FANCC

Gene Summary

Gene:FANCC; Fanconi anemia, complementation group C
Aliases: FA3, FAC, FACC
Location:9q22.3
Summary:The Fanconi anemia complementation group (FANC) currently includes FANCA, FANCB, FANCC, FANCD1 (also called BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (also called BRIP1), FANCL, FANCM and FANCN (also called PALB2). The previously defined group FANCH is the same as FANCA. Fanconi anemia is a genetically heterogeneous recessive disorder characterized by cytogenetic instability, hypersensitivity to DNA crosslinking agents, increased chromosomal breakage, and defective DNA repair. The members of the Fanconi anemia complementation group do not share sequence similarity; they are related by their assembly into a common nuclear protein complex. This gene encodes the protein for complementation group C. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:Fanconi anemia group C protein
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (13)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Fanconi Anemia - Complementation Group C

Latest Publications

Huard CC, Tremblay CS, Magron A, et al.
The Fanconi anemia pathway has a dual function in Dickkopf-1 transcriptional repression.
Proc Natl Acad Sci U S A. 2014; 111(6):2152-7 [PubMed] Free Access to Full Article Related Publications
Fanconi anemia (FA) is an inherited bone marrow failure syndrome associated with a progressive decline in hematopoietic stem cells, developmental defects, and predisposition to cancer. These various phenotypic features imply a role of FA proteins in molecular events regulating cellular homeostasis. Interestingly, we previously found that the Fanconi C protein (FANCC) interacts with the C-terminal-binding protein-1 (CtBP1) involved in transcriptional regulation. Here we report that FANCC with CtBP1 forms a complex with β-catenin, and that β-catenin activation through glycogen synthase kinase 3β inhibition leads to FANCC nuclear accumulation and FA pathway activation, as measured by the Fanconi D2 protein (FANCD2) monoubiquitination. β-catenin and FANCC nuclear entry is defective in FA mutant cells and in cells depleted of the Fanconi A protein or FANCD2, suggesting that integrity of the FA pathway is required for FANCC nuclear activity. We also report that FANCC with CtBP1 acts as a negative regulator of Dickkopf-1 (DKK1) expression, and that a FA disease-causing mutation in FANCC abrogates this function. Our findings reveal that a defective FA pathway leads to up-regulation of DKK1, a molecule involved in hematopoietic malignancies.

Ghosh S, Sur S, Yerram SR, et al.
Hypersensitivities for acetaldehyde and other agents among cancer cells null for clinically relevant Fanconi anemia genes.
Am J Pathol. 2014; 184(1):260-70 [PubMed] Free Access to Full Article Related Publications
Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities.

Garavelli L, Piemontese MR, Cavazza A, et al.
Multiple tumor types including leiomyoma and Wilms tumor in a patient with Gorlin syndrome due to 9q22.3 microdeletion encompassing the PTCH1 and FANC-C loci.
Am J Med Genet A. 2013; 161A(11):2894-901 [PubMed] Related Publications
Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant condition mainly characterized by the development of mandibular keratocysts which often have their onset during the second decade of life and/or multiple basal cell carcinoma (BCC) normally arising during the third decade. Cardiac and ovarian fibromas can be found. Patients with NBCCS develop the childhood brain malignancy medulloblastoma (now often called primitive neuro-ectodermal tumor [PNET]) in 5% of cases. The risk of other malignant neoplasms is not clearly increased, although lymphoma and meningioma can occur in this condition. Wilms tumor has been mentioned in the literature four times. We describe a patient with a 10.9 Mb 9q22.3 deletion spanning 9q22.2 through 9q31.1 that includes the entire codifying sequence of the gene PTCH1, with Wilms tumor, multiple neoplasms (lung, liver, mesenteric, gastric and renal leiomyomas, lung typical carcinoid tumor, adenomatoid tumor of the pleura) and a severe clinical presentation. We propose including leiomyomas among minor criteria of the NBCCS.

Garbati MR, Hays LE, Keeble W, et al.
FANCA and FANCC modulate TLR and p38 MAPK-dependent expression of IL-1β in macrophages.
Blood. 2013; 122(18):3197-205 [PubMed] Free Access to Full Article Related Publications
Hematopoietic stem and progenitor cells with inactivated Fanconi anemia (FA) genes, FANCA and FANCC, are hypersensitive to inflammatory cytokines. One of these, tumor necrosis factor α (TNF-α), is also overproduced by FA mononuclear phagocytes in response to certain Toll-like receptor (TLR) agonists, creating an autoinhibitory loop that may contribute to the pathogenesis of progressive bone marrow (BM) failure and selection of TNF-α-resistant leukemic stem cell clones. In macrophages, the TNF-α overproduction phenotype depends on p38 mitogen-activated protein kinase (MAPK), an enzyme also known to induce expression of other inflammatory cytokines, including interleukin 1β (IL-1β). Reasoning that IL-1β might be involved in a like autoinhibitory loop, we determined that (1) TLR activation of FANCA- and FANCC-deficient macrophages induced overproduction of both TNF-α and IL-1β in a p38-dependent manner; (2) exposure of Fancc-deficient BM progenitors to IL-1β potently suppressed the expansion of multipotent progenitor cells in vitro; and (3) although TNF-α overexpression in FA cells is controlled posttranscriptionally by the p38 substrate MAPKAPK-2, p38-dependent overproduction of IL-1β is controlled transcriptionally. We suggest that multiple inflammatory cytokines overproduced by FANCA- and FANCC-deficient mononuclear phagocytes may contribute to the progressive BM failure that characterizes FA, and that to achieve suppression of this proinflammatory state, p38 is a more promising molecular therapeutic target than either IL-1β or TNF-α alone.

Hira A, Yabe H, Yoshida K, et al.
Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients.
Blood. 2013; 122(18):3206-9 [PubMed] Free Access to Full Article Related Publications
Fanconi anemia (FA) is a severe hereditary disorder with defective DNA damage response and repair. It is characterized by phenotypes including progressive bone marrow failure (BMF), developmental abnormalities, and increased occurrence of leukemia and cancer. Recent studies in mice have suggested that the FA proteins might counteract aldehyde-induced genotoxicity in hematopoietic stem cells. Nearly half of the Japanese population carries a dominant-negative allele (rs671) of the aldehyde-catalyzing enzyme ALDH2 (acetaldehyde dehydrogenase 2), providing an opportunity to test this hypothesis in humans. We examined 64 Japanese FA patients, and found that the ALDH2 variant is associated with accelerated progression of BMF, while birth weight or the number of physical abnormalities was not affected. Moreover, malformations at some specific anatomic locations were observed more frequently in ALDH2-deficient patients. Our current data indicate that the level of ALDH2 activity impacts pathogenesis in FA, suggesting the possibility of a novel therapeutic approach.

Hu L, Huang W, Hjort E, Eklund EA
Increased Fanconi C expression contributes to the emergency granulopoiesis response.
J Clin Invest. 2013; 123(9):3952-66 [PubMed] Free Access to Full Article Related Publications
Emergency granulopoiesis is a component of the innate immune response that is induced in response to infectious or inflammatory challenge. It is characterized by the rapid expansion and differentiation of granulocyte/monocyte progenitor (GMP) populations, which is due in part to a shortened S-phase of the cell cycle. We found that IRF8 (also known as ICSBP), an interferon regulatory transcription factor that activates phagocyte effector genes during the innate immune response, activates the gene encoding Fanconi C (Fancc) in murine myeloid progenitor cells. Moreover, IRF8-induced Fancc transcription was augmented by treatment with IL-1β, an essential cytokine for emergency granulopoiesis. The Fanconi pathway participates in repair of stalled or collapsed replication forks during DNA replication, leading us to hypothesize that the Fanconi pathway contributes to genomic stability during emergency granulopoiesis. In support of this hypothesis, Fancc(-/-) mice developed anemia and neutropenia during repeated, failed episodes of emergency granulopoiesis. Failed emergency granulopoiesis in Fancc(-/-) mice was associated with excess apoptosis of HSCs and progenitor cells in the bone marrow and impaired HSC function. These studies have implications for understanding the pathogenesis of bone marrow failure in Fanconi anemia and suggest possible therapeutic approaches.

Shyamsunder P, Vidyasekar P, Shukla AR, et al.
Lowered expression levels of a tumor suppressor gene - caveolin-1 within dysregulated gene networks of Fanconi anemia.
Gene. 2013; 527(2):521-8 [PubMed] Related Publications
Fanconi anemia (FA) is a genetic disorder characterized by progressive bone marrow failure and a predisposition to cancers like acute myeloid leukemia, lung and squamous cell carcinomas. DNA damage in a healthy cell activates the FA pathway where 15 individual FA proteins interact and function together to maintain genomic stability. The disruption of this pathway results in the characteristic cellular phenotype and clinical outcome of the disease. The diverse clinical symptoms of FA such as impaired immunity and predisposition to cancers may not be explained exclusively by a non-functional FA pathway. These symptoms could then be attributed to defects in other functions of the individual FA proteins. To identify the effects of a mutant FA protein, FANCC, a transcriptome analysis was carried out on a FANCC mutant cell line (EUFA 450) and its revertant isogenic control cell line (EUFA 450Rev). Microarray data revealed dysregulation of genes involved in regulation of cell death and immune response. This study reports for the first time, the lowered expression of a tumor suppressor gene - caveolin-1, in FANCC mutant cells. The downregulation of caveolin-1 can be significant as Fanconi anemia patients have an elevated predisposition to develop cancer.

Ravera S, Vaccaro D, Cuccarolo P, et al.
Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A.
Biochimie. 2013; 95(10):1828-37 [PubMed] Related Publications
Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape.

Chandrasekharappa SC, Lach FP, Kimble DC, et al.
Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia.
Blood. 2013; 121(22):e138-48 [PubMed] Free Access to Full Article Related Publications
Current methods for detecting mutations in Fanconi anemia (FA)-suspected patients are inefficient and often miss mutations. We have applied recent advances in DNA sequencing and genomic capture to the diagnosis of FA. Specifically, we used custom molecular inversion probes or TruSeq-enrichment oligos to capture and sequence FA and related genes, including introns, from 27 samples from the International Fanconi Anemia Registry at The Rockefeller University. DNA sequencing was complemented with custom array comparative genomic hybridization (aCGH) and RNA sequencing (RNA-seq) analysis. aCGH identified deletions/duplications in 4 different FA genes. RNA-seq analysis revealed lack of allele specific expression associated with a deletion and splicing defects caused by missense, synonymous, and deep-in-intron variants. The combination of TruSeq-targeted capture, aCGH, and RNA-seq enabled us to identify the complementation group and biallelic germline mutations in all 27 families: FANCA (7), FANCB (3), FANCC (3), FANCD1 (1), FANCD2 (3), FANCF (2), FANCG (2), FANCI (1), FANCJ (2), and FANCL (3). FANCC mutations are often the cause of FA in patients of Ashkenazi Jewish (AJ) ancestry, and we identified 2 novel FANCC mutations in 2 patients of AJ ancestry. We describe here a strategy for efficient molecular diagnosis of FA.

Ghosh A, Maiti GP, Bandopadhyay MN, et al.
Inactivation of 9q22.3 tumor suppressor genes predict outcome for patients with head and neck squamous cell carcinoma.
Anticancer Res. 2013; 33(3):1215-20 [PubMed] Related Publications
AIM: This study examined the prognostic significance of candidate tumor suppressor genes (TSGs) PHD finger protein-2 (PHF2), Fanconi anaemia complementation group C (FANCC) and human homologue of Drosophila patched gene (PTCH1), in head and neck squamous cell carcinoma (HNSCC) treated primarily with surgery, or surgery followed by adjuvant radiotherapy.
PATIENTS AND METHODS: Eighty-four patients with HNSCC were followed-up for recurrence/death for up to five years after diagnosis. Molecular alterations (deletion/methylation) of TSGs and human papilloma virus (HPV) status were determined in previous studies of our group. Statistical analyses of correlation of genetic alterations with treatment response and survival were carried out.
RESULTS: Alterations of FANCC and PTCH1 were significantly associated with locoregional recurrence/death. In the surgery with adjuvant radiotherapy-group (n=56), patients showing alterations in FANCC and in PTCH1 were seven- and six-times, respectively, more likely to have locoregional recurrence compared to those with no alterations. In addition, the presence of alterations of both FANCC and PTCH1 had remarkable prognostic significance.
CONCLUSION: FANCC and PTCH1 alterations might be used as molecular markers for prognosis and to develop strategies for effective treatment planning.

Yung SK, Tilgner K, Ledran MH, et al.
Brief report: human pluripotent stem cell models of fanconi anemia deficiency reveal an important role for fanconi anemia proteins in cellular reprogramming and survival of hematopoietic progenitors.
Stem Cells. 2013; 31(5):1022-9 [PubMed] Related Publications
Fanconi anemia (FA) is a genomic instability disorder caused by mutations in genes involved in replication-dependant-repair and removal of DNA cross-links. Mouse models with targeted deletions of FA genes have been developed; however, none of these exhibit the human bone marrow aplasia. Human embryonic stem cell (hESC) differentiation recapitulates many steps of embryonic hematopoietic development and is a useful model system to investigate the early events of hematopoietic progenitor specification. It is now possible to derive patient-specific human-induced pluripotent stem cells (hiPSC); however, this approach has been rather difficult to achieve in FA cells due to a requirement for activation of FA pathway during reprogramming process which can be bypassed either by genetic complementation or reprogramming under hypoxic conditions. In this study, we report that FA-C patient-specific hiPSC lines can be derived under normoxic conditions, albeit at much reduced efficiency. These disease-specific hiPSC lines and hESC with stable knockdown of FANCC display all the in vitro hallmarks of pluripotency. Nevertheless, the disease-specific hiPSCs show a much higher frequency of chromosomal abnormalities compared to parent fibroblasts and are unable to generate teratoma composed of all three germ layers in vivo, likely due to increased genomic instability. Both FANCC-deficient hESC and hiPSC lines are capable of undergoing hematopoietic differentiation, but the hematopoietic progenitors display an increased apoptosis in culture and reduced clonogenic potential. Together these data highlight the critical requirement for FA proteins in survival of hematopoietic progenitors, cellular reprogramming, and maintenance of genomic stability.

Park J, Chung NG, Chae H, et al.
FANCA and FANCG are the major Fanconi anemia genes in the Korean population.
Clin Genet. 2013; 84(3):271-5 [PubMed] Related Publications
Fanconi anemia (FA) is a rare disorder characterized by physical abnormalities, bone marrow failure (BMF), increased risk of malignancies, and cellular hypersensitivity to DNA cross-linking agents. This study evaluated the genetic alterations in three major Fanconi genes (FANCA, FANCC, and FANCG) in 30 FA patients using multiplex ligation-dependent probe amplification and direct sequencing. Thirteen BMF patients were genetically classified as FA-A (n = 6, 46%) and FA-G (n = 7, 54%). Four common founder mutations were identified and included two FANCA mutations (c.2546delC and c.3720_3724delAAACA) and two FANCG mutations (c.307+1G>C and c.1066C>T), which had previously been commonly observed in a Japanese FA population. We also detected four novel deleterious mutations: c.2778+1G>C and c.3627-1G>A of FANCA, and c.1589_1591delATA and c.1761-1G>A of FANCG. This study shows that mutations in FANCA and FANCG are common in Korean FA patients and the existence of four common founder mutations in an East Asian FA population. Mutation screening workflow that includes these common mutations may be useful in the creation of an international database, and to better understand the ethnic characteristics of FA.

Thompson ER, Doyle MA, Ryland GL, et al.
Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.
PLoS Genet. 2012; 8(9):e1002894 [PubMed] Free Access to Full Article Related Publications
Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

Lee HJ, Park S, Kang HJ, et al.
A case report of Fanconi anemia diagnosed by genetic testing followed by prenatal diagnosis.
Ann Lab Med. 2012; 32(5):380-4 [PubMed] Free Access to Full Article Related Publications
Fanconi anemia (FA) is a rare genetic disorder affecting multiple body systems. Genetic testing, including prenatal testing, is a prerequisite for the diagnosis of many clinical conditions. However, genetic testing is complicated for FA because there are often many genes that are associated with its development, and large deletions, duplications, or sequence variations are frequently found in some of these genes. This study describes successful genetic testing for molecular diagnosis, and subsequent prenatal diagnosis, of FA in a patient and his family in Korea. We analyzed all exons and flanking regions of the FANCA, FANCC, and FANCG genes for mutation identification and subsequent prenatal diagnosis. Multiplex ligation-dependent probe amplification analysis was performed to detect large deletions or duplications in the FANCA gene. Molecular analysis revealed two mutations in the FANCA gene: a frameshift mutation c.2546delC and a novel splice-site mutation c.3627-1G>A. The FANCA mutations were separately inherited from each parent, c.2546delC was derived from the father, whereas c.3627-1G>A originated from the mother. The amniotic fluid cells were c.3627-1G>A heterozygotes, suggesting that the fetus was unaffected. This is the first report of genetic testing that was successfully applied to molecular diagnosis of a patient and subsequent prenatal diagnosis of FA in a family in Korea.

Prieto-Remón I, Sánchez-Carrera D, López-Duarte M, et al.
BIK (NBK) is a mediator of the sensitivity of Fanconi anaemia group C lymphoblastoid cell lines to interstrand DNA cross-linking agents.
Biochem J. 2012; 448(1):153-63 [PubMed] Related Publications
FA (Fanconi anaemia) is a rare hereditary disorder characterized by congenital malformations, progressive bone marrow failure and an extraordinary predisposition to develop cancer. At present, 15 genes have been related to this condition and mutations of them have also been found in different types of cancer. Bone marrow failure threatens the life of FA patients during the first decade of their life, but the mechanisms underlying this process are not completely understood. In the present study we investigate a possible imbalance between the expression of pro- and anti-apoptotic proteins as a cause for the hypersensitivity of FANCC (FA, complementation group C)-deficient cells to genotoxic stress. We found a BIK (Bcl-2 interacting killer) over-expression in lymphoblastoid cell lines derived from FA-C patients when compared with their phenotypically corrected counterparts. This overexpression has a transcriptional basis since the regulatory region of the gene shows higher activity in FANCC-deficient cells. We demonstrate the involvement of BIK in the sensitivity of FA-C lymphoblasts to interstrand DNA cross-linking agents as it is induced by these drugs and interference of its expression in these cells preserves their viability and reduces apoptosis. We investigate the mechanism of BIK overexpression in FANCC-deficient cells by analysing the activity of many different signalling pathways in these cells. Finally, we provide evidence of a previously undescribed indirect epigenetic regulation of BIK in FA-C lymphoblasts mediated by ΔNp73, an isoform of p73 lacking its transactivation domain that activates BIK through a proximal element in its promoter.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FANCC, Cancer Genetics Web: http://www.cancer-genetics.org/FANCC.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999