PER3

Gene Summary

Gene:PER3; period circadian regulator 3
Aliases: GIG13, FASPS3
Location:1p36.23
Summary:This gene is a member of the Period family of genes and is expressed in a circadian pattern in the suprachiasmatic nucleus, the primary circadian pacemaker in the mammalian brain. Genes in this family encode components of the circadian rhythms of locomotor activity, metabolism, and behavior. This gene is upregulated by CLOCK/ARNTL heterodimers but then represses this upregulation in a feedback loop using PER/CRY heterodimers to interact with CLOCK/ARNTL. Polymorphisms in this gene have been linked to sleep disorders. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:period circadian protein homolog 3
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (6)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Transcription Factors
  • Circadian Rhythm
  • Genotype
  • Transfection
  • Period Circadian Proteins
  • RT-PCR
  • Odds Ratio
  • Nuclear Proteins
  • Cell Cycle Proteins
  • Gene Expression Profiling
  • Messenger RNA
  • Cancer Gene Expression Regulation
  • Tandem Repeat Sequences
  • Circadian Clocks
  • Hepatocellular Carcinoma
  • DNA Methylation
  • Case-Control Studies
  • Work Schedule Tolerance
  • Risk Factors
  • Chromosome 1
  • Risk Assessment
  • Prostate Cancer
  • Gene Expression
  • Stomach Cancer
  • Young Adult
  • Up-Regulation
  • Liver Cancer
  • Sirtuin 1
  • Genetic Predisposition
  • Single Nucleotide Polymorphism
  • Colorectal Cancer
  • Regression Analysis
  • Promoter Regions
  • Statistics, Nonparametric
  • Cryptochromes
  • CLOCK Proteins
  • Genetic Variation
  • RTPCR
  • Breast Cancer
  • Polymorphism
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PER3 (cancer-related)

Orhan T, Nielsen PB, Hviid TVF, et al.
Expression of Circadian Clock Genes in Human Colorectal Cancer Tissues Using Droplet Digital PCR.
Cancer Invest. 2019; 37(2):90-98 [PubMed] Related Publications
Increasing evidence indicates that disruption of circadian rhythms may be directly linked to cancer. Here we report that the expression levels of the core clock genes Per1 and Per3 measured by droplet digital polymerase chain reaction are significantly decreased in tumour tissue from 16 patients undergoing colorectal cancer surgery compared to paired normal mucosa. No differences were observed in the expression of Per2, Bmal1, and Clock. In conclusion, abnormal expression levels of the clock genes Per1 and Per3 in CRC tissue may be related to tumourigenesis and may provide future diagnostic and prognostic information.

Matsumura R, Akashi M
Role of the clock gene Period3 in the human cell-autonomous circadian clock.
Genes Cells. 2019; 24(2):162-171 [PubMed] Related Publications
Previous studies have shown that mouse Period3 (mPer3) is dispensable for the generation of autonomous oscillations in the circadian clock. However, human studies have suggested that human Period3 (hPer3) may have more important roles in the core clock machinery than mPer3. To investigate the role of hPer3 protein in the cell-autonomous circadian oscillator, we conducted gene knockout of the hPer3 gene in human bone osteosarcoma epithelial cells using genome-editing technology. We examined the circadian transcription of endogenous clock genes in hPer3-deficient cell clones and found that hPer3-deficient cells showed a phase advance in circadian transcription compared to wild-type cells. We subsequently transfected wild-type and mutant cells with an adenovirus carrying a luciferase gene whose expression was driven by a clock gene promotor, and monitored bioluminescence in real time. Cosinor analysis showed that the circadian period length in all hPer3-deficient cells was significantly shorter than that in wild-type cells, demonstrating that the phase advance in endogenous clock gene expression in hPer3-deficient cell clones was attributable to a shortened circadian period length rather than a phase shift. Together these findings are consistent with previous studies in mice lacking functional mPer3, indicating that the Per3 protein functions similarly in both mice and humans.

Lesicka M, Jabłońska E, Wieczorek E, et al.
Altered circadian genes expression in breast cancer tissue according to the clinical characteristics.
PLoS One. 2018; 13(6):e0199622 [PubMed] Free Access to Full Article Related Publications
Breast cancer has a multifactorial etiology. One of the supposed and novel mechanisms is an alteration of circadian gene expression. Circadian genes play a crucial role in many physiological processes. These processes, such as genomic stability, DNA repair mechanism and apoptosis, are frequently disrupted in breast tumors. To assess the significance of circadian gene expression in breast cancer, we carried out an analysis of CLOCK, BMAL1, NPAS2, PER1, PER2, PER3 and CRY1, CRY2, TIMELESS, CSNK1E expression by the use of the quantitative Real-Time PCR technique in tumor tissue and non-tumor adjacent normal tissue sampled from 107 women with a newly diagnosed disease. The obtained data were compared to the clinical and histopathological features. PER1, PER2, PER3, CRY2 were found to be significantly down-expressed, while CLOCK, TIMELESS were over-expressed in the studied tumor samples compared to the non-tumor samples. Only gene expression of CRY1 was significantly down-regulated with progression according to the TNM classification. We found significantly decreased expression of CRY2, PER1, PER2 genes in the ER/PR negative breast tumors compared to the ER/PR positive tumors. Additionally, expression of CRY2, NPAS2 genes had a decreased level in the poorly differentiated tumors in comparison with the well and moderately differentiated ones. Our results indicate that circadian gene expression is altered in breast cancer tissue, which confirms previous observations from various animal and in vitro studies.

Sánchez DI, González-Fernández B, Crespo I, et al.
Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma.
J Pineal Res. 2018; 65(3):e12506 [PubMed] Related Publications
Disruption of circadian rhythms, which are regulated by the circadian clock machinery, plays an important role in different long-term diseases including hepatocellular carcinoma (HCC). Melatonin has been reported to alleviate promotion and progression of HCC, but the potential contribution of circadian clock modulation is unknown. We investigated the effects of melatonin in mice which received diethylnitrosamine (DEN) (35 mg/kg body weight ip) once a week for 8 weeks. Melatonin was given at 5 or 10 mg kg

Mocellin S, Tropea S, Benna C, Rossi CR
Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies.
BMC Med. 2018; 16(1):20 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Dysfunction of the circadian clock and single polymorphisms of some circadian genes have been linked to cancer susceptibility, although data are scarce and findings inconsistent. We aimed to investigate the association between circadian pathway genetic variation and risk of developing common cancers based on the findings of genome-wide association studies (GWASs).
METHODS: Single nucleotide polymorphisms (SNPs) of 17 circadian genes reported by three GWAS meta-analyses dedicated to breast (Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Consortium; cases, n = 15,748; controls, n = 18,084), prostate (Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium; cases, n = 14,160; controls, n = 12,724) and lung carcinoma (Transdisciplinary Research In Cancer of the Lung (TRICL) Consortium; cases, n = 12,160; controls, n = 16,838) in patients of European ancestry were utilized to perform pathway analysis by means of the adaptive rank truncated product (ARTP) method. Data were also available for the following subgroups: estrogen receptor negative breast cancer, aggressive prostate cancer, squamous lung carcinoma and lung adenocarcinoma.
RESULTS: We found a highly significant statistical association between circadian pathway genetic variation and the risk of breast (pathway P value = 1.9 × 10
CONCLUSIONS: Our findings, based on the largest series ever utilized for ARTP-based gene and pathway analysis, support the hypothesis that circadian pathway genetic variation is involved in cancer predisposition.

Benna C, Helfrich-Förster C, Rajendran S, et al.
Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis.
Oncotarget. 2017; 8(14):23978-23995 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The number of studies on the association between clock genes' polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available.
RESULTS: Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1).We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30).
CONCLUSIONS: Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer.
METHODS: We conducted a systematic review and meta-analysis of the evidence on the association between clock genes' germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies.

Reszka E, Przybek M, Muurlink O, Pepłonska B
Circadian gene variants and breast cancer.
Cancer Lett. 2017; 390:137-145 [PubMed] Related Publications
The endogenous and self-sustained circadian rhythm generated and maintained in suprachiasmatic nucleus and peripheral tissues can coordinate various molecular, biochemical and physiological processes in living organisms resulting in the adaptation to environmental cues, e.g. light. Multifactorial breast cancer etiology also involves circadian gene alterations, especially among individuals exposed to light at night. Indeed, shift work that causes circadian disruption has been classified by the International Agency for Research on Cancer as a probable human carcinogen, group 2A. Thus it seems extremely important to recognize specific susceptible gene variants among around 20 candidate circadian genes that may be linked with breast cancer etiology. The aim of this review was to evaluate recent data investigating a putative link between circadian gene polymorphisms and breast cancer risk. We summarize fifteen epidemiological studies, including five studies on shift work that have indicated BMAL1, BMAL2, CLOCK, NPAS2, CRY1, CRY2, PER1, PER3 and TIMELESS as a candidate breast cancer risk variants.

Zhang F, Sun H, Zhang S, et al.
Overexpression of PER3 Inhibits Self-Renewal Capability and Chemoresistance of Colorectal Cancer Stem-Like Cells via Inhibition of Notch and β-Catenin Signaling.
Oncol Res. 2017; 25(5):709-719 [PubMed] Related Publications
PER3, a circadian clock gene, plays an important role in colorectal cancer, but its action and underlying mechanism in colorectal cancer stem-like cells (CSCs) remain unclear. In this study, the colorectal CSCs were enriched in colorectal HCT-116 sphere-forming cells, expressing lower levels of stem cell markers CD133, CD44, LGR5, and SOX2 compared with HCT-116 cells. A drug-resistant strain from HCT-116 was established. Western blot and qRT-PCR analysis showed that PER3 was downregulated in colorectal CSCs and drug-resistant HCT-116. Overexpression of PER3 could strengthen 5-FU-induced inhibitory effects on colorectal CSCs, but knockdown of PER3 decreased its inhibition of colorectal CSCs. In addition, overexpression of PER3 in colorectal CSCs resulted in reduced colony formation efficiency in a soft agar medium and self-renewal efficiency. Inversely, knockdown of PER3 enhanced self-renewal of colorectal CSCs. Overexpression of PER3 decreased stemness markers and Notch1, Jagged1, β-catenin, c-Myc, and LGR5 in colorectal CSCs. When Notch or β-catenin signaling was inhibited, the chemoresistance and self-renewal capability of colorectal CSCs were decreased. It was confirmed that PER3 can reduce chemoresistance and self-renewal capability of colorectal CSCs via inhibition of Notch and β-catenin signaling. Our results reveal that PER3 plays a critical role in maintaining the stemness of colorectal CSCs and may be a promising target for elimination of CSCs.

Alexander M, Burch JB, Steck SE, et al.
Case-control study of candidate gene methylation and adenomatous polyp formation.
Int J Colorectal Dis. 2017; 32(2):183-192 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Colorectal cancer (CRC) is one of the most common and preventable forms of cancer but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70-90 % of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation.
METHODS: Patients recruited from a local endoscopy clinic provided informed consent and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios (ORs) and 95 % confidence intervals (95% CIs) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders.
RESULTS: Complete data were available for 107 participants; 36 % had adenomas (men 40 %, women 31 %). Hypomethylation of the MINT1 locus (OR 5.3, 95% CI 1.0-28.2) and the PER1 (OR 2.9, 95% CI 1.1-7.7) and PER3 (OR 11.6, 95% CI 1.6-78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71-97 %), sensitivity was relatively low (18-45 %).
CONCLUSION: Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance.

Zhao Q, Zheng G, Yang K, et al.
The clock gene PER1 plays an important role in regulating the clock gene network in human oral squamous cell carcinoma cells.
Oncotarget. 2016; 7(43):70290-70302 [PubMed] Free Access to Full Article Related Publications
The various clock genes in normal cells, through their interaction, establish a number of positive and negative feedback loops that compose a network structure. These genes play an important role in regulating normal physiological activities. The expression of clock gene PER1 is decreased in many types of cancer. PER1 is highly correlated with the initiation and progression of cancer by regulating numerous downstream genes. However, it is still unclear whether the lower expression of PER1 in cancer can influence the expression of other clock genes in the clock gene network. In this study, we used short hairpin RNA interference to knock down PER1 effectively in SCC15 human oral squamous cell carcinoma cells. These cancer cells later were subcutaneously injected into the back of nude mice. We discovered that after PER1 knockdown, apoptosis was decreased and cell proliferation and in vivo tumor formation were enhanced. Quantitative real-time PCR result indicated that in vitro and in vivo cancer cells after PER1 knockdown, PER2, DEC1, DEC2, CRY1, CRY2 and NPAS2 were significantly down-regulated at the mRNA level, while PER3, TIM, RORα and REV-ERBα were significantly up-regulated. It prompts that the role of PER1 in carcinogenesis is exerted not only by regulating downstream genes, but also through the synergistic dysregulation of many other clock genes in the clock gene network.

Huisman SA, Ahmadi AR, IJzermans JN, et al.
Disruption of clock gene expression in human colorectal liver metastases.
Tumour Biol. 2016; 37(10):13973-13981 [PubMed] Free Access to Full Article Related Publications
The circadian timing system controls about 40 % of the transcriptome and is important in the regulation of a wide variety of biological processes including metabolic and proliferative functions. Disruption of the circadian clock could have significant effect on human health and has an important role in the development of cancer. Here, we compared the expression levels of core clock genes in primary colorectal cancer (CRC), colorectal liver metastases (CRLM), and liver tissue within the same patient. Surgical specimens of 15 untreated patients with primary CRC and metachronous CRLM were studied. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression of 10 clock genes: CLOCK, BMAL1, PER1, PER2, PER3, CRY1, CRY2, CSNK1E, TIM, TIPIN, and 2 clock-controlled genes: Cyclin-D1, and WEE1. Expression levels of 7 core clock genes were downregulated in CRLM: CLOCK (p = 0.006), BMAL1 (p = 0.003), PER1 (p = 0.003), PER2 (p = 0.002), PER3 (p < 0.001), CRY1 (p = 0.002), and CRY2 (p < 0.001). In CRC, 5 genes were downregulated: BMAL1 (p = 0.02), PER1 (p = 0.004), PER2 (p = 0.008), PER3 (p < 0.001), and CRY2 (p < 0.001). CSNK1E was upregulated in CRC (p = 0.02). Cyclin-D1 and WEE1 were both downregulated in CRLM and CRC. Related to clinicopathological factors, a significant correlation was found between low expression of CRY1 and female gender, and low PER3 expression and the number of CRLM. Our data demonstrate that the core clock is disrupted in CRLM and CRC tissue from the same patient. This disruption may be linked to altered cell-cycle dynamics and carcinogenesis.

Qu F, Qiao Q, Wang N, et al.
Genetic polymorphisms in circadian negative feedback regulation genes predict overall survival and response to chemotherapy in gastric cancer patients.
Sci Rep. 2016; 6:22424 [PubMed] Free Access to Full Article Related Publications
Circadian negative feedback loop (CNFL) genes play important roles in cancer development and progression. To evaluate the effects of single nucleotide polymorphisms (SNPs) in CNFL genes on the survival of GC patients, 13 functional SNPs from 5 CNFL genes were genotyped in a cohort of 1030 resected GC patients (704 in the training set, 326 in the validation set) to explore the association of SNPs with overall survival (OS). Among the 13 SNPs, three SNPs (rs1056560 in CRY1, rs3027178 in PER1 and rs228729 in PER3) were significantly associated with OS of GC in the training set, and verified in the validation set and pooled analysis. Furthermore, a dose-dependent cumulative effect of these SNPs on GC survival was observed, and survival tree analysis showed higher order interactions between these SNPs. In addition, protective effect conferred by adjuvant chemotherapy (ACT) on GC was observed in patients with variant alleles (TG/GG) of rs1056560, but not in those with homozygous wild (TT) genotype. Functional assay suggested rs1056560 genotypes significantly affect CRY1 expression in cancer cells. Our study presents that SNPs in the CNFL genes may be associated with GC prognosis, and provides the guidance in selecting potential GC patients most likely responsive to ACT.

Yang MY, Lin PM, Hsiao HH, et al.
Up-regulation of PER3 Expression Is Correlated with Better Clinical Outcome in Acute Leukemia.
Anticancer Res. 2015; 35(12):6615-22 [PubMed] Related Publications
BACKGROUND: Altered expression of circadian clock genes has been linked to various types of cancer. This study aimed to investigate whether these genes are also altered in acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL).
MATERIALS AND METHODS: The expression profiles of nine circadian clock genes of peripheral blood (PB) leukocytes from patients with newly-diagnosed AML (n=41), ALL (n=23) and healthy individuals (n=51) were investigated.
RESULTS: In AML, the expression of period 1 (PER1), period 2 (PER2), period 3 (PER3), cryptochrome 1 (CRY1), cryptochrome 2 (CRY2), brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1), and timeless (TIM) was significantly down-regulated, while that of CK1ε was significantly up-regulated. In ALL, the expression of PER3 and CRY1 was significantly down-regulated, whereas those of CK1ε and TIM were significantly up-regulated. Recovery of PER3 expression was observed in both patients with AML and those with ALL who achieved remission but not in patients who relapsed after treatment.
CONCLUSION: Circadian clock genes are altered in patients with acute leukemia and up-regulation of PER3 is correlated with a better clinical outcome.

Gutiérrez-Monreal MA, Villela L, Baltazar S, et al.
A PER3 polymorphism is associated with better overall survival in diffuse large B-cell lymphoma in Mexican population.
Cancer Biomark. 2015; 15(5):699-705 [PubMed] Related Publications
BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of malignant lymphoma. Presently, one of the most important clinical predictors of survival in DLBCL patients is the International Prognostic Index (IPI). Circadian rhythms are the approximate 24 hour biological rhythms with more than 10 genes making up the molecular clock.
OBJECTIVE: Determine if functional single nucleotide polymorphism in circadian genes may contribute to survival status in patients diagnosed with diffuse large B-cell lymphoma.
METHODS: Sixteen high-risk non-synonymous polymorphisms in circadian genes (CLOCK, CRY2, CSNK1E, CSNK2A1, NPAS2, PER1, PER2, PER3, PPP2CA, and TIM) were genotyped by screening PCR. Results were visualized by agarose gel electrophoresis and confirmed by two-direction sequencing. Clinical variables were compared between mutated and non-mutated groups. LogRank survival analysis and Kaplan-Meier method were used to calculate the overall survival.
RESULTS: PER3 rs10462020 variant showed significant difference in overall survival between patients containing mutated genotypes and those with non-mutated genotypes (p = 0.047). LDH levels (p = 0.021) and IPI score (p < 0.001) also showed differences in overall survival. No clinical differences were observed in mutated vs. non-mutated patients.
CONCLUSIONS: This work suggests a role of PER3 rs10462020 in predicting a prognosis in DLBCL overall survival of patients.

Geng P, Ou J, Li J, et al.
Genetic association between PER3 genetic polymorphisms and cancer susceptibility: a meta-analysis.
Medicine (Baltimore). 2015; 94(13):e568 [PubMed] Free Access to Full Article Related Publications
The genes along the circadian pathways control and modulate circadian rhythms essential for the maintenance of physiological homeostasis through self-sustained transcription-translation feedback loops. PER3 (period 3) is a circadian pathway gene and its variants (rs1012477, 4/5-repeat) have frequently been associated with human cancer. The mixed findings, however, make the role of the 2 variants in cancer susceptibility elusive. We aimed in this article to clarify the association of PER3 variants with cancer. We collected genetic data from 8 studies, providing 6149 individuals for rs1012477 and 5241 individuals for 4/5-repeat. Based on the genotype and allele frequency, we chose the fixed-effects model to estimate risk of cancer. Overall analysis did not suggest a global role of rs1012477 in cancer susceptibility. For PER3 4/5-repeat variant, we found a moderate increase in risk of cancer among individuals with the 5-allele compared to individuals with the 4-allele, although this association was not statistically significant (homozygous model: odds ratio [OR] 1.17, 95% confidence interval [CI] 0.81-1.67; recessive model: OR 1.17, 95% CI 0.82-1.67). No substantial heterogeneity was revealed in this analysis. Our meta-analysis provides no evidence supporting a global association of PER3 genetic variants with the incidence of cancer.

Tavano F, Pazienza V, Fontana A, et al.
SIRT1 and circadian gene expression in pancreatic ductal adenocarcinoma: Effect of starvation.
Chronobiol Int. 2015; 32(4):497-512 [PubMed] Related Publications
Pancreatic cancer (PC), the fourth leading cause of cancer-related deaths, is characterized by high aggressiveness and resistance to chemotherapy. Pancreatic carcinogenesis is kept going by derangement of essential cell processes, such as proliferation, apoptosis, metabolism and autophagy, characterized by rhythmic variations with 24-h periodicity driven by the biological clock. We assessed the expression of the circadian genes ARNLT, ARNLT2, CLOCK, PER1, PER2, PER3, CRY1, CRY2 and the starvation-activated histone/protein deacetylase SIRT1 in 34 matched tumor and non-tumor tissue specimens of PC patients, and evaluated in PC derived cell lines if the modulation of SIRT1 expression through starvation could influence the temporal pattern of expression of the circadian genes. We found a significant down-regulation of ARNLT (p = 0.015), CRY1 (p = 0.013), CRY2 (p = 0.001), PER1 (p < 0.0001), PER2 (p < 0.001), PER3 (p = 0.001) and SIRT1 (p = 0.017) in PC specimens. PER3 and CRY2 expression levels were lower in patients with jaundice at diagnosis ( < 0.05). Having adjusted for age, adjuvant therapy and tumor stage, we evidenced that patients with higher PER2 and lower SIRT1 expression levels showed lower mortality (p = 0.028). Levels and temporal patterns of expression of many circadian genes and SIRT1 significantly changed upon serum starvation in vitro, with differences among four different PC cell lines examined (BXPC3, CFPAC, MIA-PaCa-2 and PANC-1). Serum deprivation induced changes of the overall mean level of the wave and amplitude, lengthened or shortened the cycle time and phase-advanced or phase-delayed the rhythmic oscillation depending on the gene and the PC cell line examined. In conclusion, a severe deregulation of expression of SIRT1 and circadian genes was evidenced in the cancer specimens of PC patients, and starvation influenced gene expression in PC cell lines, suggesting that the altered interplay between SIRT1 and the core circadian proteins could represent a crucial player in the process of pancreatic carcinogenesis.

Yu C, Yang SL, Fang X, et al.
Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma.
Mol Med Rep. 2015; 11(5):4002-8 [PubMed] Related Publications
Disturbance in the expression of circadian rhythm genes is a common feature in certain types of cancer, however the mechanisms mediating this disturbance remain to be elucidated. The present study aimed to investigate the effect of hypoxia on the expression of circadian rhythm genes in liver cancer cells and to identify the mechanisms underlying this effect in hepatocellular carcinoma (HCC). The HCC cell line, PLC/PRF/5. was treated with either a vehicle control or CoCl2 at 50, 100 or 200 µΜ for 24 h. Following treatment, the protein expression levels of hypoxia‑inducible factor (HIF)‑1α and HIF‑2α were detected by western blotting and the mRNA expression levels of circadian rhythm genes, including circadian locomotor output cycles kaput (Clock), brain and muscle Arnt‑like 1 (Bmal1), period (Per)1, Per2, Per3, cryptochrome (Cry)1, Cry2 and casein kinase Iε (CKIε), were detected by reverse transcription quantitative polymerase chain reaction (RT‑qPCR). Expression plasmids containing HIF‑1α or HIF‑2α were transfected into the PLC/PRF/5 cells using liposomes and RT‑qPCR was used to determine the effects of the transfections on the expression levels of circadian rhythm genes. Following treatment with CoCl2, the protein expression levels of HIF‑1α and HIF‑2α were upregulated in a CoCl2 concentration‑dependent manner. The mRNA expression levels of Clock, Bmal1 and Cry2 were increased, and the mRNA expression levels of Per1, Per2, Per3, Cry1 and CKIε were decreased following CoCl2 treatment (P<0.05). In the PLC/PRF/5 cells transfected with the plasmid containing HIF‑1α, the mRNA expression levels of Clock, Bmal1 and Cry2 were increased, and the mRNA expression levels of Per1, Per2, Per3, Cry1 and CKIε were decreased. In the PLC/PRF/5 cells transfected with the plasmid containing HIF‑2α, the mRNA expression levels of Clock, Bmal1, Per1, Cry1, Cry2 and CKIε were upregulated, and the mRNA expression levels of Per2 and Per3 were downregulated (P<0.05). A hypoxic microenvironment may contribute to the disturbance in the expression of circadian genes in HCC. HIF‑1α and HIF‑2α are involved in this process and have redundant, but not identical effects.

Alexander M, Burch JB, Steck SE, et al.
Case-control study of the PERIOD3 clock gene length polymorphism and colorectal adenoma formation.
Oncol Rep. 2015; 33(2):935-41 [PubMed] Free Access to Full Article Related Publications
Clock genes are expressed in a self-perpetuating, circadian pattern in virtually every tissue including the human gastrointestinal tract. They coordinate cellular processes critical for tumor development, including cell proliferation, DNA damage response and apoptosis. Circadian rhythm disturbances have been associated with an increased risk for colon cancer and other cancers. This mechanism has not been elucidated, yet may involve dysregulation of the 'period' (PER) clock genes, which have tumor suppressor properties. A variable number tandem repeat (VNTR) in the PERIOD3 (PER3) gene has been associated with sleep disorders, differences in diurnal hormone secretion, and increased premenopausal breast cancer risk. Susceptibility related to PER3 has not been examined in conjunction with adenomatous polyps. This exploratory case-control study was the first to test the hypothesis that the 5-repeat PER3 VNTR sequence is associated with increased odds of adenoma formation. Information on demographics, medical history, occupation and lifestyle was collected prior to colonoscopy. Cases (n=49) were individuals with at least one histopathologically confirmed adenoma. Controls (n=97) included patients with normal findings or hyperplastic polyps not requiring enhanced surveillance. Unconditional multiple logistic regression was used to calculate odds ratios (ORs) with 95% confidence intervals (CIs), after adjusting for potential confounding. Adenomas were detected in 34% of participants. Cases were more likely to possess the 5-repeat PER3 genotype relative to controls (4/5 OR, 2.1; 95% CI, 0.9-4.8; 5/5 OR, 5.1; 95% CI, 1.4-18.1; 4/5+5/5 OR, 2.5; 95% CI, 1.7-5.4). Examination of the Oncomine microarray database indicated lower PERIOD gene expression in adenomas relative to adjacent normal tissue. Results suggest a need for follow-up in a larger sample.

Cadenas C, van de Sandt L, Edlund K, et al.
Loss of circadian clock gene expression is associated with tumor progression in breast cancer.
Cell Cycle. 2014; 13(20):3282-91 [PubMed] Free Access to Full Article Related Publications
Several studies suggest a link between circadian rhythm disturbances and tumorigenesis. However, the association between circadian clock genes and prognosis in breast cancer has not been systematically studied. Therefore, we examined the expression of 17 clock components in tumors from 766 node-negative breast cancer patients that were untreated in both neoadjuvant and adjuvant settings. In addition, their association with metastasis-free survival (MFS) and correlation to clinicopathological parameters were investigated. Aiming to estimate functionality of the clockwork, we studied clock gene expression relationships by correlation analysis. Higher expression of several clock genes (e.g., CLOCK, PER1, PER2, PER3, CRY2, NPAS2 and RORC) was found to be associated with longer MFS in univariate Cox regression analyses (HR<1 and FDR-adjusted P < 0.05). Stratification according to molecular subtype revealed prognostic relevance for PER1, PER3, CRY2 and NFIL3 in the ER+/HER2- subgroup, CLOCK and NPAS2 in the ER-/HER2- subtype, and ARNTL2 in HER2+ breast cancer. In the multivariate Cox model, only PER3 (HR = 0.66; P = 0.016) and RORC (HR = 0.42; P = 0.003) were found to be associated with survival outcome independent of established clinicopathological parameters. Pairwise correlations between functionally-related clock genes (e.g., PER2-PER3 and CRY2-PER3) were stronger in ER+, HER2- and low-grade carcinomas; whereas, weaker correlation coefficients were observed in ER- and HER2+ tumors, high-grade tumors and tumors that progressed to metastatic disease. In conclusion, loss of clock genes is associated with worse prognosis in breast cancer. Coordinated co-expression of clock genes, indicative of a functional circadian clock, is maintained in ER+, HER2-, low grade and non-metastasizing tumors but is compromised in more aggressive carcinomas.

Markt SC, Valdimarsdottir UA, Shui IM, et al.
Circadian clock genes and risk of fatal prostate cancer.
Cancer Causes Control. 2015; 26(1):25-33 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Circadian genes may be involved in regulating cancer-related pathways, including cell proliferation, DNA damage response, and apoptosis. We aimed to assess the role of genetic variation in core circadian rhythm genes with the risk of fatal prostate cancer and first morning void urinary 6-sulfatoxymelatonin levels.
METHODS: We used unconditional logistic regression to evaluate the association of 96 single-nucleotide polymorphisms (SNPs) across 12 circadian-related genes with fatal prostate cancer in the AGES-Reykjavik cohort (n = 24 cases), the Health Professionals Follow-Up Study (HPFS) (n = 40 cases), and the Physicians' Health Study (PHS) (n = 105 cases). We used linear regression to evaluate the association between SNPs and first morning void urinary 6-sulfatoxymelatonin levels in AGES-Reykjavik. We used a kernel machine test to evaluate whether multimarker SNP sets in the pathway (gene based) were associated with our outcomes.
RESULTS: None of the individual SNPs were consistently associated with fatal prostate cancer across the three cohorts. In each cohort, gene-based analyses showed that variation in the CRY1 gene was nominally associated with fatal prostate cancer (p values = 0.01, 0.01, and 0.05 for AGES-Reykjavik, HPFS, and PHS, respectively). In AGES-Reykjavik, SNPs in TIMELESS (four SNPs), NPAS2 (six SNPs), PER3 (two SNPs) and CSNK1E (one SNP) were nominally associated with 6-sulfatoxymelatonin levels.
CONCLUSION: We did not find a strong and consistent association between variation in core circadian clock genes and fatal prostate cancer risk, but observed nominally significant gene-based associations with fatal prostate cancer and 6-sulfatoxymelatonin levels.

Zhang Z, Ma F, Zhou F, et al.
Functional polymorphisms of circadian negative feedback regulation genes are associated with clinical outcome in hepatocellular carcinoma patients receiving radical resection.
Med Oncol. 2014; 31(12):179 [PubMed] Related Publications
Previous studies have demonstrated that circadian negative feedback loop genes play an important role in the development and progression of many cancers. However, the associations between single-nucleotide polymorphisms (SNPs) in these genes and the clinical outcomes of hepatocellular carcinoma (HCC) after surgical resection have not been studied so far. Thirteen functional SNPs in circadian genes were genotyped using the Sequenom iPLEX genotyping system in a cohort of 489 Chinese HCC patients who received radical resection. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the prognosis analysis. Cumulative effect analysis and survival tree analysis were used for the multiple SNPs analysis. Four individual SNPs, including rs3027178 in PER1, rs228669 and rs2640908 in PER3 and rs3809236 in CRY1, were significantly associated with overall survival (OS) of HCC patients, and three SNPs, including rs3027178 in PER1, rs228729 in PER3 and rs3809236 in CRY1, were significantly associated with recurrence-free survival (RFS). Moreover, we observed a cumulative effect of significant SNPs on OS and RFS (P for trend < 0.001 for both). Survival tree analysis indicated that wild genotype of rs228729 in PER3 was the primary risk factor contributing to HCC patients' RFS. Our study suggests that the polymorphisms in circadian negative feedback loop genes may serve as independent prognostic biomarkers in predicting clinical outcomes for HCC patients who received radical resection. Further studies with different ethnicities are needed to validate our findings and generalize its clinical utility.

Hansen MV
Chronobiology, cognitive function and depressive symptoms in surgical patients.
Dan Med J. 2014; 61(9):B4914 [PubMed] Related Publications
Biological rhythms are essential for the regulation of many life processes. Disturbances of the circadian rhythm are known to affect human health, performance and well-being and the negative consequences are numerous and widespread. Cognitive dysfunction, fatigue, pain, sleep disturbances and mood disorders, such as anxiety and depression, are common problems arising around the time of surgery or in the course of a cancer diagnosis and subsequent treatment period. The importance of investigating prevention or treatment possibilities in these populations is significant due to the extent of the problems and the derived consequences on morbidity and mortality. Genetic predisposition to these problems is also an issue in focus. In this thesis we initially investigated whether the specific clock gene genotype PER(5/5) was associated with the development of postoperative cognitive dysfunction one week after non-cardiac surgery. We did not find any association, although this could have been due to the size of the study. Yet, if PER3(5/5) is associated with a higher incidence of postoperative cognitive dysfunction, the risk seems to be only modestly increased and by less than 10%. Melatonin is a hormone with well-known chronobiotic and hypnotic effects. In addition, exogenous melatonin is also known to have anxiolytic, analgesic, antidepressant and positive cognitive effects. Based on the lack of studies investigating these effects of melatonin, we conducted the MELODY trial in which we investigated the effect of 6 mg oral melatonin on depressive symptoms, anxiety, sleep, cognitive function and fatigue in patients with breast cancer in a three month time period after surgery. Melatonin had an effect on reducing the risk of developing depressive symptoms and also increased sleep efficiency perioperatively and total sleep time postoperatively. No effect was found on anxiety, sleep quality, sleepiness, general well-being or pain, however melatonin seemed to positively influence the ability to complete trial participation compared to placebo. Postoperative cognitive dysfunction was not a problem in this limited population. With regard to safety in our study, melatonin treatment for three months did not cause any serious adverse effects. Finally, we systematically reviewed the literature on the prophylactic or therapeutic effect of melatonin for depression or depressive symptoms in adult patients and assessed the safety of melatonin in these studies. The quantity, size and quality of trials investigating this question were not high and there was no clear evidence of an effect, although some studies were positive. In conclusion, further research is warranted with regard to the prophylactic effect and treatment effect of melatonin in depression, depressive symptoms, cognitive disturbances and symptom clusters of cancer patients in general. In addition, more hypothesis-generating studies with regard to the genetic heritability of POCD are needed.

Wirth MD, Burch JB, Hébert JR, et al.
Case-control study of breast cancer in India: Role of PERIOD3 clock gene length polymorphism and chronotype.
Cancer Invest. 2014; 32(7):321-9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: This study examined a PERIOD3 (PER3) gene variable number tandem repeat polymorphism and chronotype as potential BrCA risk factors among Indian women.
METHODS: This case-control study included sporadic, histologically confirmed BrCA cases (n = 255) and controls (n = 249) from India with data collection from 2010-2012.
RESULTS: Women with the 4/5 or 5/5 PER3 genotype had a nonstatistically significant 33% increased odds of BrCA. Cases were more likely to have a morning (OR = 2.43, 95% CI = 1.23-4.81) or evening (OR = 2.55, 95% CI = 1.19-5.47) chronotype.
CONCLUSIONS: Findings are consistent with the possibility that extremes in chronotype may elicit circadian desynchronization, resulting in increased BrCA susceptibility.

Couto P, Miranda D, Vieira R, et al.
Association between CLOCK, PER3 and CCRN4L with non‑small cell lung cancer in Brazilian patients.
Mol Med Rep. 2014; 10(1):435-40 [PubMed] Related Publications
Circadian rhythms comprise of daily oscillations in a variety of biological processes and are regulated by an endogenous clock. Disruption of these rhythms has been associated with cancer progression, and understanding natural oscillations in cellular growth control, tumor suppression and cancer treatment, may reveal how clock and clock‑controlled genes are regulated in normal physiological functioning. To investigate the association between clock genes and non‑small cell lung cancer (NSCLC), we genotyped three tag SNPs (rs938836, rs17050680, rs3805213) in the Nocturnin gene (CCRN4L), five SNPs (rs228727, rs228644, rs228729, rs707467, rs104620202) in the period 3 (PER3) gene and one SNP (rs6855837) in the CLOCK gene, in 78 Brazilian patients with NSCLC. One tag SNP in CCRN4L (rs3805213) and another tag SNP from PER3 (rs228729) demonstrated a significant correlation with genotype and allele frequency in lung cancer (P=4.4x10‑3 and P=5.7x10‑2; P=0.004 and P=0.02, respectively). The results of our study suggest these polymorphisms in the CCRN4L and PER3 genes may represent a risk factor in the occurrence and development of NSCLC in Brazilian patients.

Hu ML, Yeh KT, Lin PM, et al.
Deregulated expression of circadian clock genes in gastric cancer.
BMC Gastroenterol. 2014; 14:67 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gastric cancer (GC), an aggressive malignant tumor of the alimentary tract, is a leading cause of cancer-related death. Circadian rhythm exhibits a 24-hour variation in physiological processes and behavior, such as hormone levels, metabolism, gene expression, sleep and wakefulness, and appetite. Disruption of circadian rhythm has been associated with various cancers, including chronic myeloid leukemia, head and neck squamous cell carcinoma, hepatocellular carcinoma, endometrial carcinoma, and breast cancer. However, the expression of circadian clock genes in GC remains unexplored.
METHODS: In this study, the expression profiles of eight circadian clock genes (PER1, PER2, PER3, CRY1, CRY2, CKIϵ, CLOCK, and BMAL1) of cancerous and noncancerous tissues from 29 GC patients were investigated using real-time quantitative reverse-transcriptase polymerase chain reaction and validated through immunohistochemical analysis.
RESULTS: We found that PER2 was significantly up-regulated in cancer tissues (p < 0.005). Up-regulated CRY1 expression was significantly correlated with more advanced stages (stage III and IV) (p < 0.05).
CONCLUSIONS: Our results suggest deregulated expressions of circadian clock genes exist in GC and circadian rhythm disturbance may be associated with the development of GC.

Karantanos T, Theodoropoulos G, Pektasides D, Gazouli M
Clock genes: their role in colorectal cancer.
World J Gastroenterol. 2014; 20(8):1986-92 [PubMed] Free Access to Full Article Related Publications
Clock genes create a complicated molecular time-keeping system consisting of multiple positive and negative feedback loops at transcriptional and translational levels. This circadian system coordinates and regulates multiple cellular procedures implicated in cancer development such as metabolism, cell cycle and DNA damage response. Recent data support that molecules such as CLOCK1, BMAL1 and PER and CRY proteins have various effects on c-Myc/p21 and Wnt/β-catenin pathways and influence multiple steps of DNA damage response playing a critical role in the preservation of genomic integrity in normal and cancer cells. Notably, all these events have already been related to the development and progression of colorectal cancer (CRC). Recent data highlight critical correlations between clock genes' expression and pathogenesis, progression, aggressiveness and prognosis of CRC. Increased expression of positive regulators of this circadian system such as BMAL1 has been related to decrease overall survival while decreased expression of negative regulators such as PER2 and PER3 is connected with poorer differentiation, increased aggressiveness and worse prognosis. The implications of these molecules in DNA repair systems explain their involvement in the development of CRC but at the same time provide us with novel targets for modern therapeutic approaches for patients with advanced CRC.

Hong Z, Feng Z, Sai Z, Tao S
PER3, a novel target of miR-103, plays a suppressive role in colorectal cancer in vitro.
BMB Rep. 2014; 47(9):500-5 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer has become the third most common cancer and leads to high mortality worldwide. Although colorectal cancer has been studied widely, the underlying molecular mechanism remains unclear. PER3 is related to tumor differentiation and the progression of colorectal cancer. High expression of miR-103 is associated with poor prognosis in patients with colorectal cancer. However, the relationship between miR-103 and PER3 in CRC cells remains unclear. In this study, we found that PER3 was downregulated in CRC tissues and CRC cell lines, whereas miR-103 was upregulated in CRC cell lines. We also found that PER3 promoted CRC cells apoptosis. These results indicate that PER3 plays a suppressive role in CRC cells. Moreover, we found that PER3 was targeted, at least partially, by miR-103. Taken together, we provide evidence to characterize the role of PER3 in CRC, which may be a new therapeutic target for CRC.

Madden MH, Anic GM, Thompson RC, et al.
Circadian pathway genes in relation to glioma risk and outcome.
Cancer Causes Control. 2014; 25(1):25-32 [PubMed] Free Access to Full Article Related Publications
PURPOSE: There is growing evidence that circadian disruption may alter risk and aggressiveness of cancer. We evaluated common genetic variants in the circadian gene pathway for associations with glioma risk and patient outcome in a US clinic-based case-control study.
METHODS: Subjects were genotyped for 17 candidate single nucleotide polymorphisms in ARNTL, CRY1, CRY2, CSNK1E, KLHL30, NPAS2, PER1, PER3, CLOCK, and MYRIP. Unconditional logistic regression was used to estimate age and gender-adjusted odds ratios (OR) and 95 % confidence intervals (CI) for glioma risk under three inheritance models (additive, dominant, and recessive). Proportional hazards regression was used to estimate hazard ratios for glioma-related death among 441 patients with high-grade tumors. Survival associations were validated using The Cancer Genome Atlas (TCGA) dataset.
RESULTS: A variant in PER1 (rs2289591) was significantly associated with overall glioma risk (per variant allele OR 0.80; 95 % CI 0.66-0.97; p trend = 0.027). The variant allele for CLOCK rs11133391 under a recessive model increased risk of oligodendroglioma (OR 2.41; 95 % CI 1.31-4.42; p = 0.005), though not other glioma subtypes (p for heterogeneity = 0.0033). The association remained significant after false discovery rate adjustment (p = 0.008). Differential associations by gender were observed for MYRIP rs6599077 and CSNK1E rs1534891 though differences were not significant after adjustment for multiple testing. No consistent mortality associations were identified. Several of the examined genes exhibited differential expression in glioblastoma multiforme versus normal brain in TCGA data (MYRIP, ARNTL, CRY1, KLHL30, PER1, CLOCK, and PER3), and expression of NPAS2 was significantly associated with a poor patient outcome in TCGA patients.
CONCLUSION: This exploratory analysis provides some evidence supporting a role for circadian genes in the onset of glioma and possibly the outcome of glioma.

Karantanos T, Theodoropoulos G, Gazouli M, et al.
Association of the clock genes polymorphisms with colorectal cancer susceptibility.
J Surg Oncol. 2013; 108(8):563-7 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: The circadian rhythm regulates the cell cycle progression and DNA damage response. The aim of our study was to investigate the association between polymorphisms in the CLOCK1, PER2, and PER3 genes with the colorectal cancer (CRC) susceptibility and clinicopathological variables.
METHODS: Four hundred two CRC patients and 480 healthy controls were included in a case-control study. Genotype and allelic frequencies of 311T>C (rs1801260) in CLOCK1 gene, G3853A (rs934945) in PER2 gene and 4/5 repeats polymorphisms in PER3 gene were evaluated by the polymerase chain reaction (PCR) restriction fragment length polymorphism method in the DNA extracted from the peripheral blood of patients and controls.
RESULTS: The frequencies of the 311T>C CLOCK1 gene, CC genotype and C allele were significantly higher among CRC patients compared to controls (P < 0.0001) elevating the CRC risk by 2.78- and 1.78-fold respectively. No correlation was found between G3853A and 4/5 repeats polymorphisms and CRC risk. The C/G/5 and C/G/4 repeats haplotypes were higher in CRC patients (P = 0.0009 and P = 0.038) elevating the CRC risk by 60% and 89% respectively. No correlation was found between any polymorphism and clinicopathological characteristics of CRC patients.
CONCLUSION: The 311T>C polymorphism in the CLOCK1 gene significantly increases the risk for CRC development while it does not affect the outcome of CRC patients.

Zienolddiny S, Haugen A, Lie JA, et al.
Analysis of polymorphisms in the circadian-related genes and breast cancer risk in Norwegian nurses working night shifts.
Breast Cancer Res. 2013; 15(4):R53 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Some studies have suggested that night work may be associated with an increased risk of breast cancer in nurses. We aimed to explore the role of circadian gene polymorphisms in the susceptibility to night work-related breast cancer risk.
METHODS: We conducted a nested case-control study of Norwegian nurses comprising 563 breast cancer cases and 619 controls within a cohort of 49,402 Norwegian nurses ages 35 to 74 years. We studied 60 single-nucleotide polymorphisms (SNPs) in 17 genes involved in the regulation of the circadian rhythm in cases and controls. The data were analyzed in relation to the two exposure variables "maximum number of consecutive night shifts ever worked" and "maximum number of consecutive night shifts worked for at least 5 years." The odds of breast cancer associated with each SNP was calculated in the main effects analysis and in relation to night shift work. The statistically significant odds ratios were tested for noteworthiness using two Bayesian tests: false positive report probability (FPRP) and Bayesian false discovery probability (BFDP).
RESULTS: In the main effects analysis, CC carriers of rs4238989 and GG carriers of rs3760138 in the AANAT gene had increased risk of breast cancer, whereas TT carriers of BMAL1 rs2278749 and TT carriers of CLOCK rs3749474 had reduced risk. The associations were found to be noteworthy using both the FPRP and BFDP tests. With regard to the effect of polymorphisms and night work, several significant associations were observed. After applying FPRP and BFDP in women with at least four night shifts, an increased risk of breast cancer was associated with variant alleles of SNPs in the genes AANAT (rs3760138, rs4238989), BMAL1 (rs2290035, rs2278749, rs969485) and ROR-b (rs3750420). In women with three consecutive night shifts, a reduced risk of breast cancer was associated with carriage of variant alleles of SNPs in CLOCK (rs3749474), BMAL1 (rs2278749), BMAL2 (rs2306074), CSNK1E (rs5757037), NPAS2 (rs17024926), ROR-b (rs3903529, rs3750420), MTNR1A (rs131113549) and PER3 (rs1012477).
CONCLUSIONS: Significant and noteworthy associations between several polymorphisms in circadian genes, night work and breast cancer risk were found among nurses who had worked at least three consecutive night shifts.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PER3, Cancer Genetics Web: http://www.cancer-genetics.org/PER3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999