Gene Summary

Gene:YBX1; Y-box binding protein 1
Aliases: YB1, BP-8, CSDB, DBPB, YB-1, CBF-A, CSDA2, EFI-A, NSEP1, NSEP-1, MDR-NF1
Summary:This gene encodes a highly conserved cold shock domain protein that has broad nucleic acid binding properties. The encoded protein functions as both a DNA and RNA binding protein and has been implicated in numerous cellular processes including regulation of transcription and translation, pre-mRNA splicing, DNA reparation and mRNA packaging. This protein is also a component of messenger ribonucleoprotein (mRNP) complexes and may have a role in microRNA processing. This protein can be secreted through non-classical pathways and functions as an extracellular mitogen. Aberrant expression of the gene is associated with cancer proliferation in numerous tissues. This gene may be a prognostic marker for poor outcome and drug resistance in certain cancers. Alternate splicing results in multiple transcript variants. Pseudogenes of this gene are found on multiple chromosomes. [provided by RefSeq, Sep 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:nuclease-sensitive element-binding protein 1
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (27)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cell Proliferation
  • Drug Resistance
  • DNA-Binding Proteins
  • NFI Transcription Factors
  • Phosphorylation
  • Neoplasm Invasiveness
  • Breast Cancer
  • Protein Binding
  • Cell Movement
  • Base Sequence
  • Gene Expression Profiling
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Promoter Regions
  • Transfection
  • Molecular Sequence Data
  • Biomarkers, Tumor
  • Down-Regulation
  • Western Blotting
  • Neoplastic Cell Transformation
  • RNA Interference
  • Signal Transduction
  • Chromosome 1
  • Brain Tumours
  • Messenger RNA
  • Nuclear Proteins
  • Transcription Factors
  • Mutation
  • Apoptosis
  • Binding Sites
  • MCF-7 Cells
  • Cancer Gene Expression Regulation
  • MicroRNAs
  • Transcription
  • CCAAT-Enhancer-Binding Proteins
  • Melanoma
  • Triple Negative Breast Cancer
  • Antineoplastic Agents
  • Neoplasm Proteins
  • Neoplasm Metastasis
  • Lung Cancer
  • Prostate Cancer
  • Immunohistochemistry
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: YBX1 (cancer-related)

Kuwano M, Shibata T, Watari K, Ono M
Oncogenic Y-box binding protein-1 as an effective therapeutic target in drug-resistant cancer.
Cancer Sci. 2019; 110(5):1536-1543 [PubMed] Free Access to Full Article Related Publications
Y-box binding protein-1 (YBX1), a multifunctional oncoprotein containing an evolutionarily conserved cold shock domain, dysregulates a wide range of genes involved in cell proliferation and survival, drug resistance, and chromatin destabilization by cancer. Expression of a multidrug resistance-associated ATP binding cassette transporter gene, ABCB1, as well as growth factor receptor genes, EGFR and HER2/ErbB2, was initially discovered to be transcriptionally activated by YBX1 in cancer cells. Expression of other drug resistance-related genes, MVP/LRP, TOP2A, CD44, CD49f, BCL2, MYC, and androgen receptor (AR), is also transcriptionally activated by YBX1, consistently indicating that YBX1 is involved in tumor drug resistance. Furthermore, there is strong evidence to support that nuclear localization and/or overexpression of YBX1 can predict poor outcomes in patients with more than 20 different tumor types. YBX1 is phosphorylated by kinases, including AKT, p70S6K, and p90RSK, and translocated into the nucleus to promote the transcription of resistance- and malignancy-related genes. Phosphorylated YBX1, therefore, plays a crucial role as a potent transcription factor in cancer. Herein, a novel anticancer therapeutic strategy is presented by targeting activated YBX1 to overcome drug resistance and malignant progression.

Nagasu S, Sudo T, Kinugasa T, et al.
Y‑box‑binding protein 1 inhibits apoptosis and upregulates EGFR in colon cancer.
Oncol Rep. 2019; 41(5):2889-2896 [PubMed] Related Publications
Y‑box‑binding protein 1 (YB‑1) is a DNA/RNA‑-binding protein and an important transcription and translation factor in carcinogenesis. However, the biological function and molecular correlation of YB‑1 in colorectal cancer are not fully understood. The aim of the present study was to determine the significance of YB‑1 expression and its biological role in colorectal cancer. Cell proliferation, migration and apoptosis were examined upon knockdown of YB‑1 expression in different colon cancer cell lines that had different genetic backgrounds. Since the properties of different colon cancer cell lines with specific RAS/RAF gene mutations downstream epidermal growth factor receptor (EGFR) may differ from wild‑type colorectal cancer, it is critical to study the role of YB‑1 with respect to the mutational status of RAS. The results indicated that the suppression of YB‑1 decreased cell proliferation (P<0.05) and migration (P<0.05) regardless of the status of RAS/RAF in the HT29, HCT116 and CaCo2 cell lines. In contrast, YB‑1 knockdown altered the expression of apoptosis‑related genes and the expression of EGFR was detected in the cell lines expressing wild‑type RAS/RAF but not in those expressing mutated RAS/RAF. These results indicated that YB‑1 plays an important role in cell proliferation, migration, apoptosis and EGFR expression in colorectal cancer. Furthermore, apoptosis and EGFR expression may be affected by the mutational status of RAS/RAF and controlled through YB‑1.

Rahman MR, Islam T, Gov E, et al.
Identification of Prognostic Biomarker Signatures and Candidate Drugs in Colorectal Cancer: Insights from Systems Biology Analysis.
Medicina (Kaunas). 2019; 55(1) [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is the second most common cause of cancer-related death in the world, but early diagnosis ameliorates the survival of CRC. This report aimed to identify molecular biomarker signatures in CRC. We analyzed two microarray datasets (GSE35279 and GSE21815) from the Gene Expression Omnibus (GEO) to identify mutual differentially expressed genes (DEGs). We integrated DEGs with protein⁻protein interaction and transcriptional/post-transcriptional regulatory networks to identify reporter signaling and regulatory molecules; utilized functional overrepresentation and pathway enrichment analyses to elucidate their roles in biological processes and molecular pathways; performed survival analyses to evaluate their prognostic performance; and applied drug repositioning analyses through Connectivity Map (CMap) and geneXpharma tools to hypothesize possible drug candidates targeting reporter molecules. A total of 727 upregulated and 99 downregulated DEGs were detected. The PI3K/Akt signaling, Wnt signaling, extracellular matrix (ECM) interaction, and cell cycle were identified as significantly enriched pathways. Ten hub proteins (ADNP, CCND1, CD44, CDK4, CEBPB, CENPA, CENPH, CENPN, MYC, and RFC2), 10 transcription factors (ETS1, ESR1, GATA1, GATA2, GATA3, AR, YBX1, FOXP3, E2F4, and PRDM14) and two microRNAs (miRNAs) (miR-193b-3p and miR-615-3p) were detected as reporter molecules. The survival analyses through Kaplan⁻Meier curves indicated remarkable performance of reporter molecules in the estimation of survival probability in CRC patients. In addition, several drug candidates including anti-neoplastic and immunomodulating agents were repositioned. This study presents biomarker signatures at protein and RNA levels with prognostic capability in CRC. We think that the molecular signatures and candidate drugs presented in this study might be useful in future studies indenting the development of accurate diagnostic and/or prognostic biomarker screens and efficient therapeutic strategies in CRC.

Liang C, Ma Y, Yong L, et al.
Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma.
Cancer Sci. 2019; 110(1):166-179 [PubMed] Free Access to Full Article Related Publications
Chordomas are rare bone tumors with a poor prognosis and no approved targeted therapy. Y-box binding protein-1 (YBX1) promotes tumor growth, invasion and drug resistance. However, the role of YBX1 in chordoma is unclear. In this study, we examined the expression of YBX1 using immunohistochemistry and found that YBX1 was significantly upregulated in 32 chordoma tissues compared to distant normal tissues. In addition, YBX1 upregulation was associated with surrounding tissue invasion, recurrence and poor prognosis. Biological function studies demonstrated that YBX1 promoted cell proliferation and invasion, accelerated G1/S phase transition, and inhibited apoptosis. Further investigation revealed that YBX1 enhanced epidermal growth factor receptor (EGFR) transcription by directly binding to its promoter in chordoma cells. YBX1 regulated protein expression of p-EGFR, p-AKT and its downstream target genes that influenced cell apoptosis, cell cycle transition and cell invasion. YBX1 activated the EGFR/AKT pathway in chordoma and YBX1-induced elevated expression of key molecules in the EGFR/AKT pathway were downregulated by EGFR and AKT pathway inhibitors. These in vitro results were further confirmed by in vivo data. These data showed that YBX1 promoted tumorigenesis and progression in spinal chordoma via the EGFR/AKT pathway. YBX1 might serve as a prognostic and predictive biomarker, as well as a rational therapeutic target, for chordoma.

Zhang E, He X, Zhang C, et al.
A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1.
Genome Biol. 2018; 19(1):154 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Recently, increasing evidence shows that long noncoding RNAs (lncRNAs) play a significant role in human tumorigenesis. However, the function of lncRNAs in human gastric cancer remains largely unknown.
RESULTS: By using publicly available expression profiling data from gastric cancer and integrating bioinformatics analyses, we screen and identify a novel lncRNA, HOXC-AS3. HOXC-AS3 is significantly increased in gastric cancer tissues and is correlated with clinical outcomes of gastric cancer. In addition, HOXC-AS3 regulates cell proliferation and migration both in vitro and in vivo. RNA-seq analysis reveals that HOXC-AS3 knockdown preferentially affects genes that are linked to proliferation and migration. Mechanistically, we find that HOXC-AS3 is obviously activated by gain of H3K4me3 and H3K27ac, both in cells and in tissues. RNA pull-down mass spectrometry analysis identifies that YBX1 interacts with HOXC-AS3, and RNA-seq analysis finds a marked overlap in genes differentially expressed after YBX1 knockdown and those transcriptionally regulated by HOXC-AS3, suggesting that YBX1 participates in HOXC-AS3-mediated gene transcriptional regulation in the tumorigenesis of gastric cancer.
CONCLUSIONS: Together, our data demonstrate that abnormal histone modification-activated HOXC-AS3 may play important roles in gastric cancer oncogenesis and may serve as a target for gastric cancer diagnosis and therapy.

Wang Y, Su J, Fu D, et al.
The Role of YB1 in Renal Cell Carcinoma Cell Adhesion.
Int J Med Sci. 2018; 15(12):1304-1311 [PubMed] Free Access to Full Article Related Publications

Chua PJ, Lim JP, Guo TT, et al.
Y-box binding protein-1 and STAT3 independently regulate ATP-binding cassette transporters in the chemoresistance of gastric cancer cells.
Int J Oncol. 2018; 53(6):2579-2589 [PubMed] Related Publications
Y-box binding protein-1 (YB-1) facilitates cancer chemoresistance through the upregulation of ATP-binding cassette (ABC) transporters associated with multidrug resistance, which is one of the primary obstacles in cancer treatment. Since aberrant Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling is also implicated in chemoresistance in numerous human malignancies, the interaction between YB-1 and JAK/STAT signaling was explored underlying the chemoresistance of NUGC3 gastric cancer cells. It was demonstrated that YB-1 translocated into the nuclei of NUGC3 cells exposed to doxorubicin hydrochloride, suggesting its important role in chemoresistance. Consistently, knockdown of YB-1 significantly decreased the chemoresistance of cells to doxorubicin hydrochloride and epirubicin hydrochloride, as evidenced by a decrease in cell viability. Notably, JAK inhibitor AG490 treatment further decreased the cell viability caused by YB-1 inhibition and doxorubicin hydrochloride. It was also observed that YB-1 transcriptionally regulated the ABCC3 transporter, whereas STAT3 modulated ABCC2 transporter levels. These findings suggest that YB-1 and STAT3 act together to facilitate chemoresistance via modulating the expression of different ABC transporters in NUGC3 cells. Notably, siYB-1 did not exhibit any significant effect on STAT3 expression. Similarly, siSTAT3 failed to alter YB-1 expression, suggesting that the two may not regulate each other in a mutual manner. However, double knockdown of YB-1 and STAT3 led to a synergistic inhibition of cell invasion in NUGC3 cells. Nonetheless, the combined treatment of YB-1 antagonists with STAT3 inhibitors may serve as an effective therapy in gastric cancer.

Deng SJ, Chen HY, Ye Z, et al.
Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription.
Oncogene. 2018; 37(44):5811-5828 [PubMed] Related Publications
The contribution of long noncoding RNAs (lncRNAs) to pancreatic cancer progression and the regulatory mechanisms of their expression are attractive areas. In the present study, the overexpression of lncRNA-BX111887 (BX111) in pancreatic cancer tissues was detected by microarray and further validated in a cohort of pancreatic cancer tissues. We further demonstrated that knockdown or overexpression of BX111 dramatically repressed or enhanced proliferation and invasion of pancreatic cancer cells. Mechanically, BX111 activated transcription of ZEB1, a key regulator for epithelia-mesenchymal transition (EMT), via recruiting transcriptional factor Y-box protein (YB1) to its promoter region. Moreover, we revealed that BX111 transcription was induced by hypoxia-inducible factor (HIF-1α) in response to hypoxia. In addition, BX111 contributed to the hypoxia-induced EMT of pancreatic cells by regulating expression of ZEB1 and its downstream proteins E-cadherin and MMP2. Coincidence with in vitro results, BX111 depletion effectively inhibited growth and metastasis of xenograft tumor in vivo. The clinical samples of pancreatic cancer further confirmed a positive association between BX111 and ZEB1. Moreover, high BX111 expression was correlated with late TNM stage, lymphatic invasion and distant metastasis, as well as short overall survival time in patients. Taken together, our findings implicate a hypoxia-induced lncRNA contributes to metastasis and progression of pancreatic cancer, and suggest BX111 might be applied as a potential biomarker and therapeutic target for pancreatic cancer.

Bell A, Bell D, Chakravarti N, et al.
Detection of a MicroRNA molecular signature of ultraviolet radiation in the superficial regions of melanocytic nevi on sun-exposed skin.
Mod Pathol. 2018; 31(11):1744-1755 [PubMed] Related Publications
How melanocytes transform into melanoma cells remains largely unknown. However, prolonged ultraviolet radiation exposure is linked with melanoma, and the DNA of melanomas arising in chronically sun-exposed skin is characterized by an elevated number of pyrimidine transitions, mainly C>T (predominantly caused by ultraviolet B), and transversions of GC>TA or AT>CG (caused by ultraviolet A over indirect mechanisms). Since ultraviolet penetrates mostly only the superficial dermis, we sought to determine the extent to which superficial and deep melanocytes of nevi in sun-exposed skin differ in their miRNA expression and consider the changes as likely secondary to ultraviolet radiation-induced damage. The differentially expressed miRNAs were analyzed for known potential oncomiRs or linked to potential oncogenes or tumor suppressors. Superficial and deep melanocytes were microdissected from the nevi of 14 patients. The suspensions were processed for hybridization to a ribonucleotide protection system with 2280 total probes, including 2256 miRNA probes targeting 2083 human miRNAs. A comprehensive analysis of all human miRNAs registered in miRBase 11.0 was performed using the HTG Molecular Diagnostic database. Statistical analysis of these data yielded for 14 samples a statistically relevant profile of 39 miRNA species at FDR<0.1 that were differentially expressed between superficial and deep melanocytes. Ingenuity Pathway Analysis based on the expression data of these 39 miRNAs suggested the gene transcripts AR, MDM2, SMAD2/3, and YBX1 as the most probable miRNA targets, which were validated at the protein level. Our findings suggest that superficial ultraviolet radiation-damaged melanocytes can be differentiated from deep melanocytes on the basis of the expression of 39 miRNAs, the most probable gene transcript and protein targets of which are AR, MDM2, SMAD2/3, and YBX1, with YBX1 expression validating the best the molecular signature in immunohistochemical analysis.

Fujihara T, Mizobuchi Y, Nakajima K, et al.
Down-regulation of MDR1 by Ad-DKK3 via Akt/NFκB pathways augments the anti-tumor effect of temozolomide in glioblastoma cells and a murine xenograft model.
J Neurooncol. 2018; 139(2):323-332 [PubMed] Related Publications
BACKGROUND: Glioblastoma multiforme (GBM) is the most malignant of brain tumors. Acquired drug resistance is a major obstacle for successful treatment. Earlier studies reported that expression of the multiple drug resistance gene (MDR1) is regulated by YB-1 or NFκB via the JNK/c-Jun or Akt pathway. Over-expression of the Dickkopf (DKK) family member DKK3 by an adenovirus vector carrying DKK3 (Ad-DKK3) exerted anti-tumor effects and led to the activation of the JNK/c-Jun pathway. We investigated whether Ad-DKK3 augments the anti-tumor effect of temozolomide (TMZ) via the regulation of MDR1.
METHODS: GBM cells (U87MG and U251MG), primary TGB105 cells, and mice xenografted with U87MG cells were treated with Ad-DKK3 or TMZ alone or in combination.
RESULTS: Ad-DKK3 augmentation of the anti-tumor effects of TMZ was associated with reduced MDR1 expression in both in vivo and in vitro studies. The survival of Ad-DKK3-treated U87MG cells was inhibited and the expression of MDR1 was reduced. This was associated with the inhibition of Akt/NFκB but not of YB-1 via the JNK/c-Jun- or Akt pathway.
CONCLUSIONS: Our results suggest that Ad-DKK3 regulates the expression of MDR1 via Akt/NFκB pathways and that it augments the anti-tumor effects of TMZ in GBM cells.

Cheng Q, Liao M, Hu H, et al.
Asiatic Acid (AA) Sensitizes Multidrug-Resistant Human Lung Adenocarcinoma A549/DDP Cells to Cisplatin (DDP) via Downregulation of P-Glycoprotein (MDR1) and Its Targets.
Cell Physiol Biochem. 2018; 47(1):279-292 [PubMed] Related Publications
BACKGROUND/AIMS: P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP.
METHODS: Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR.
RESULTS: Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation.
CONCLUSIONS: AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials.

Kosnopfel C, Sinnberg T, Sauer B, et al.
YB-1 Expression and Phosphorylation Regulate Tumorigenicity and Invasiveness in Melanoma by Influencing EMT.
Mol Cancer Res. 2018; 16(7):1149-1160 [PubMed] Related Publications
Cutaneous melanoma represents one of the most aggressive human tumor entities possessing a high tendency to metastasize. Cancer cells frequently exploit a highly conserved developmental program, the epithelial-to-mesenchymal transition (EMT), to gain migratory and invasive properties promoting their metastatic spread. Cytoplasmic localization of the oncogenic transcription and translation factor Y-box binding protein 1 (YB-1) is a powerful inducer of EMT in breast carcinoma cells. Interestingly, EMT-like processes have also been observed in cutaneous melanoma despite its neural crest origin. Here, increased expression of YB-1 negatively affects patient survival in malignant melanoma and promotes melanoma cell tumorigenicity both

Su W, Feng S, Chen X, et al.
Silencing of Long Noncoding RNA
Cancer Res. 2018; 78(12):3207-3219 [PubMed] Free Access to Full Article Related Publications
The long noncoding RNA (lncRNA)

Chu PC, Lin PC, Wu HY, et al.
Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway.
Oncogene. 2018; 37(25):3440-3455 [PubMed] Related Publications
Although the role of insulin-like growth factor-I receptor (IGF-IR) in promoting colorectal liver metastasis is known, the mechanism by which IGF-IR is upregulated in colorectal cancer (CRC) is not defined. In this study, we obtained evidence that mutant KRAS transcriptionally activates IGF-IR gene expression through Y-box-binding protein (YB)-1 upregulation via a novel MEK-Sp1-DNMT1-miR-137 pathway in CRC cells. The mechanistic link between the tumor suppressive miR-137 and the translational regulation of YB-1 is intriguing because epigenetic silencing of miR-137 represents an early event in colorectal carcinogenesis due to promoter hypermethylation. This proposed signaling axis was further verified by the immunohistochemical evaluations of liver metastases from a cohort of 46 KRAS mutant CRC patients, which showed a significant correlation in the expression levels among Sp1, miR-137, YB-1, and IGF-1R. Moreover, suppression of the expression of YB-1 and IGF-IR via genetic knockdown or the pharmacological inhibition of MEK hampers KRAS-driven colorectal liver metastasis in our animal model studies. From a translational perspective, the identification of this KRAS-driven pathway might provide a mechanistic rationale for the use of a MEK inhibitor as an adjuvant, in combination with standard of care, to prevent the recurrence of colorectal liver metastasis in KRAS mutant CRC patients after receiving liver resection, which warrants further investigation.

Zhao X, Zhang W, Ji W
YB-1 promotes laryngeal squamous cell carcinoma progression by inducing miR-155 expression via c-Myb.
Future Oncol. 2018; 14(16):1579-1589 [PubMed] Related Publications
AIM: In this study, we investigated the role of Y-box binding protein-1 (YB-1), c-Myb and miR-155 in human laryngeal squamous cell carcinoma (LSCC) progression.
MATERIALS & METHODS: Quantitative real-time PCR, western blot, MTT and Transwell were conducted to determine the expression and function of YB-1/miR-155 pathway. Univariate and multivariate analyses were used to determine the prognostic factors.
RESULTS: Expression of YB-1, c-Myb and miR-155 was higher in LSCC tissues. YB-1 promoted proliferation, invasiveness and migration of Hep-2 cells in vitro. Patients with higher YB-1 correlated with advanced T stage, poor differentiation and cervical metastasis. LSCC patients with high YB-1 expression showed poor overall survival.
CONCLUSION: YB-1 promotes LSCC progression by increasing miR-155 levels via c-Myb and acts as a prognostic factor.

Ali MM, Akhade VS, Kosalai ST, et al.
PAN-cancer analysis of S-phase enriched lncRNAs identifies oncogenic drivers and biomarkers.
Nat Commun. 2018; 9(1):883 [PubMed] Free Access to Full Article Related Publications
Despite improvement in our understanding of long noncoding RNAs (lncRNAs) role in cancer, efforts to find clinically relevant cancer-associated lncRNAs are still lacking. Here, using nascent RNA capture sequencing, we identify 1145 temporally expressed S-phase-enriched lncRNAs. Among these, 570 lncRNAs show significant differential expression in at least one tumor type across TCGA data sets. Systematic clinical investigation of 14 Pan-Cancer data sets identified 633 independent prognostic markers. Silencing of the top differentially expressed and clinically relevant S-phase-enriched lncRNAs in several cancer models affects crucial cancer cell hallmarks. Mechanistic investigations on SCAT7 in multiple cancer types reveal that it interacts with hnRNPK/YBX1 complex and affects cancer cell hallmarks through the regulation of FGF/FGFR and its downstream PI3K/AKT and MAPK pathways. We also implement a LNA-antisense oligo-based strategy to treat cancer cell line and patient-derived tumor (PDX) xenografts. Thus, this study provides a comprehensive list of lncRNA-based oncogenic drivers with potential prognostic value.

El-Naggar AM, Sorensen PH
Translational control of aberrant stress responses as a hallmark of cancer.
J Pathol. 2018; 244(5):650-666 [PubMed] Related Publications
Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Tanaka T, Ohashi S, Saito H, et al.
Indirubin 3'-oxime inhibits anticancer agent-induced YB-1 nuclear translocation in HepG2 human hepatocellular carcinoma cells.
Biochem Biophys Res Commun. 2018; 496(1):7-11 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a disease with poor prognosis. Nuclear accumulation of YB-1 is closely related to the malignancy of HCC. Treatment with anticancer agents often induces translocation of YB-1 from cytoplasm to nucleus and activates the expression of multidrug resistance gene 1 (MDR1). Therefore, any effective inhibitor of this phenomenon would be useful for cancer treatment. Here we examined various indirubin derivatives and found that indirubin 3'-oxime inhibits actinomycin D-induced nuclear transport of YB-1 and suppresses the activation of MDR1 gene expression in the human hepatocellular carcinoma cell line HepG2. Furthermore, use of both indirubin 3'-oxime and actinomycin D in combination increased the anticancer effect on HepG2 cells. Indirubin 3'-oxime is a novel and efficient inhibitor of anticancer agent-induced YB-1 nuclear translocation.

Campbell TM, Castro MAA, de Oliveira KG, et al.
ERα Binding by Transcription Factors NFIB and YBX1 Enables FGFR2 Signaling to Modulate Estrogen Responsiveness in Breast Cancer.
Cancer Res. 2018; 78(2):410-421 [PubMed] Free Access to Full Article Related Publications
Two opposing clusters of transcription factors (TF) have been associated with the differential risks of estrogen receptor positive or negative breast cancers, but the mechanisms underlying the opposing functions of the two clusters are undefined. In this study, we identified NFIB and YBX1 as novel interactors of the estrogen receptor (ESR1). NFIB and YBX1 are both risk TF associated with progression of ESR1-negative disease. Notably, they both interacted with the ESR1-FOXA1 complex and inhibited the transactivational potential of ESR1. Moreover, signaling through FGFR2, a known risk factor in breast cancer development, augmented these interactions and further repressed ESR1 target gene expression. We therefore show that members of two opposing clusters of risk TFs associated with ESR1-positive and -negative breast cancer can physically interact. We postulate that this interaction forms a toggle between two developmental pathways affected by FGFR2 signaling, possibly offering a junction to exploit therapeutically.

Kalitin NN, Chernykh YB, Buravtsova IV
Comparative Analysis of Quantitative Parameters of Expression of the Retinoic Acid Nuclear Receptor RARα Gene and APE1/YB-1/MDR1 Pattern Genes in Patients with Newly Detected Multiple Myeloma.
Bull Exp Biol Med. 2017; 164(1):90-94 [PubMed] Related Publications
The expression of retinoic acid nuclear receptor gene RARα and its relationship with expression of APE1, YB-1, and MDR1 genes was studied in bone marrow aspiration biopsy specimens from 22 patients with newly detected multiple myeloma. The expression of RARα directly correlated with the expression of APE1/YB-1/MDR1 pattern genes. Groups differing by expression of RARα exhibited significant differences in the overall survival of patients; concordant and simultaneous changes in the expression of all genes of the APE1/YB-1/MDR1 pattern suggested the level of RARα gene expression as a potential prognostic factor in the pathogenesis of multiple myeloma.

Johnson TG, Schelch K, Cheng YY, et al.
Dysregulated Expression of the MicroRNA miR-137 and Its Target YBX1 Contribute to the Invasive Characteristics of Malignant Pleural Mesothelioma.
J Thorac Oncol. 2018; 13(2):258-272 [PubMed] Related Publications
INTRODUCTION: Malignant pleural mesothelioma (MPM) is an aggressive malignancy linked to asbestos exposure. On a genomic level, MPM is characterized by frequent chromosomal deletions of tumor suppressors, including microRNAs. MiR-137 plays a tumor suppressor role in other cancers, so the aim of this study was to characterize it and its target Y-box binding protein 1 (YBX1) in MPM.
METHODS: Expression, methylation, and copy number status of miR-137 and its host gene MIR137HG were assessed by polymerase chain reaction. Luciferase reporter assays confirmed a direct interaction between miR-137 and Y-box binding protein 1 gene (YBX1). Cells were transfected with a miR-137 inhibitor, miR-137 mimic, and/or YBX1 small interfering RNA, and growth, colony formation, migration and invasion assays were conducted.
RESULTS: MiR-137 expression varied among MPM cell lines and tissue specimens, which was associated with copy number variation and promoter hypermethylation. High miR-137 expression was linked to poor patient survival. The miR-137 inhibitor did not affect target levels or growth, but interestingly, it increased miR-137 levels by means of mimic transfection suppressed growth, migration, and invasion, which was linked to direct YBX1 downregulation. YBX1 was overexpressed in MPM cell lines and inversely correlated with miR-137. RNA interference-mediated YBX1 knockdown significantly reduced cell growth, migration, and invasion.
CONCLUSIONS: MiR-137 can exhibit a tumor-suppressive function in MPM by targeting YBX1. YBX1 knockdown significantly reduces tumor growth, migration, and invasion of MPM cells. Therefore, YBX1 represents a potential target for novel MPM treatment strategies.

Yang F, Wei J, Zhang S, Zhang X
Shrimp miR-S8 Suppresses the Stemness of Human Melanoma Stem-like Cells by Targeting the Transcription Factor YB-1.
Cancer Res. 2017; 77(20):5543-5553 [PubMed] Related Publications
Cross-species regulation of gene expression by microRNA is a possible untapped opportunity for miRNA-based therapy. In this study, we report a novel approach to ablate melanoma stem-like cells by targeting the transcription factor YB-1, which is significantly and selectively upregulated in these cells in melanoma. Silencing YB-1 expression was sufficient to significantly inhibit the stemness of melanoma stem-like cells. In exploring YB-1 targeting, we discovered that the shrimp microRNA miR-S8 could suppress human YB-1 expression in melanoma stem-like cells. Mechanistic investigations revealed that miR-S8 recognized the 3'UTR of YB-1 mRNA and mediated its degradation. In tumor cell and xenograft experiments, miR-S8 suppressed the tumorigenic capacity of melanoma stem-like cells by targeting human YB-1. Overall, our results illuminated a novel aspect of miRNA-mediated cross-species gene expression and its use in regulating cancer stem-like cells.

Lu J, Li X, Wang F, et al.
YB-1 expression promotes pancreatic cancer metastasis that is inhibited by microRNA-216a.
Exp Cell Res. 2017; 359(2):319-326 [PubMed] Related Publications
Pancreatic cancer is one of the most aggressive cancers. The vast majority of patients are diagnosed with advanced, unresectable disease because of early invasive growth and metastatic spread. The aim of this study was to examine YB-1 expression in pancreatic cancer and determine its effects on cell invasion. YB-1 is overexpressed in pancreatic cancer cell lines and patient tissue samples. In patient tissues, high YB-1 levels correlated with perineural invasion. Silencing of YB-1 significantly reduced cell invasion with decreased expression of MMPs in vitro. Furthermore, we found that the expression of YB-1 was suppressed by miR-216a via direct binding to the YB-1 3'-untranslated region. MiR-216a and YB-1 expression levels were inversely correlated in pancreatic cancer cell lines. In addition, ectopic expression of miR-216a inhibited cell invasion in vitro. Taken together, our findings suggest that YB-1 may play an important role in mediating metastatic behaviour and that repression of YB-1 by miR-216a could have a promising therapeutic potential to inhibit tumor metastasis in pancreatic cancer.

Yamashita T, Higashi M, Momose S, et al.
Nuclear expression of Y box binding-1 is important for resistance to chemotherapy including gemcitabine in TP53-mutated bladder cancer.
Int J Oncol. 2017; 51(2):579-586 [PubMed] Related Publications
The development and acquisition of multiple drug resistance in cancer cells remain a major obstacle in the treatment of bladder cancer. Nuclear translocation of Y box binding-1 (YB-1), which is a member of a family of DNA-binding proteins that contain a cold shock domain, plays a significant role in the acquisition of drug resistance by upregulating expression of the multidrug resistance-1 (MDR-1) gene product, p-glycoprotein. The tumor suppressor protein p53 is thought to be essential for nuclear translocation of YB-1. We hypothesized that nuclear translocation of YB-1 might be associated with drug resistance of bladder cancer with an abnormality of the TP53 gene that results in a mutated p53 protein. To test this hypothesis, we analyzed the association of YB-1 with drug resistance of TP53-mutated bladder cancer, including immunohistochemical analysis of YB-1, p-glycoprotein and p53 in vivo as well as the function of YB-1 nuclear translocation and regulation of its translocation by p53 in vitro. Additionally, we examined the association between the nuclear translocation of YB-1 and gemcitabine, a major anticancer-drug for bladder cancer, in cancer cell lines. Nuclear expression of YB-1 was correlated with the expression of p-glycoprotein and p53 in bladder cancer cases (p<0.05). In vitro, both introduction of TP53 and gemcitabine induced nuclear translocation of YB-1. These data indicate that YB-1 translocates to the nucleus coordinately with p53 expression and is involved in gemcitabine resistance in bladder cancer. Nuclear expression of YB-1 is important for resistance to chemotherapy including gemcitabine in TP53-mutated bladder cancer.

Pang T, Li M, Zhang Y, et al.
Y Box-Binding Protein 1 Promotes Epithelial-Mesenchymal Transition, Invasion, and Metastasis of Cervical Cancer via Enhancing the Expressions of Snail.
Int J Gynecol Cancer. 2017; 27(8):1753-1760 [PubMed] Related Publications
OBJECTIVE: Y box-binding protein 1 (YB-1) is a potent oncogenic protein. How it regulates Snail in most tumors including cervical cancer is unknown. This article is to study if YB-1 plays a role in cervical cancer via regulating the expression of Snail.
METHODS: Immunohistochemical staining of YB-1, Snail, and E-cadherin (E-cad) was performed on tissue specimens including 35 cases of chronic cervicitis (as a control), 35 cases of cervical intraepithelial neoplasm (CIN) I, 35 cases of CIN II/III, 28 cases of unmetastatic cervical squamous cell carcinoma, and 19 cases of metastatic cervical squamous cell carcinoma. RNA interference technique was used to knock down YB-1, E6, and Snail genes. Quantitative polymerase chain reaction, western blot, and transwell experiment were used to detect RNA, protein, and cell invasion of cervical cancer cell lines Hela and C33A, respectively.
RESULTS: First, YB-1 knockdown significantly reduced messenger RNA (mRNA) and protein levels of Snail, followed by the increased mRNA and protein levels of E-cad and the decreased invasive ability in both Hela (human papillomavirus [HPV] 18+) and C33A (HPV-) cell lines. Second, YB-1 and Snail protein were correlatively expressed in the group order of metastatic cervical squamous cell carcinoma > unmetastatic cervical squamous cell carcinoma > CINs > cervicitis, with the inverse expression mode of E-cad in the group order, P value less than 0.01, between any 2 groups. Finally, HPV18 E6 knockdown reduced the mRNA and protein levels of YB-1 and Snail in Hela cells.
CONCLUSIONS: The results firstly reported that YB-1 whose mRNA expression is regulated by HPV18 E6 promotes epithelial-mesenchymal transition and progression of cervical cancer via enhancing the expressions of Snail, which indicated that YB-1/Snail/epithelial-mesenchymal transition axis could have a potential use in the diagnosis and therapy of cervical cancer metastasis as a cancer marker and molecular target.

Cheng L, Zhu Y, Han H, et al.
MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice.
Cell Death Dis. 2017; 8(7):e2916 [PubMed] Free Access to Full Article Related Publications
miRNAs are involved in many physiologic and disease processes by virtue of degrading specific mRNAs or inhibiting their translation. miR-148a has been implicated in the control of tumor growth and cholesterol and triglyceride homeostasis using in vitro or in vivo gene expression- and silencing-based approaches. Here miR-148a knockout (KO) mice were used to investigate the intrinsic role of miR-148a in liver physiology and hepatocarcinogenesis in mice. miR-148a downregulation was found to be correlated with poor clinical outcomes in hepatocellular carcinoma (HCC) patients. Under regular chow diet (RCD) or high fat diet (HFD), miR-148a deletion significantly accelerated DEN-induced hepatocarcinogenesis in mice. Mechanistically, miR-148a deletion promotes lipid metabolic disorders in mice. Moreover, restoration of miR-148a reversed these defects. Finally, miR-148a was found to directly inhibit several key regulators of hepatocarcinogenesis and lipid metabolism. These findings reveal crucial roles for miR-148a in the hepatic lipid metabolism and hepatocarcinogenesis. They further identify miR-148a as a potential therapeutic target for certain liver diseases, including cancer.

Kita K, Shiota M, Tanaka M, et al.
Heat shock protein 70 inhibitors suppress androgen receptor expression in LNCaP95 prostate cancer cells.
Cancer Sci. 2017; 108(9):1820-1827 [PubMed] Free Access to Full Article Related Publications
Androgen deprivation therapy is initially effective for treating patients with advanced prostate cancer; however, the prostate cancer gradually becomes resistant to androgen deprivation therapy, which is termed castration-resistant prostate cancer (CRPC). Androgen receptor splice variant 7 (AR-V7), one of the causes of CRPC, is correlated with resistance to a new-generation AR antagonist (enzalutamide) and poor prognosis. Heat shock protein 70 (Hsp70) inhibitor is known to decrease the levels of full-length AR (AR-FL), but little is known about its effects against CRPC cells expressing AR-V7. In this study, we investigated the effect of the Hsp70 inhibitors quercetin and VER155008 in the prostate cancer cell line LNCaP95 that expresses AR-V7, and explored the mechanism by which Hsp70 regulates AR-FL and AR-V7 expression. Quercetin and VER155008 decreased cell proliferation, increased the proportion of apoptotic cells, and decreased the protein levels of AR-FL and AR-V7. Furthermore, VER155008 decreased AR-FL and AR-V7 mRNA levels. Immunoprecipitation with Hsp70 antibody and mass spectrometry identified Y-box binding protein 1 (YB-1) as one of the molecules regulating AR-FL and AR-V7 at the transcription level through interaction with Hsp70. VER155008 decreased the phosphorylation of YB-1 and its localization in the nucleus, indicating that the involvement of Hsp70 in AR regulation might be mediated through the activation and nuclear translocation of YB-1. Collectively, these results suggest that Hsp70 inhibitors have potential anti-tumor activity against CRPC by decreasing AR-FL and AR-V7 expression through YB-1 suppression.

Marchesini M, Ogoti Y, Fiorini E, et al.
ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma.
Cancer Cell. 2017; 32(1):88-100.e6 [PubMed] Free Access to Full Article Related Publications
Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM.

Guo T, Zhao S, Wang P, et al.
YB-1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma.
Oncotarget. 2017; 8(29):48110-48125 [PubMed] Free Access to Full Article Related Publications
Aberrant overexpression of the transcription/translation factor Y-box-binding protein (YB-1) is associated with poor prognosis of lung adenocarcinoma, however the underlying mechanism by which YB-1 acts has not been fully elucidated. Here, we reported that inhibition of YB-1 diminished proliferation, migration and invasion of lung adenocarcinoma cells. Interestingly, we identified metastasis associated in colon cancer-1 (MACC1) as a target of YB-1. Depletion of YB-1 markedly decreased MACC1 promoter activity and suppressed the MACC1/c-Met signaling pathway in lung adenocarcinoma cells. Additionally, chromatin immunoprecipitation (ChIP) assay demonstrated that YB-1 bound to the MACC1 promoter. Moreover, YB-1 was positively correlated with MACC1, and both proteins were over-expressed in lung adenocarcinoma tissues. The Cox-regression analysis indicated that high YB-1 expression was an independent risk factor for prognosis in enrolled patients. Furthermore, depletion of YB-1 attenuated tumorigenesis in a xenograft mouse model and reduced MACC1 expression in tumor tissues. Collectively, our data suggested that targeting YB-1 suppressed lung adenocarcinoma progression through the MACC1/c-Met pathway and that the high expression of YB-1/MACC1 is a potential prognostic marker in lung adenocarcinoma.

Said HM, Safari R, Al-Kafaji G, et al.
Time- and oxygen-dependent expression and regulation of NDRG1 in human brain cancer cells.
Oncol Rep. 2017; 37(6):3625-3634 [PubMed] Related Publications
N-myc downstream-regulated gene 1 (NDRG1) is a tumor suppressor with the potential to suppress metastasis, invasion and migration of cancer cells. It is regulated under stress conditions such as starvation or hypoxia. NDRG1 regulation is both induced and controlled by HIF-1α-dependent and -independent pathways under hypoxic conditions. However, there are profound differences in the way NDRG1 expression is regulated by HIF-1α and other transcription factors. Therefore, we aimed to define the time-dependent pattern of NDRG1 mRNA and protein expression in human glioblastoma cell lines in extreme hypoxia and after re-oxygenation as well as under normoxic conditions. Furthermore, we ascribe the regulation of NDRG1 to the transcription factors HIF-1α, SP1, CEBPα, YB-1 and Smad7 in a time-dependent manner. The human malignant glioma cell lines U87-MG, U373 and GaMG were cultured for 1, 6 and 24 h under hypoxic (0.1% O2) conditions and then they were re-oxygenated. The mRNA expression of NDRG1, HIF-1α SP1, CEBPα, YB-1 and Smad7 was measured using semi-quantitative RT-PCR analysis. Their protein expression was analyzed using western blotting. Our experiments revealed that long-term (24 h), but not short-term hypoxia led to the induction of NDRG1 expression in human glioma cell lines. NDRG1 expression was found to correlate with the protein expression of HIF-1α, SP1, CEBPα, YB-1 and Smad7. The present study suggests for the first time that SP1 regulates NDRG1 expression in glioma cells under hypoxia in a time-dependent manner along with HIF-1α, CEBPα, YB-1 and Smad7. These molecules, each separately or in combination, may possess the potential to become target molecules for antitumor therapeutic approaches particularly in human brain tumors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. YBX1, Cancer Genetics Web: http://www.cancer-genetics.org/YBX1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999