (e.g. osteopontin and fibronectin) probably released by the tumor cells while generating their favored microenvironment.

Hung PF, Hong TM, Hsu YC, et al.
The motor protein KIF14 inhibits tumor growth and cancer metastasis in lung adenocarcinoma.
PLoS One. 2013; 8(4):e61664 [PubMed] Free Access to Full Article Related Publications
The motor protein kinesin superfamily proteins (KIFs) are involved in cancer progression. The depletion of one of the KIFs, KIF14, might delay the metaphase-to-anaphase transition, resulting in a binucleated status, which enhances tumor progression; however, the exact correlation between KIF14 and cancer progression remains ambiguous. In this study, using loss of heterozygosity and array comparative genomic hybridization analyses, we observed a 30% loss in the regions surrounding KIF14 on chromosome 1q in lung adenocarcinomas. In addition, the protein expression levels of KIF14 in 122 lung adenocarcinomas also indicated that approximately 30% of adenocarcinomas showed KIF14 down-regulation compared with the expression in the bronchial epithelial cells of adjacent normal counterparts. In addition, the reduced expression of KIF14 mRNA or proteins was correlated with poor overall survival (P = 0.0158 and <0.0001, respectively), and the protein levels were also inversely correlated with metastasis (P<0.0001). The overexpression of KIF14 in lung adenocarcinoma cells inhibited anchorage-independent growth in vitro and xenograft tumor growth in vivo. The overexpression and silencing of KIF14 also inhibited or enhanced cancer cell migration, invasion and adhesion to the extracellular matrix proteins laminin and collagen IV. Furthermore, we detected the adhesion molecules cadherin 11 (CDH11) and melanoma cell adhesion molecule (MCAM) as cargo on KIF14. The overexpression and silencing of KIF14 enhanced or reduced the recruitment of CDH11 in the membrane fraction, suggesting that KIF14 might act through recruiting adhesion molecules to the cell membrane and modulating cell adhesive, migratory and invasive properties. Thus, KIF14 might inhibit tumor growth and cancer metastasis in lung adenocarcinomas.

Ehrlichova M, Mohelnikova-Duchonova B, Hrdy J, et al.
The association of taxane resistance genes with the clinical course of ovarian carcinoma.
Genomics. 2013; 102(2):96-101 [PubMed] Related Publications
Taxane and platinum-based chemotherapy regimens are standard treatment for advanced ovarian carcinoma. Expression levels of putative markers of taxane resistance in carcinoma tissues and paired peritoneal samples (n=55) and in 16 samples of ovaries without signs of carcinoma were compared with clinical data and the patients' time to progression. KIF14, PRC1, CIT and ABCC1 genes were significantly overexpressed in carcinomas when compared with normal ovarian tissues, while ABCB1 and CASP9 expression was decreased. Associations of protein expression of the proliferation marker Ki-67 with KIF14, PRC1, ABCB1 and CASP2 were found. Lastly, it was discovered that ABCB1 and CASP2 levels associated with FIGO stage and that the CIT level associated with the time to progression of ovarian carcinoma patients (P<0.0001). In conclusion, ABCB1, CASP2, KIF14, PRC1 and CIT genes seem to associate with surrogate markers of ovarian carcinoma progression and CIT gene associates with therapy outcome.

Singel SM, Cornelius C, Batten K, et al.
A targeted RNAi screen of the breast cancer genome identifies KIF14 and TLN1 as genes that modulate docetaxel chemosensitivity in triple-negative breast cancer.
Clin Cancer Res. 2013; 19(8):2061-70 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To identify biomarkers within the breast cancer genome that may predict chemosensitivity in breast cancer.
EXPERIMENTAL DESIGN: We conducted an RNA interference (RNAi) screen within the breast cancer genome for genes whose loss-of-function enhanced docetaxel chemosensitivity in an estrogen receptor-negative, progesterone receptor-negative, and Her2-negative (ER-, PR-, and Her2-, respectively) breast cancer cell line, MDA-MB-231. Top candidates were tested for their ability to modulate chemosensitivity in 8 breast cancer cell lines and to show in vivo chemosensitivity in a mouse xenograft model.
RESULTS: From ranking chemosensitivity of 328 short hairpin RNA (shRNA) MDA-MB-231 cell lines (targeting 133 genes with known somatic mutations in breast cancer), we focused on the top two genes, kinesin family member 14 (KIF14) and talin 1 (TLN1). KIF14 and TLN1 loss-of-function significantly enhanced chemosensitivity in four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, HCC38, HCC1937, and Hs478T) but not in three hormone receptor-positive cell lines (MCF7, T47D, and HCC1428) or normal human mammary epithelial cells (HMEC). Decreased expression of KIF14, but not TLN1, also enhanced docetaxel sensitivity in a Her2-amplified breast cancer cell line, SUM190PT. Higher KIF14 and TLN1 expressions are found in TNBCs compared with the other clinical subtypes. Mammary fat pad xenografts of KIF14- and TLN1-deficient MDA-MB-231 cells revealed reduced tumor mass compared with control MDA-MB-231 cells after chemotherapy. KIF14 expression is also prognostic of relapse-free and overall survival in representative breast cancer expression arrays.
CONCLUSION: KIF14 and TLN1 are modulators of response to docetaxel and potential therapeutic targets in TNBC.

Yang T, Zhang XB, Zheng ZM
Suppression of KIF14 expression inhibits hepatocellular carcinoma progression and predicts favorable outcome.
Cancer Sci. 2013; 104(5):552-7 [PubMed] Related Publications
The mitotic kinesin superfamily protein KIF14 is essential for cytokinesis and chromosome segregation and increased KIF14 expression is related to a variety of human cancers. In this study, we investigate KIF14 expression in association with clinical variables and the role of KIF14 during tumorigenesis. We found that KIF14 is overexpressed in most primary hepatocellular carcinoma (HCC) tissues compared with the adjacent normal liver tissues and KIF14 overexpression is associated with tumor grade (P = 0.002), stage (P = 0.013) and poor survival (P < 0.001). Downregulation of KIF14 decreased the capacity of proliferation both in vitro and in vivo. Furthermore, suppression of KIF14 not only decreases cancer cell migration but also induces apoptosis of cells with inactivation of the phosphatidylinositol 3-kinase-Akt signaling pathway. Therefore, our current study indicates that KIF14 promotes HCC carcinogenesis and may serve as a potential therapeutic target for human HCC.

Lagarde P, Przybyl J, Brulard C, et al.
Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas.
J Clin Oncol. 2013; 31(5):608-15 [PubMed] Related Publications
PURPOSE: Synovial sarcoma (SS) occurs in both children and adults, although metastatic events are much more common in adults. Whereas the importance of the t(X;18) translocation in SS oncogenesis is well established, the genetic basis of SS metastasis is still poorly understood. We recently reported expression (CINSARC; Complexity Index in Sarcoma) and Genomic Index prognostic signatures related to chromosome integrity in sarcomas and GI stromal tumors. Here we investigate whether these signatures can also predict outcomes in SS.
PATIENTS AND METHODS: One hundred patients who had primary untreated SS tumors were selected for expression and genomic profiling in a training/validation approach.
RESULTS: CINSARC and Genomic Index have strong independent and validated prognostic values (P < .001). By comparing expression profiles of tumors with or without metastasis, 14 genes that are common to the CINSARC signature were identified, and the two top-ranked genes, KIF14 and CDCA2, were validated as prognostic markers in an independent cohort. Comparing genomic profiles of adult versus pediatric SS, we show that metastasis is associated with genome complexity in both situations and that the adult genome is more frequently rearranged. Accordingly, pediatric patients with an even genomic profile do not develop metastasis.
CONCLUSION: Metastasis development in SS is strongly associated with chromosome complexity, and CINSARC and Genomic Index are validated independent prognostic factors. The differences in metastasis frequency between adults and children are associated with genome instability, which is much more frequent in adults. Genomic Index is potentially the best overall biomarker and clearly the most clinically relevant, considering that genome profiling from formalin-fixed samples is already used in pathology.

Ahmed SM, Thériault BL, Uppalapati M, et al.
KIF14 negatively regulates Rap1a-Radil signaling during breast cancer progression.
J Cell Biol. 2012; 199(6):951-67 [PubMed] Free Access to Full Article Related Publications
The small GTPase Rap1 regulates inside-out integrin activation and thereby influences cell adhesion, migration, and polarity. Several Rap1 effectors have been described to mediate the cellular effects of Rap1 in a context-dependent manner. Radil is emerging as an important Rap effector implicated in cell spreading and migration, but the molecular mechanisms underlying its functions are unclear. We report here that the kinesin KIF14 associates with the PDZ domain of Radil and negatively regulates Rap1-mediated inside-out integrin activation by tethering Radil on microtubules. The depletion of KIF14 led to increased cell spreading, altered focal adhesion dynamics, and inhibition of cell migration and invasion. We also show that Radil is important for breast cancer cell proliferation and for metastasis in mice. Our findings provide evidence that the concurrent up-regulation of Rap1 activity and increased KIF14 levels in several cancers is needed to reach optimal levels of Rap1-Radil signaling, integrin activation, and cell-matrix adhesiveness required for tumor progression.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. KIF14, Cancer Genetics Web: http://www.cancer-genetics.org/KIF14.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999