PTPRQ

Gene Summary

Gene:PTPRQ; protein tyrosine phosphatase receptor type Q
Aliases: DFNA73, DFNB84, DFNB84A, PTPGMC1, R-PTP-Q
Location:12q21.31
Summary:This locus encodes a member of the type III receptor-like protein-tyrosine phosphatase family. The encoded protein catalyzes the dephosphorylation of phosphotyrosine and phosphatidylinositol and plays roles in cellular proliferation and differentiation. Mutations at this locus have been linked to autosomal recessive deafness. [provided by RefSeq, Mar 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:phosphatidylinositol phosphatase PTPRQ
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Thyroid Cancer
  • Melanoma
  • CGH
  • Neoplasm Proteins
  • BRAF
  • Chromosome 11
  • Genomic Instability
  • Receptor-Like Protein Tyrosine Phosphatases, Class 5
  • Adenocarcinoma
  • ras Proteins
  • Cancer Gene Expression Regulation
  • Genome-Wide Association Study
  • SYT1 protein, human
  • Signal Transduction
  • Sequence Analysis, RNA
  • Synaptotagmin I
  • DNA Copy Number Variations
  • DNA Mutational Analysis
  • Biomarkers, Tumor
  • Genes, Neoplasm
  • Proto-Oncogene Proteins p21(ras)
  • Tumor Microenvironment
  • Chromosome 18
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3
  • Discoidin Domain Receptors
  • BRAF
  • RTPCR
  • PTPRT protein, human
  • Receptor Protein-Tyrosine Kinases
  • Gene Rearrangement
  • Neoplasm Metastasis
  • Phenotype
  • Cancer DNA
  • Genetic Predisposition
  • Breast Cancer
  • Colorectal Cancer
  • Mutation
  • Receptors, Mitogen
  • Chromosome 20
  • Chromosome 12
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PTPRQ (cancer-related)

Sato R, Nakano T, Hosonaga M, et al.
RNA Sequencing Analysis Reveals Interactions between Breast Cancer or Melanoma Cells and the Tissue Microenvironment during Brain Metastasis.
Biomed Res Int. 2017; 2017:8032910 [PubMed] Free Access to Full Article Related Publications
Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non-small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes

Laczmanska I, Karpinski P, Kozlowska J, et al.
Copy number alterations of chromosomal regions enclosing protein tyrosine phosphatase receptor-like genes in colorectal cancer.
Pathol Res Pract. 2014; 210(12):893-6 [PubMed] Related Publications
Protein tyrosine phosphatases that act in different cellular pathways are described most commonly as tumor suppressors, but also as oncogenes. Their role has previously been described in colorectal cancer, as well as in gastric, breast, thyroid, prostate, ovarian, pancreatic, glioma, liver, leukemia and many other cancers. In a previous study, we have described protein tyrosine phosphatase receptor type T, M, Z1 and Q genes (PTPRT, PTPRM, PTPRZ1 and PTPRQ) hypermethylated in sporadic colorectal cancer. Thus, in this study, we examined the relation of unbalanced chromosomal alterations within regions covering these four protein tyrosine phosphatase genes with this cancer. One hundred and two cancer tissues were molecularly characterized, including analysis of the BRAF and K-ras mutations and methylator phenotype. The analysis of chromosomal aberrations was performed using Comparative Genomic Hybridization. We observed amplification of three regions containing genes coding for PTPs, such as PTPRZ1 (7q31.3, amplified in 23.5% of cases), PTPRQ (12q21.2, amplified in 5.9% of cases), PTPRT (20q12, amplified in 29.4% of cases), along with deletions in the region of PTPRM (18p11.2, deleted in 21.6% of cases). These data may suggest that in sporadic colorectal cancer PTPRZ1, PTPRT, PTPRQ probably act as oncogenes, while PTPRM acts as a tumor suppressor gene. Our study also revealed that gains on chromosome 20q12 and losses on chromosome 18p11.2 are connected with the absence of the BRAF mutation and the conventional adenocarcinoma pathway.

Egan JB, Barrett MT, Champion MD, et al.
Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements.
PLoS One. 2014; 9(2):e87113 [PubMed] Free Access to Full Article Related Publications
Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PTPRQ, Cancer Genetics Web: http://www.cancer-genetics.org/PTPRQ.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999