XIAP

Gene Summary

Gene:XIAP; X-linked inhibitor of apoptosis, E3 ubiquitin protein ligase
Aliases: API3, ILP1, MIHA, XLP2, BIRC4, IAP-3, hIAP3, hIAP-3
Location:Xq25
Summary:This gene encodes a protein that belongs to a family of apoptotic suppressor proteins. Members of this family share a conserved motif termed, baculovirus IAP repeat, which is necessary for their anti-apoptotic function. This protein functions through binding to tumor necrosis factor receptor-associated factors TRAF1 and TRAF2 and inhibits apoptosis induced by menadione, a potent inducer of free radicals, and interleukin 1-beta converting enzyme. This protein also inhibits at least two members of the caspase family of cell-death proteases, caspase-3 and caspase-7. Mutations in this gene are the cause of X-linked lymphoproliferative syndrome. Alternate splicing results in multiple transcript variants. Pseudogenes of this gene are found on chromosomes 2 and 11.[provided by RefSeq, Feb 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:E3 ubiquitin-protein ligase XIAP
HPRD
Source:NCBIAccessed: 21 August, 2015

Ontology:

What does this gene/protein do?
Show (20)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 21 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 21 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: XIAP (cancer-related)

Seigal BA, Connors WH, Fraley A, et al.
The discovery of macrocyclic XIAP antagonists from a DNA-programmed chemistry library, and their optimization to give lead compounds with in vivo antitumor activity.
J Med Chem. 2015; 58(6):2855-61 [PubMed] Related Publications
Affinity selection screening of macrocycle libraries derived from DNA-programmed chemistry identified XIAP BIR2 and BIR3 domain inhibitors that displace bound pro-apoptotic caspases. X-ray cocrystal structures of key compounds with XIAP BIR2 suggested potency-enhancing structural modifications. Optimization of dimeric macrocycles with similar affinity for both domains were potent pro-apoptotic agents in cancer cell lines and efficacious in shrinking tumors in a mouse xenograft model.

Safa M, Tavasoli B, Manafi R, et al.
Indole-3-carbinol suppresses NF-κB activity and stimulates the p53 pathway in pre-B acute lymphoblastic leukemia cells.
Tumour Biol. 2015; 36(5):3919-30 [PubMed] Related Publications
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common type of cancer in children. Dramatic improvements in primary therapy for childhood ALL have led to an overall cure rate of 80 %, providing opportunities for innovative combined-modality strategies that would increase cure rates while reducing the toxic side effects of current intensive regimens. In this study, we report that indole-3-carbinol (I3C), a natural phytochemical found in cruciferous vegetables, had anti-leukemic properties in BCP-ALL NALM-6 cells. I3C induced cell growth inhibition by G1 cell cycle arrest and triggered apoptosis in a dose- and time-dependent manner. p53, p21, and Bax proteins showed increased expression after I3C treatment. Real-time PCR analysis of pro-apoptotic p53 target genes revealed up-regulation of PUMA, NOXA, and Apaf-1. I3C also suppressed constitutive nuclear factor-κB (NF-κB) activation and inhibited the protein expression of NF-kappa B-regulated antiapoptotic (IAP1, Bcl-xL, Bcl-2, XIAP) and proliferative (c-Myc) gene products. Coadministration of I3C with the topoisomerase II inhibitor, doxorubicin, potentiates cytotoxic effects compared with either agent alone. Apoptosis induction by the drug combination was associated with enhanced caspase-9 activation and PARP cleavage. Furthermore, I3C abolished doxorubicin-induced NF-κB activity as evidenced by decreased nuclear accumulation of p65, inhibition of IκBα phosphorylation and its degradation, and decreased NF-κB DNA-binding activity. Western blot analysis revealed that doxorubicin-induced Bcl-2 protein expression was inhibited by I3C. Overall, our results indicated that using nontoxic agents, such as I3C, in combination with anthracyclines might provide a new insight into the development of novel combination therapies in childhood BCP-ALL.

Saha S, Mukherjee S, Mazumdar M, et al.
Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin.
Transl Res. 2015; 165(5):558-77 [PubMed] Related Publications
Chemotherapy resistance is a major clinical challenge for the management of locally advanced breast cancer. Accumulating evidence suggests a major role of cancer stem cells (CSCs) in chemoresistance evoking the requirement of drugs that selectively target CSCs in combination with chemotherapy. Here, we report that mithramycin A, a known specificity protein (Sp)1 inhibitor, sensitizes breast CSCs (bCSCs) by perturbing the expression of drug efflux transporters, ATP-binding cassette sub-family G, member 2 (ABCG2) and ATP-binding cassette sub-family C, member 1 (ABCC1), survival factors, B-cell lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP), and, stemness regulators, octamer-binding transcription factor 4 (Oct4) and Nanog, which are inherently upregulated in these cells compared with the rest of the tumor population. In-depth analysis revealed that aberrant overexpression of Sp1 in bCSCs transcriptionally upregulates (1) resistance-promoting genes to protect these cells from genotoxic therapy, and (2) stemness regulators to sustain self-renewal potential of these cells. However, mithramycin A causes transcriptional suppression of these chemoresistant and self-renewal genes by inhibiting Sp1 recruitment to their promoters. Under such antisurvival microenvironment, chemotherapeutic agent doxorubicin induces apoptosis in bCSCs via DNA damage-induced reactive oxygen species generation. Cumulatively, our findings raise the possibility that mithramycin A might emerge as a promising drug in combinatorial therapy with the existing chemotherapeutic agents that fail to eliminate CSCs. This will consequently lead to the improvement of therapeutic outcome for the treatment-resistant breast carcinomas.

Jiang L, Wu X, Wang P, et al.
Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma.
J Cancer Res Clin Oncol. 2015; 141(6):971-81 [PubMed] Related Publications
PURPOSE: We have previously reported that forkhead box M1 (FoxM1) transcription factor was overexpressed in laryngeal squamous cell carcinoma (LSCC) and was associated with development of LSCC. However, there are limited studies regarding the functional significance of FoxM1 and FoxM1 inhibitor thiostrepton in LSCC. Therefore, the aim of this study was to examine both in vitro and in vivo activity of FoxM1 inhibitor thiostrepton against LSCC cell line and nude mice.
METHODS: Cell viability was studied by CCK-8 assay. Cell growth was evaluated by CFSE staining and cell cycle analysis. Apoptosis was measured by flow cytometry. The mRNA and protein expression were detected by quantitative real-time RT-PCR, Western blot and immunohistochemical staining. Xenograft model of tumor formation was used to investigate how thiostrepton influences tumorigenesis in vivo.
RESULTS: Overexpression of FoxM1 in LSCC cells was down-regulated by thiostrepton in a dose-dependent manner. Thiostrepton caused dose- and time-dependent suppression of cell viability of LSCC. Moreover, thiostrepton induced cell cycle arrest at S phase at early time and inhibited DNA synthesis in LSCC cells in a dose- and time-dependent manner by down-regulation of cyclin D1 and cyclin E1. Thiostrepton also induced dose- and time-dependent apoptosis of LSCC cells by down-regulation of Bcl-2, up-regulation of Bax and p53, and inducing release of cytochrome c accompanied by activation of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. In addition, z-VAD-fmk, a universal inhibitor of caspases, prevented activation of cleavage caspase-3 and abrogates cell death induced by thiostrepton treatment. Furthermore, FADD and cleaved caspase-8 were activated, and expression of cIAP1, XIAP and survivin were inhibited by thiostrepton. Finally, treatment of LSCC cell line xenografts with thiostrepton resulted in tumorigenesis inhibition of tumors in nude mice by reducing proliferation and inducing apoptosis of LSCC cells.
CONCLUSIONS: Collectively, our finding suggest that targeting FoxM1 by thiostrepton inhibit growth and induce apoptosis of LSCC through mitochondrial- and caspase-dependent intrinsic pathway and Fas-dependent extrinsic pathway as well as IAP family. Thiostrepton may represent a novel lead compound for targeted therapy of LSCC.

Elkady AI, Hussein RA, Abu-Zinadah OA
Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination.
World J Gastroenterol. 2014; 20(41):15275-88 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells.
METHODS: Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells.
RESULTS: Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 μg/mL for CAERS, 65, 85 and 120 μg/mL for CFEZO and 20, 25 and 45 μg/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin/cyclin-dependent kinase-4 and c-Myc.
CONCLUSION: These data suggest that a combination of CAERS and CFEZO is a promising treatment for the prevention of colon cancer.

Jiang L, Wang P, Chen L, Chen H
Down-regulation of FoxM1 by thiostrepton or small interfering RNA inhibits proliferation, transformation ability and angiogenesis, and induces apoptosis of nasopharyngeal carcinoma cells.
Int J Clin Exp Pathol. 2014; 7(9):5450-60 [PubMed] Free Access to Full Article Related Publications
Nasopharyngeal carcinoma (NPC) is a head and neck malignant tumor rare throughout most of the world but common in Southern China. Forkhead box M1 (FoxM1) transcription factor has been shown to play important role in the development and progression of human cancers. We have previously found that FoxM1 was overexpressed in NPC patients and was associated with development of NPC. However, the exact functional significance of FoxM1 and its inhibitor thiostrepton in NPC is little known. The purpose of this study was to investigate in vitro activity of down-regulation of FoxM1 by thiostrepton or siRNA against NPC cell line. FoxM1 inhibition by thiostrepton or siRNA inhibited proliferation of NPC cells by down-regulation of cyclin D1 and cyclin E1. Transformation ability of NPC cells was suppressed by thiostrepton. FoxM1 inhibition by thiostrepton induced apoptosis of NPC cells by down-regulation of bcl-2, up-regulation of bax and p53, and inducing release of cytochrome c accompanied by activation of caspase-9, cleaved caspase-3 and cleaved PARP. In addition, FoxM1 inhibition by siRNA transfection also down-regulated expression of bcl-2 and up-regulated expression of bax, p53, cleaved caspase-3 and cleaved PARP. Furthermore, FADD and cleaved caspase-8 expression were up-regulated by thiostrepton or FoxM1 siRNA, and expression of cIAP1 and XIAP was inhibited by thiostrepton. At last, FoxM1 inhibition by thiostrepton reduced the expression of HIF-1α and VEGF, and transfection of FoxM1 siRNA decreased VEGF expression but not HIF-1α. Collectively, our finding suggest that FoxM1 inhibition by thiostrepton or siRNA suppresses proliferation, transformation ability, angiogenesis, and induces apoptosis of NPC.

Ando M, Hoyos V, Yagyu S, et al.
Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity.
Cancer Gene Ther. 2014; 21(11):472-82 [PubMed] Free Access to Full Article Related Publications
Delivery of suicide genes to solid tumors represents a promising tumor therapy strategy. However, slow or limited killing by suicide genes and ineffective targeting of the tumor has reduced effectiveness. We have adapted a suicide system based on an inducible caspase-9 (iC9) protein that is activated using a specific chemical inducer of dimerization (CID) for adenoviral-based delivery to lung tumors via mesenchymal stromal cells (MSCs). Four independent human non-small cell lung cancer (NSCLC) cell lines were transduced with adenovirus encoding iC9, and all underwent apoptosis when iC9 was activated by adding CID. However, there was a large variation in the percentage of cell killing induced by CID across the different lines. The least responsive cell lines were sensitized to apoptosis by combined inhibition of the proteasome using bortezomib. These results were extended to an in vivo model using human NSCLC xenografts. E1A-expressing MSCs replicated Ad.iC9 and delivered the virus to lung tumors in SCID mice. Treatment with CID resulted in some reduction of tumor growth, but addition of bortezomib led to greater reduction of tumor size. The enhanced apoptosis and anti-tumor effect of combining MSC-delivered Ad.iC9, CID and bortezomib appears to be due to increased stabilization of active caspase-3, as proteasomal inhibition increased the levels of cleaved caspase-9 and caspase-3. Knockdown of X-linked inhibitor of apoptosis protein (XIAP), a caspase inhibitor that targets active caspase-3 to the proteasome, also sensitized iC9-transduced cells to CID, suggesting that blocking the proteasome counteracts XIAP to permit apoptosis. Thus, MSC-based delivery of the iC9 suicide gene to human NSCLC effectively targets lung cancer cells for elimination. Combining this therapy with bortezomib, a drug that is otherwise inactive in this disease, further enhances the anti-tumor activity of this strategy.

Lee SH, Lee JY, Jung CL, et al.
A novel antagonist to the inhibitors of apoptosis (IAPs) potentiates cell death in EGFR-overexpressing non-small-cell lung cancer cells.
Cell Death Dis. 2014; 5:e1477 [PubMed] Related Publications
In the effort to develop an efficient chemotherapy drug for the treatment of non-small-cell lung cancer (NSCLC), we analyzed the anti-tumorigenic effects of a novel small molecule targeting the inhibitor of apoptosis (IAPs), HM90822B, on NSCLC cells. HM90822B efficiently decreased IAP expression, especially that of XIAP and survivin, in several NSCLC cells. Interestingly, cells overexpressing epidermal growth factor receptor (EGFR) due to the mutations were more sensitive to HM90822B, undergoing cell cycle arrest and apoptosis when treated. In xenograft experiments, inoculated EGFR-overexpressing NSCLC cells showed tumor regression when treated with the inhibitor, demonstrating the chemotherapeutic potential of this agent. Mechanistically, decreased levels of EGFR, Akt and phospho-MAPKs were observed in inhibitor-treated PC-9 cells on phosphorylation array and western blotting analysis, indicating that the reagent inhibited cell growth by preventing critical cell survival signaling pathways. In addition, gene-specific knockdown studies against XIAP and/or EGFR further uncovered the involvement of Akt and MAPK pathways in HM90822B-mediated downregulation of NSCLC cell growth. Together, these results support that HM90822B is a promising candidate to be developed as lung tumor chemotherapeutics by targeting oncogenic activities of IAP together with inhibiting cell survival signaling pathways.

Hu R, Yang Y, Liu Z, et al.
The XIAP inhibitor Embelin enhances TRAIL-induced apoptosis in human leukemia cells by DR4 and DR5 upregulation.
Tumour Biol. 2015; 36(2):769-77 [PubMed] Related Publications
The present study was designed to explore the effects of low-toxicity Embelin on TRAIL-induced apoptosis and its possible mechanism in human leukemia cells. Our study showed that low-toxicity Embelin enhanced TRAIL-induced apoptosis through DR4 and DR5 upregulation and caspase activation in HL-60 cells. Pan-caspase inhibitor Z-VAD-FMK inhibited cell apoptosis induced by TRAIL alone or combined with low-toxicity Embelin, which indicated the cytotoxic effect is mediated by caspase-dependent apoptosis. Although Embelin is an X chromosome-linked inhibitor-of-apoptosis protein (XIAP) inhibitor, an XIAP independent effect on cell death was detected in HL-60 cells exposed to low-toxicity Embelin and TRAIL. Low-toxicity Embelin upregulated DR4 and DR5 expression to enhance TRAIL-induced apoptosis. The sensitizing effects of Embelin on TRAIL-induced apoptosis were markedly attenuated when DR4/DR5 was knocked down. These data suggested that low-toxicity Embelin enhanced TRAIL-induced cell apoptosis through DR4 and DR5 upregulation, indicating that combination of low-toxicity Embelin and TRAIL may become as a potential antileukemia strategy.

Zhao HJ, Ren LL, Wang ZH, et al.
MiR-194 deregulation contributes to colorectal carcinogenesis via targeting AKT2 pathway.
Theranostics. 2014; 4(12):1193-208 [PubMed] Free Access to Full Article Related Publications
Recent studies have increasingly linked microRNAs to colorectal cancer (CRC). MiR-194 has been reported deregulated in different tumor types, whereas the function of miR-194 in CRC largely remains unexplored. Here we investigated the biological effects, mechanisms and clinical significance of miR-194. Functional assay revealed that overexpression of miR-194 inhibited CRC cell viability and invasion in vitro and suppressed CRC xenograft tumor growth in vivo. Conversely, block of miR-194 in APC(Min/+) mice promoted tumor growth. Furthermore, miR-194 reduced the expression of AKT2 both in vitro and in vivo. Clinically, the expression of miR-194 gradually decreased from 20 normal colorectal mucosa (N-N) cases through 40 colorectal adenomas (CRA) cases and then to 40 CRC cases, and was negatively correlated with AKT2 and pAKT2 expression. Furthermore, expression of miR-194 in stool samples was gradually decreased from 20 healthy cases, 20 CRA cases, then to 28 CRC cases. Low expression of miR-194 in CRC tissues was associated with large tumor size (P=0.006), lymph node metastasis (P=0.012) and shorter survival (HR =2.349, 95% CI = 1.242 to 4.442; P=0.009). In conclusion, our data indicated that miR-194 acted as a tumor suppressor in the colorectal carcinogenesis via targeting PDK1/AKT2/XIAP pathway, and could be a significant diagnostic and prognostic biomarker for CRC.

Hu R, Li J, Liu Z, et al.
GDC-0152 induces apoptosis through down-regulation of IAPs in human leukemia cells and inhibition of PI3K/Akt signaling pathway.
Tumour Biol. 2015; 36(2):577-84 [PubMed] Related Publications
The inhibitor of apoptosis proteins (IAPs) is closely related to leukemia apoptosis. The present study was undertaken to determine the molecular mechanisms by which GDC-0152, an IAP inhibitor, induces apoptosis in human leukemia cells (K562 and HL60 cells). GDC-0152 inhibited the proliferation of K562 and HL60 cells in a dose- and time-dependent manner, which was largely attributed to intrinsic apoptosis. GDC-0152 down-regulated the IAPs including X-linked inhibitor of apoptosis protein (XIAP), cellular inhibitor of apoptosis protein-1 (cIAP1), and cellular inhibitor of apoptosis protein-2 (cIAP2) expression and induced the activation of caspase-9 and caspase-3. GDC-0152-induced cell proliferation inhibition in K562 cells was prevented by pan-caspase inhibitor. GDC-0152 also inhibited PI3K and Akt expression in K562 and HL60 cells. Taken together, these findings suggest that GDC-0152 results in human leukemia apoptosis through caspase-dependent mechanisms involving down-regulation of IAPs and inhibition of PI3K/Akt signaling.

Qanungo S, Uys JD, Manevich Y, et al.
N-acetyl-L-cysteine sensitizes pancreatic cancers to gemcitabine by targeting the NFκB pathway.
Biomed Pharmacother. 2014; 68(7):855-64 [PubMed] Free Access to Full Article Related Publications
First-line therapy for pancreatic cancer is gemcitabine. Although tumors may initially respond to the gemcitabine treatment, soon tumor resistance develops leading to treatment failure. Previously, we demonstrated in human MIA PaCa-2 pancreatic cancer cells that N-acetyl-l-cysteine (NAC), a glutathione (GSH) precursor, prevents NFκB activation via S-glutathionylation of p65-NFκB, thereby blunting expression of survival genes. In this study, we documented the molecular sites of S-glutathionylation of p65, and we investigated whether NAC can suppress NFκB signaling and augment a therapeutic response to gemcitabine in vivo. Mass spectrometric analysis of S-glutathionylated p65-NFκB protein in vitro showed post-translational modifications of cysteines 38, 105, 120, 160 and 216 following oxidative and nitrosative stress. Circular dichroism revealed that S-glutathionylation of p65-NFκB did not change secondary structure of the protein, but increased tryptophan fluorescence revealed altered tertiary structure. Gemcitabine and NAC individually were not effective in decreasing MIA PaCa-2 tumor growth in vivo. However, combination treatment with NAC and gemcitabine decreased tumor growth by approximately 50%. NAC treatment also markedly enhanced tumor apoptosis in gemcitabine-treated mice. Compared to untreated tumors, gemcitabine treatment alone increased p65-NFκB nuclear translocation (3.7-fold) and DNA binding (2.5-fold), and these effects were blunted by NAC. In addition, NAC plus gemcitabine treatment decreased anti-apoptotic XIAP protein expression compared to gemcitabine alone. None of the treatments, however, affected extent of tumor hypoxia, as assessed by EF5 staining. Together, these results indicate that adjunct therapy with NAC prevents NFκB activation and improves gemcitabine chemotherapeutic efficacy.

Li C, Wang J, Zhang H, et al.
Interferon-stimulated gene 15 (ISG15) is a trigger for tumorigenesis and metastasis of hepatocellular carcinoma.
Oncotarget. 2014; 5(18):8429-41 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with poor prognosis. IFN-stimulated genes 15 (ISG15) is an ubiquitin-like molecule that is strongly upregulated by type I interferons as a primary response to diverse microbial and cellular stress stimuli. However, the role of ISG15 in HCC remains unclear. In this study, we investigated the function of ISG15 during HCC progression and related mechanism using clinicopathological data, cell line and xenograft model. Our results indicated that ISG15 is highly expressed in HCC tissues and multiple HCC cell lines. ISG15 expression is significantly associated with the differentiation grade, metastatic of tumor and survival of HCC patients. However, the expression of ISG15 is not affected by HBV infection. ISG15 promotes the proliferation and migration of hepatocarcinoma cells through maintaining Survivin protein stabilization via sequestering XIAP from interacting with Survivin. Knowing down ISG15 with SiRNA inhibited the xenografted tumor growth and prolonged the lifespan of tumor-bearing mice. All these results support that ISG15 high expression is an intrinsic feature for HCC and a trigger for tumorigenesis and metastasis. ISG15 may be a prognostic biomarker and the inhibition of ISG15 could provide a therapeutic advantage for HCC patients over-expressing ISG15.

Wang S, Chen X, Tang M
MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2.
Oncol Rep. 2014; 32(6):2824-30 [PubMed] Related Publications
MicroRNA (miR)-216a expression is significantly downregulated in human pancreatic cancer, however, the underlying mechanism remains unknown. In the present study, we aimed to identify and characterize the direct target gene and potential function of miR-216a in pancreatic cancer cells. Bioinformatics analysis and dual-luciferase reporter gene assay showed that Janus kinase 2 (JAK2) was a direct target gene of miR-216a. Quantitative polymerase chain reaction and western blot analysis demonstrated that miR-216a decreased the mRNA and protein levels of JAK2 in pancreatic cancer cells. Phosphorylation of the signal transducer and activator of transcription 3 (STAT3) was also downregulated by miR-216a, whereas the anti-miR-216a treatment had an opposite effect. Treatment of pancreatic cancer cells with miR-216a significantly inhibited cell growth and promoted cell apoptosis. In addition, the downstream genes of JAK2/STAT3, survivin and X-linked inhibitor of apoptosis protein, which are anti‑apoptotic genes, were also decreased by miR-216a. Moreover, miR-216a overexpression markedly inhibited the JAK2/STAT3 signaling pathway and xenograft tumor growth in vivo. Compared with miR-216a treatment, anti-miR-216a treatment exhibited opposite effects throughout the entire experiment, confirming the inhibitory effect of miR-216a on pancreatic cancer by regulating the JAK2/STAT3 signaling pathway. The results provided evidence that miR-216a targeting JAK2 negatively regulated the development of pancreatic cancer cells and may be used to develop a miRNA-based therapeutic strategy against pancreatic cancer.

Cao Z, Li X, Li J, et al.
X-linked inhibitor of apoptosis protein (XIAP) lacking RING domain localizes to the nuclear and promotes cancer cell anchorage-independent growth by targeting the E2F1/Cyclin E axis.
Oncotarget. 2014; 5(16):7126-37 [PubMed] Free Access to Full Article Related Publications
The inhibitor of apoptosis protein XIAP (X-linked inhibitor of apoptosis protein) is a well-documented protein that is located in cytoplasm acting as a potent regulator of cell apoptosis. Here, we showed that expressing XIAP with RING (Really Interesting New Gene) domain deletion (XIAP△RING) in cancer cells promoted cancer cell anchorage-independent growth and G1/S phase transition companied with increasing cyclin e transcription activity and protein expression. Further studies revealed that XIAP△RING was mainly localized in nuclear with increased binding with E2F1, whereas XIAP with BIR (Baculoviral IAP Repeat) domains deletion (XIAP△BIRs) was entirely presented in cytoplasma with losing its binding with E2F1, suggesting that RING domain was able to inhibit BIR domains nuclear localization, by which impaired BIRs binding with E2F1 in cellular nucleus in intact cells. These studies identified a new function of XIAP protein in cellular nucleus is to regulate E2F1 transcriptional activity by binding with E2F1 in cancer cells. Our current finding of an effect of XIAP△RING expression on cancer cell anchorage-independent growth suggests that overexpression of this protein may contribute to genetic instability associated with cell cycle and checkpoint perturbations, in addition to its impact on cellular apoptosis.

Bhoopathi P, Quinn BA, Gui Q, et al.
Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered polyinosine-polycytidylic acid.
Cancer Res. 2014; 74(21):6224-35 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Polyinosine-polycytidylic acid [pIC] is a synthetic dsRNA that acts as an immune agonist of TLR3 and RLR to activate dendritic and natural killer cells that can kill tumor cells. pIC can also trigger apoptosis in pancreatic ductal adenocarcinoma cells (PDAC) but its mechanism of action is obscure. In this study, we investigated the potential therapeutic activity of a formulation of pIC with polyethylenimine ([pIC](PEI)) in PDAC and investigated its mechanism of action. [pIC](PEI) stimulated apoptosis in PDAC cells without affecting normal pancreatic epithelial cells. Mechanistically, [pIC](PEI) repressed XIAP and survivin expression and activated an immune response by inducing MDA-5, RIG-I, and NOXA. Phosphorylation of AKT was inhibited by [pIC](PEI) in PDAC, and this event was critical for stimulating apoptosis through XIAP and survivin degradation. In vivo administration of [pIC](PEI) inhibited tumor growth via AKT-mediated XIAP degradation in both subcutaneous and quasi-orthotopic models of PDAC. Taken together, these results offer a preclinical proof-of-concept for the evaluation of [pIC](PEI) as an immunochemotherapy to treat pancreatic cancer.

Cheng Q, Zhang X, Xu X, Lu X
MiR-618 inhibits anaplastic thyroid cancer by repressing XIAP in one ATC cell line.
Ann Endocrinol (Paris). 2014; 75(4):187-93 [PubMed] Related Publications
X-linked inhibitor of apoptosis protein (XIAP) is a major factor in cancer growth and progression. Reduction of XIAP induces apoptosis of anaplastic thyroid cancer (ATC), which accounts for more than 50% of thyroid cancer mortality. MicroRNAs (miRNAs) are short non-coding RNA molecules, which modulate gene expression via interaction with mRNA by binding to the 3'-untranslated region (3'-UTR), playing a critical role in cell proliferation, migration, and invasion. In this study, we recruited the ATC cell line 8305C and normal human thyroid cell Nthy-ori 3-1, aiming to find the miRNA which could regulate XIAP and therefore inhibit the growth and invasion of ATC. We first used quantitative real-time PCR (qPCR) to reveal that XIAP mRNA expression was 4.6±0.56 folds (P=0.029) up-regulated in 8305C cells, compared with Nthy-ori 3-1 cells. Then miR-618, predicted to target XIAP directly, was detected 0.24±0.06 folds (P=0.019) down-regulated in 8305C cells. Next we used Luciferase assay showing that XIAP was a target gene of miR-618, which could repress the XIAP expression at both mRNA and protein levels. After that, CCK-8 assay was performed to show that over-expression of miR-618 could inhibit the growth of 8305C cells. Finally, we employed transwell method to prove that miR-618 could prevent the invasion and migration of 8305C cells. In conclusion, our collective data showed that over-expression of miR-618 could inhibit ATC cells by targeting XIAP gene.

Elkady AI, Hussein RA, Abu-Zinadah OA
Effects of crude extracts from medicinal herbs Rhazya stricta and Zingiber officinale on growth and proliferation of human brain cancer cell line in vitro.
Biomed Res Int. 2014; 2014:260210 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Hitherto, limited clinical impact has been achieved in the treatment of glioblastoma (GBMs). Although phytochemicals found in medicinal herbs can provide mankind with new therapeutic remedies, single agent intervention has failed to bring the expected outcome in clinical trials. Therefore, combinations of several agents at once are gaining increasing attractiveness. In the present study, we investigated the effects of crude alkaloid (CAERS) and flavonoid (CFEZO) extracts prepared from medicinal herbs, Rhazya stricta and Zingiber officinale, respectively, on the growth of human GBM cell line, U251. R. stricta and Z. officinale are traditionally used in folkloric medicine and have antioxidant, anticarcinogenic, and free radical scavenging properties. Combination of CAERS and CFEZO treatments synergistically suppressed proliferation and colony formation and effectively induced morphological and biochemical features of apoptosis in U251 cells. Apoptosis induction was mediated by release of mitochondrial cytochrome c, increased Bax : Bcl-2 ratio, enhanced activities of caspase-3 and -9, and PARP-1 cleavage. CAERS and CFEZO treatments decreased expression levels of nuclear NF-κBp65, survivin, XIAP, and cyclin D1 and increased expression level of p53, p21, and Noxa. These results suggest that combination of CAERS and CFEZO provides a useful foundation for studying and developing novel chemotherapeutic agents for the treatment of GBM.

Li CH, Xu F, Chow S, et al.
Hepatitis B virus X protein promotes hepatocellular carcinoma transformation through interleukin-6 activation of microRNA-21 expression.
Eur J Cancer. 2014; 50(15):2560-9 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and chronic hepatitis B virus (HBV) infection is the major risk factor of HCC. The virus encodes HBV X (HBx) protein that plays a critical role in the development of HCC. Studies have revealed numerous HBx-altered genes and signalling pathways that heavily contribute to tumourigenesis of non-tumour hepatocytes. However, the role of HBx in regulating other critical gene regulators such as microRNAs is poorly understood, which impedes the exploration of a complete HBx-associated carcinogenic network. Besides, critical microRNAs that drive the transformation of non-tumour hepatocytes are yet to be identified. Here, we overexpressed C-terminal truncated HBx protein in a non-tumour hepatocyte cell line MIHA, and measured a panel of cancer-associated miRNAs. We observed that oncogenic miR-21 was upregulated upon ectopic expression of this viral protein variant. HBx-miR-21 pathway was prevalent in HCC cells as inhibition of HBx in Hep3B and PLC/PRF/5 cells significantly suppressed miR-21 expression. Subsequently, we showed that the upregulation of miR-21 was mediated by HBx-induced interleukin-6 pathway followed by activation of STAT3 transcriptional factor. The high dependency of miR-21 expression to HBx protein suggested a unique viral oncogenic pathway that could aberrantly affect a network of gene expression. Importantly, miR-21 was essential in the HBx-induced transformation of non-tumour hepatocytes. Inhibition of miR-21 effectively attenuated anchorage-independent colony formation and subcutaneous tumour growth of MIHA cells. Our study suggested that overexpression of miR-21 was critical to promote early carcinogenesis of hepatocytes upon HBV infection.

Luk SU, Xue H, Cheng H, et al.
The BIRC6 gene as a novel target for therapy of prostate cancer: dual targeting of inhibitors of apoptosis.
Oncotarget. 2014; 5(16):6896-908 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Treatment resistance, the major challenge in the management of advanced prostate cancer, is in part based on resistance to apoptosis. The Inhibitor of Apoptosis (IAP) family is thought to play key roles in survival and drug resistance of cancer via inhibition of apoptosis. Of the IAP family members, cIAP1, cIAP2, XIAP and survivin are known to be up-regulated in prostate cancer. BIRC6, a much less studied IAP member, was recently shown to be elevated in castration-resistant prostate cancer (CRPC). In the present study, we showed a correlation between elevated BIRC6 expression in clinical prostate cancer specimens and poor patient prognostic factors, as well as co-upregulation of certain IAP members. In view of this, we designed antisense oligonucleotides that simultaneously target BIRC6 and another co-upregulated IAP member (dASOs). Two dASOs, targeting BIRC6+cIAP1 and BIRC6+survivin, showed substantial inhibition of CRPC cells proliferation, exceeding that obtained with single BIRC6 targeting. The growth inhibition was associated with increased apoptosis, cell cycle arrest and suppression of NFkB activation. Moreover, treatment with both dASOs led to significantly lower viable tumor volume in vivo, without major host toxicity. This study shows that BIRC6-based dual IAP-targeting ASOs represent potential novel therapeutic agents against advanced prostate cancer.

Fu LL, Xie T, Zhang SY, Liu B
Eukaryotic elongation factor-2 kinase (eEF2K): a potential therapeutic target in cancer.
Apoptosis. 2014; 19(10):1527-31 [PubMed] Related Publications
Eukaryotic elongation factor-2 kinase (eEF2K), encoded by the EEF2K gene, is well-known to be a Ca(2+)/calmodulin (CaM)-dependent kinase which can negatively modulate protein synthesis. It is highly conserved among eukaryotes from mammals to invertebrates, of which human and mouse may have 99 % overall amino acid identity. This kinase can phosphorylate eukaryotic elongation factor-2 (eEF2) or undergo the process of autophosphorylation at multiple sites to inhibit its function in translation elongation. Due to the fact that regulation of eEF2 by eEF2K is an evolutionarily conserved mechanism, eEF2K activity may confer tumor cell adaption to metabolic stress under acute nutrient depletion, and the high expressed level of eEF2K has been found in several types of malignancies. eEF2K may modulate the expression of some apoptotic proteins such as XIAP, c-FLIPL, Bcl-XL, PI3KCI and p70(S6K) to inhibit apoptotic process in cancer. On the other hand, it plays a regulatory role in autophagy involved in mTORC1, AMPK and Atg8, thereby promoting cancer cell survival. Additionally, eEF2K may play a crucial role in the crosstalk between apoptosis and autophagy in cancer. Collectively, these findings have led to the conclusions that eEF2K may contribute to carcinogenesis, and thus being utilized as a potential target for future cancer therapy.

Jang JH, Cho YC, Kim KH, et al.
BAI, a novel Cdk inhibitor, enhances farnesyltransferase inhibitor LB42708-mediated apoptosis in renal carcinoma cells through the downregulation of Bcl-2 and c-FLIP (L).
Int J Oncol. 2014; 45(4):1680-90 [PubMed] Related Publications
Previously, we reported the potential of a novel Cdk inhibitor, 2-[1,1'-biphenyl]-4-yl-N-[5-(1,1-dioxo-1λ6-isothiazolidin-2-yl)-1H-indazol-3-yl]acetamide (BAI) as a cancer chemotherapeutic agent. In this study, we investigated mechanisms by which BAI modulates FTI-mediated apoptosis in human renal carcinoma Caki cells. BAI synergizes with FTI to activate DEVDase, cleavage of poly ADP-ribose polymerase (PARP), and degradation of various anti-apoptotic proteins in Caki cells. BAI plus LB42708-induced apoptosis was inhibited by pretreatment with pan-caspase inhibitor, z-VAD-fmk, but not by overexpression of CrmA. The ROS scavenger, N-acetylcysteine (NAC) did not reduce BAI plus LB4270-induced apoptosis. Co-treatment of BAI and LB42708 reduced the mitochondrial membrane potential (MMP, ∆Ψm) in a time-dependent manner, and induced release of AIF and cytochrome c from mitochondria in Caki cells. Furthermore, BAL plus LB42708 induced downregulation of anti-apoptotic proteins [c-FLIP (L), c-FLIP (s), Bcl-2, XIAP, and Mcl-1 (L)]. Especially, we found that BAI plus LB42708-induced apoptosis was significantly attenuated by overexpression of Bcl-2 and partially blocked by overexpression of c-FLIP (L). Taken together, our results show that the activity of BAI plus LB42708 modulate multiple components in apoptotic response of human renal Caki cells, and indicate a potential as combinational therapeutic agents for preventing cancer such as renal carcinoma.

Zhu LM, Shi DM, Dai Q, et al.
Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma.
Oncotarget. 2014; 5(14):5403-15 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment.

Skender B, Hofmanová J, Slavík J, et al.
DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism.
Biochim Biophys Acta. 2014; 1841(9):1308-17 [PubMed] Related Publications
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.

Moreno-Martínez D, Nomdedeu M, Lara-Castillo MC, et al.
XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells.
Oncotarget. 2014; 5(12):4337-46 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Acute myeloid leukemia (AML) is a neoplasia characterized by the rapid expansion of immature myeloid blasts in the bone marrow, and marked by poor prognosis and frequent relapse. As such, new therapeutic approaches are required for remission induction and prevention of relapse. Due to the higher chemotherapy sensitivity and limited life span of more differentiated AML blasts, differentiation-based therapies are a promising therapeutic approach. Based on public available gene expression profiles, a myeloid-specific differentiation-associated gene expression pattern was defined as the therapeutic target. A XIAP inhibitor (Dequalinium chloride, DQA) was identified in an in silico screening searching for small molecules that induce similar gene expression regulation. Treatment with DQA, similarly to Embelin (another XIAP inhibitor), induced cytotoxicity and differentiation in AML. XIAP inhibition differentially impaired cell viability of the most primitive AML blasts and reduced clonogenic capacity of AML cells, sparing healthy mature blood and hematopoietic stem cells. Taken together, these results suggest that XIAP constitutes a potential target for AML treatment and support the evaluation of XIAP inhibitors in clinical trials.

Chen SH, Hsia SH, Lin JJ, et al.
A possible familial lymphoproliferative disorder in two male siblings of children with recurrent wheezing and lung infections since infancy.
Int J Hematol. 2014; 100(4):407-12 [PubMed] Related Publications
Malignancies that result in wheezing in infants are very uncommon. Given its rarity in children, the diagnosis is challenging, and in the absence of a high index of suspicion, delayed diagnosis is not uncommon. Here we report two male siblings of children who presented with recurrent wheezing and recurrent lung infections since infancy. Both children showed no laboratory evidence of immunodeficiency. Lymphocytic interstitial pneumonia or hypersensitivity pneumonitis was histologically suspected in lung biopsy specimens from the older brother. He subsequently developed Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis and died. Based on the family history, we screened mutations among PRF1, Munc13-4, STX11, SH2D1A, and XIAP genes for the younger brother, but did not identify any mutations. He also underwent lung biopsy, which showed interstitial infiltration of lymphoid cells. In situ hybridization for EBV-encoded RNA showed a positive nuclear signal in the lymphoid cells. The presence of clonal B-cell proliferations was detected by clonally rearranged immunoglobulin studies. Lymphomatoid granulomatosis grade 3 was finally diagnosed. The progression of disease was rapid, and the patient died, despite rituximab therapy. The similar clinical manifestations in two male siblings suggest the possibility that a previously undescribed genetic defect contributed to these familial lymphoproliferative malignancies.

Kim KC, Choi EH, Lee C
Axl receptor tyrosine kinase is a novel target of apigenin for the inhibition of cell proliferation.
Int J Mol Med. 2014; 34(2):592-8 [PubMed] Related Publications
The Axl receptor tyrosine kinase (RTK), along with Tyro 3 and Mer, belongs to the TAM subfamily that promotes survival, stimulates proliferation and/or inhibits apoptosis. In various types of human cancer, including breast, lung and prostate cancer, Axl expression is increased and correlates with an advanced clinical stage. In this study, we examined whether apigenin has an effect on Axl expression, which in turn can affect cell proliferation. The treatment of the non‑small cell lung cancer (NSCLC) cells, A549 and H460, with apigenin decreased Axl mRNA and protein expression in a dose‑dependent manner. Axl promoter activity was also inhibited by apigenin, indicating that apigenin suppressed Axl expression at the transcriptional level. Upon treatment with apigenin, the viability of both the A549 and H460 cells was gradually decreased and the anti-proliferative effects were further confirmed by the dose‑dependent decrease in the clonogenic ability of the apigenin‑treated cells. Subsequently, we found that the viability and clonogenic ability of the cells treated with apigenin was less or more affected by transfection of the cells with a Axl-expressing plasmid or Axl targeting siRNA, compared to transfection with the empty vector or control siRNA, respectively. In addition, apigenin increased the expression of p21, a cyclin-dependent kinase inhibitor, but reduced the expression of X-linked inhibitor of apoptosis protein (XIAP). These cell cycle arrest and pro-apoptotic effects of apigenin were also attenuated or augmented by the up- or downregulation of Axl expression, respectively, which suggests that Axl is a novel target of apigenin through which it exerts its inhibitory effects on cell proliferation. Taken together, our data indicate that apigenin downregulates Axl expression, which subsequently results in the inhibition of NSCLC cell proliferation through the increase and decrease of p21 and XIAP expression, respectively.

Jeong JW, Park S, Park C, et al.
N-benzyl-N-methyldecan-1-amine, a phenylamine derivative isolated from garlic cloves, induces G2/M phase arrest and apoptosis in U937 human leukemia cells.
Oncol Rep. 2014; 32(1):373-81 [PubMed] Related Publications
Epidemiological studies indicate that components of garlic (Allium sativum) have anti-proliferative effects against various types of cancer. In the present study, we investigated the effect of newly isolated phenylamine derivative N-benzyl-N-methyldecan-1-amine (NBNMA) from garlic cloves on the inhibition of the growth and apoptosis of human leukemia U937 cells and its potential anticancer mechanism. NBNMA exhibited an antiproliferative effect in U937 cells by inducing cell cycle arrest at the G2/M phase and apoptotic cell death. Western blot analyses revealed that NBNMA decreased the expression of the regulator genes of G2/M phase progression, cyclin dependent kinase (Cdk) 2 and Cdc2 and elevated the expression of the Cdk inhibitor p21WAF1/CIP1 in a p53-independent manner. In addition, NBNMA activated caspase-8 and caspase-9, initiator caspases of the extrinsic and intrinsic pathways of apoptosis, respectively, which led to activation of executioner caspase-3 along with degradation of poly(ADP-ribose) polymerase. NBNMA-induced apoptosis was observed in parallel with an increased ratio of pro-apoptotic Bax and Bad/anti-apoptotic Bcl-2 and Bcl-xL, and inhibition of inhibitor of apoptosis protein (IAP) family members XIAP and cIAP-1. Furthermore, NBNMA-treated cells displayed enhanced release of cytochrome c from the mitochondria into the cytosol concomitant with a loss of mitochondrial membrane potential and downregulation of Bid, suggesting that NBNMA-induced apoptosis occurred via the extrinsic and intrinsic apoptotic pathways with a possible link to Bid protein activity between the two pathways. These results indicate that NBNMA has promising potential to become a novel anticancer agent for the treatment of leukemia. We provide new insight into the mechanisms underlying the anticancer effect of NBNMA.

Shoji K, Teishima J, Hayashi T, et al.
Restoration of fibroblast growth factor receptor 2IIIb enhances the chemosensitivity of human prostate cancer cells.
Oncol Rep. 2014; 32(1):65-70 [PubMed] Related Publications
Fibroblast growth factor receptor 2 (FGFR2) is thought to mediate an important signaling pathway between prostate epithelial cells and stromal cells for maintenance of homeostasis in normal prostate tissue. Abnormalities of FGFR2 have been shown in advanced prostate cancer or prostate cancer cell lines, and we previously demonstrated the tumor-suppressive effects of the restoration of FGFR2IIIb in prostate cancer cells. The aim of the present study was to determine whether FGFR2IIIb plays a role in the chemosensitivity of castration-resistant prostate cancer cells. A clonal line of PC-3 cells expressing FGFR2IIIb (PC-3R2IIIb) was established by transfection with an IRESneo2-expressing vector bearing FGFR2IIIb cDNA. The effects of chemotherapeutic agents (docetaxel, cisplatin, 5-fluorouracil and zoledronic acid) on cell viability and apoptosis were examined by MTT assay and western blot analysis, respectively. Expression levels of molecules that were markers of epithelial-to-mesenchymal transition and chemosensitivity-related proteins were assessed by western blot analysis. Viability of the PC-3R2IIIb cells was significantly lower than that of the control PC-3 cells transfected with the vector alone (PC-3neo), and viability was further suppressed by treatment with chemotherapeutic agents, particularly docetaxel. Induced expression of caspase-3 was evident in the PC-3R2IIIb cells and was further enhanced by treatment with docetaxel. Expression of N-cadherin, vimentin, survivin and XIAP was lower in the PC-3R2IIIb cells than that in the PC-3neo cells. In contrast, expression of p21 was higher in the PC-3R2IIIb cells than that in the control PC-3neo cells. These data indicate that restoration of FGFR2IIIb in castration-resistant prostate cancer cells may reverse some of the epithelial-to-mesenchymal cell properties characteristic of tumor cells and induce in part mesenchymal-to-epithelial transition properties. This together with enhancement of apoptotic pathways involving caspase-3 may enhance chemosensitivity particularly to docetaxel which is widely used in the treatment of castration-resistant prostate cancer.

Kim EO, Kwon TK, Choi SW
Diferuloylputrescine, a predominant phenolic amide in corn bran, potently induces apoptosis in human leukemia U937 cells.
J Med Food. 2014; 17(5):519-26 [PubMed] Related Publications
The purpose of this study was to investigate how proliferation and apoptosis in human leukemia U937 cells are affected by four hydroxycinnamic acid derivatives (HCADs) in corn (Zea mays L.) bran: p-coumaric (CA), ferulic acids (FA), dicoumaroylputrescine (DCP), and diferuloylputrescine (DFP). Of the four HCADs, DFP dose dependently exerted the strongest cytotoxic effect and induction of apoptosis in the U937 cells. In addition, DFP induced distinct morphological changes characteristic of cellular apoptosis, such as chromatin condensation, apoptotic bodies, and DNA fragmentations. The DFP-induced apoptosis was also associated with released cytochrome c in the cytosol with activation of caspase 3, together with the downregulation of anti-apoptotic proteins, including XIAP and cIAP2, Bcl-2, and Mcl-1. Finally, the DFP-induced apoptosis was a cell-specific response in leukemia cells, as compared with those of other cancer cells, such as Caki, HT29, SK-Hep1, and MDA-MB231. Thus, these results suggest that DFP may be useful as a potential source of natural antileukemic agents.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. XIAP, Cancer Genetics Web: http://www.cancer-genetics.org/XIAP.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 21 August, 2015     Cancer Genetics Web, Established 1999