HTRA1

Gene Summary

Gene:HTRA1; HtrA serine peptidase 1
Aliases: L56, HtrA, ARMD7, ORF480, PRSS11, CARASIL, CADASIL2
Location:10q26.13
Summary:This gene encodes a member of the trypsin family of serine proteases. This protein is a secreted enzyme that is proposed to regulate the availability of insulin-like growth factors (IGFs) by cleaving IGF-binding proteins. It has also been suggested to be a regulator of cell growth. Variations in the promoter region of this gene are the cause of susceptibility to age-related macular degeneration type 7. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:serine protease HTRA1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (10)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HTRA1 (cancer-related)

Yeh YC, Kuo HY, Chang WL, et al.
H. pylori isolates with amino acid sequence polymorphisms as presence of both HtrA-L171 & CagL-Y58/E59 increase the risk of gastric cancer.
J Biomed Sci. 2019; 26(1):4 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: H. pylori CagL-Y58/E59 increase gastric cancer risk by stronger binding with integrin to faciliate type IV secretory system (T4SS). H. pylori can secrete high temperature requirement A (HtrA) to mediate E-Cadherin cleavage for gastric epithelial junction disruption, so H. pylori CagL can adhere to integrin located on basolateral side of epithelium. The study test whether H. pylori HtrA amino acid polymorphisms can increase gastric cancer risk synergistically with CagL-Y58/E59.
METHODS: One-hundred and sixty-four H. pylori-positive patients, including 71 with non-ulcer dyspepsia (NUD), 63 with peptic ulcers (PU), and 30 with gastric cancers (GC), were enrolled to receive upper gastrointestinal endoscopy to obtain gastric biopsies for H. pylori culture and histology by the updated Sydney system. Each isolate was screened for htrA & cagL genotype by polymerase chain reaction and HtrA & CagL-Y58/E59 amino acid sequence polymorphisms by sequencing.
RESULTS: The prevalence rates of htrA & cagL gene were both 100%. The HtrA amino acid sequence polymorphisms were not different between NUD and PU. The H. pylori isolates of GC had higher rates of HtrA residue 171 as leucine than those of NUD (73.3% vs. 50.7%, P = 0.036, OR[95%CI] = 2.7[1.1-6.8]). The risk of the H. pylori-infected subjects to get gastric cancer was increased up to 15.4-fold, if the infected isolates had presence of both HtrA-L171 and CagL-Y58/E59 (P < 0.001).
CONCLUSIONS: The H. pylori isolates of gastric cancer subjects had a higher rate of HtrA-L171. H. pylori isolates with presence of both HtrA-171 & CagL-Y58/E59 can synergistically increase the risk of gastric cancer.

Cheng H, Zhu H, Cao M, et al.
HtrA1 suppresses the growth of pancreatic cancer cells by modulating Notch-1 expression.
Braz J Med Biol Res. 2018; 52(1):e7718 [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer is well known to be the most deadly malignancy with the worst survival rate of all cancers. High temperature requirement factor A1 (HtrA1) plays an important role in cancer cell proliferation, migration, apoptosis, and differentiation. This study aimed to explore the function of HtrA1 in pancreatic cancer cell growth and its underlying mechanism. We found that the expression of HtrA1 was lower in pancreatic cancer tissue compared to the adjacent normal tissue. Consistently, HtrA1 levels were also decreased in two human pancreatic cancer cell lines, PANC-1 and BXPC-3. Moreover, enforced expression of HtrA1 inhibited cell viability and colony formation of PANC-1 and BXPC-3 cells. Overexpression of HtrA1 promoted apoptosis and suppressed migratory ability of tumor cells. On the contrary, siRNA-mediated knockdown of HtrA1 promoted the growth potential of pancreatic cancer cells. In addition, we found that up-regulation of HtrA1 reduced the expression of Notch-1 in pancreatic cancer cells. On the contrary, knockdown of HtrA1 increased the expression levels of Notch-1. Furthermore, overexpression of Notch-1 abolished the anti-proliferative effect of HtrA1 on pancreatic cancer cells. Taken together, our findings demonstrated that HtrA1 could inhibit pancreatic cancer cell growth via regulating Notch-1 expression, which implied that HtrA1 might be developed as a novel molecular target for pancreatic cancer therapy.

Zhang S, Fu J, Dogan B, et al.
5-Aminosalicylic acid downregulates the growth and virulence of Escherichia coli associated with IBD and colorectal cancer, and upregulates host anti-inflammatory activity.
J Antibiot (Tokyo). 2018; 71(11):950-961 [PubMed] Related Publications
5-aminosalicylate (5-ASA) is widely prescribed for the treatment of inflammatory bowel disease (IBD) and prevention of inflammation-associated colorectal cancer (CRC). Its clinical effect is widely attributed to modulation of host inflammatory responses. However, the recent association of intestinal dysbiosis and selective enrichment in Escherichia coli in patients with IBD and CRC raises the possibility that 5-ASA might also affect the enteric microflora. The aim of this study was to investigate the effect of 5-ASA on the growth and virulence of E. coli associated with IBD and CRC, and its impact on host cell inflammatory responses. Our results show that 5-ASA inhibited E. coli growth in a dose-dependent manner and downregulated the expression of bacterial virulence genes associated with IBD (fliC, fimH, ompC, yfgL, nlpL, lpfA, htrA, dsbA, fyuA, and chuA) and CRC (pks). 5-ASA inhibited E. coli motility (30-70%), epithelial adherence and invasion, and IL-8 secretion (p < 0.05). 5-ASA reduced E. coli survival in J774A.1 macrophages by 20 to 50% (p < 0.01) and TNF-α secretion by infected macrophages up to 30% (p < 0.05). In addition, 5-ASA reduced DNA damage in epithelial cells (Caco-2) induced by pks-positive E. coli. Our results reveal a multifaceted and previously unrecognized effect of 5-ASA on the growth and virulence of IBD- and CRC-associated E. coli, in addition to its inhibitory effect on host cell inflammatory responses. These results suggest that 5-ASA may abrogate the proinflammatory and oncogenic effects of E. coli in patients with IBD and CRC.

Klose R, Adam MG, Weis EM, et al.
Inactivation of the serine protease HTRA1 inhibits tumor growth by deregulating angiogenesis.
Oncogene. 2018; 37(31):4260-4272 [PubMed] Related Publications
The serine protease HTRA1 is involved in several vascular diseases and its expression is often deregulated in cancer. We aimed at identifying how HTRA1 in the vasculature affects tumor growth. Here we report that silencing of HTRA1 in cultured endothelial cells increased migration rate and tube formation, whereas forced HTRA1 expression impaired sprouting angiogenesis. Mechanistically, endothelial HTRA1 expression enhanced Delta/Notch signaling by reducing the amount of the weak Notch ligand JAG1. HTRA1 physically interacted with JAG1 and cleaved it within the intracellular domain, leading to protein degradation. Expression of a constitutive active Notch1 prevented the hypersprouting phenotype upon silencing of HTRA1. In HtrA1-deficient mice, endothelial Notch signaling was diminished and isolated endothelial cells had increased expression of VEGF receptor-2. Growth of syngeneic tumors was strongly impaired in HtrA1

Altobelli E, Angeletti PM, Morroni M, Profeta VF
HtrA1 as a promising tissue marker in cancer: a meta-analysis.
BMC Cancer. 2018; 18(1):143 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: HtrA1 is expressed in a variety of normal human tissues and seems to be involved in numerous physiological processes as well as tumorigenesis. This study reports the results of a meta-analysis that was performed: to compare HtrA1 expression as mRNA and protein, in cancer tissue versus non-cancer tissue and to assess overall survival in relation to low or medium-high HtrA1 tissue expression.
METHODS: The PRISMA method was used for study selection. OR and HR with 95% confidence interval was used as a measure of effect size as appropriate. A random-effects model was applied to account for different sources of variation among studies. Heterogeneity across studies was assessed using Q statistic. Sensitivity analysis was conducted to check the stability of study findings. Egger's regression method was applied to test funnel plot asymmetry.
RESULTS: Sensitivity analysis indicated the stability of meta-analytic findings in each meta-analysis. The study found a significantly different HtrA1 expression in cancer and non-cancer tissue. The meta-analysis of the prognostic studies showed a different survival according to HtrA1 expression.
CONCLUSIONS: The present data may provide a contribution to future work directed at exploring the role of HtrA1 in tumor development and progression and at establishing whether it may be used as a promising tissue marker for some tumors.

Xiong Z, Fu Z, Shi J, et al.
HtrA1 Down-regulation Induces Cisplatin Resistance in Colon Cancer by Increasing XIAP and Activating PI3K/Akt Pathway.
Ann Clin Lab Sci. 2017; 47(3):264-270 [PubMed] Related Publications
The high temperature requirement factor A1 (HtrA1), a member of serine protease family, has been reported to be down-regulated in various cancer types and correlate with chemoresistance. However, the function of HtrA1 in colon cancer remains unclear. This study investigated the role of HtrA1 in cisplatin (CDDP) resistance of colon cancer. We found that HtrA1 was up-regulated in colon cancer cell line SW480 incubated with CDDP. By treating SW480 cells to a continuous exposure to CDDP, we developed CDDP-resistant SW480/CDDP cells and found that the mRNA and protein levels of HtrA1 were reduced. Besides, the stable knock-down of HtrA1 in SW480 transfected with HtrA1 shRNA could also induce chemoresistance against CDDP. To the contrary, ectopic expression of HtrA1 in SW480/CDDP cells abrogated CDDP resistance. The mechanism underlying HtrA-1 down-regulation induced chemoresisance was also investigated. In SW480/CDDP cells and SW480 cells with HtrA1 knock-down, X-linked inhibitor of apoptosis protein (XIAP) was increased, while the interfering of XIAP impeded CDDP resistance in SW480/CDDP cells. We also found that Akt was activated in SW480/CDDP cells and SW480 cells with HtrA1 knock-down. The inhibition of Akt activation reversed CDDP resistance. In conclusion, our results indicate that HtrA1 down-regulation induces CDDP resistance in colon cancer by increasing XIAP and activating PI3K/Akt pathway. This study provides evidence that HtrA1 might be a therapeutic target for overcoming CDDP resistance in colon cancer.

Gelaleti GB, Borin TF, Maschio-Signorini LB, et al.
Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines.
Life Sci. 2017; 183:98-109 [PubMed] Related Publications
Mammary tumorigenesis can be modulated by melatonin, which has oncostatic action mediated by multiple mechanisms, including the inhibition of the activity of transcription factors such as NF-κB and modulation of interleukins (ILs) expression. IL-25 is an active cytokine that induces apoptosis in tumor cells due to differential expression of its receptor (IL-17RB). IL-17B competes with IL-25 for binding to IL-17RB in tumor cells, promoting tumorigenesis. This study purpose is to address the possibility of engaging IL-25/IL-17RB signaling to enhance the effect of melatonin on breast cancer cells. Breast cancer cell lines were cultured monolayers and 3D structures and treated with melatonin, IL-25, siIL-17B, each alone or in combination. Cell viability, gene and protein expression of caspase-3, cleaved caspase-3 and VEGF-A were performed by qPCR and immunofluorescence. In addition, an apoptosis membrane array was performed in metastatic cells. Treatments with melatonin and IL-25 significantly reduced tumor cells viability at 1mM and 1ng/mL, respectively, but did not alter cell viability of a non-tumorigenic epithelial cell line (MCF-10A). All treatments, alone and combined, significantly increased cleaved caspase-3 in tumor cells grown as monolayers and 3D structures (p<0.05). Semi-quantitative analysis of apoptosis pathway proteins showed an increase of CYTO-C, DR6, IGFBP-3, IGFBP-5, IGFPB-6, IGF-1, IGF-1R, Livin, P21, P53, TNFRII, XIAP and hTRA proteins and reduction of caspase-3 (p<0.05) after melatonin treatment. All treatments reduced VEGF-A protein expression in tumor cells (p<0.05). Our results suggest therapeutic potential, with oncostatic effectiveness, pro-apoptotic and anti-angiogenic properties for melatonin and IL-25-driven signaling in breast cancer cells.

Tang H, Leung L, Saturno G, et al.
Lysyl oxidase drives tumour progression by trapping EGF receptors at the cell surface.
Nat Commun. 2017; 8:14909 [PubMed] Free Access to Full Article Related Publications
Lysyl oxidase (LOX) remodels the tumour microenvironment by cross-linking the extracellular matrix. LOX overexpression is associated with poor cancer outcomes. Here, we find that LOX regulates the epidermal growth factor receptor (EGFR) to drive tumour progression. We show that LOX regulates EGFR by suppressing TGFβ1 signalling through the secreted protease HTRA1. This increases the expression of Matrilin2 (MATN2), an EGF-like domain-containing protein that traps EGFR at the cell surface to facilitate its activation by EGF. We describe a pharmacological inhibitor of LOX, CCT365623, which disrupts EGFR cell surface retention and delays the growth of primary and metastatic tumour cells in vivo. Thus, we show that LOX regulates EGFR cell surface retention to drive tumour progression, and we validate the therapeutic potential of inhibiting this pathway with the small molecule inhibitor CCT365623.

Agnihotri S, Jalali S, Wilson MR, et al.
The genomic landscape of schwannoma.
Nat Genet. 2016; 48(11):1339-1348 [PubMed] Related Publications
Schwannomas are common peripheral nerve sheath tumors that can cause debilitating morbidities. We performed an integrative analysis to determine genomic aberrations common to sporadic schwannomas. Exome sequence analysis with validation by targeted DNA sequencing of 125 samples uncovered, in addition to expected NF2 disruption, recurrent mutations in ARID1A, ARID1B and DDR1. RNA sequencing identified a recurrent in-frame SH3PXD2A-HTRA1 fusion in 12/125 (10%) cases, and genomic analysis demonstrated the mechanism as resulting from a balanced 19-Mb chromosomal inversion on chromosome 10q. The fusion was associated with male gender predominance, occurring in one out of every six men with schwannoma. Methylation profiling identified distinct molecular subgroups of schwannomas that were associated with anatomical location. Expression of the SH3PXD2A-HTRA1 fusion resulted in elevated phosphorylated ERK, increased proliferation, increased invasion and in vivo tumorigenesis. Targeting of the MEK-ERK pathway was effective in fusion-positive Schwann cells, suggesting a possible therapeutic approach for this subset of tumors.

Yang X, Liu Y, Mani H, et al.
Biologic Evaluation of Diabetes and Local Recurrence in Non-Small Cell Lung Cancer.
Pathol Oncol Res. 2017; 23(1):73-77 [PubMed] Related Publications
A recent multicenter study led by our institution demonstrated that local recurrence of non-small cell lung cancer (NSCLC) was significantly more frequent in patients with diabetes, raising the possibility of different tumor biology in diabetics. Epithelial-to-mesenchymal transition (EMT) plays a key role in local tumor recurrence and metastasis. In the present study, we investigated differences of tumor microenvironment between patients with and without diabetes by examining expression of EMT markers. Seventy-nine NSCLC patients were selected from the cohort of our early multicenter study. These patients were classified into 4 groups: 39 with adenocarcinoma with (n = 19) and without (n = 20) diabetes, and 40 with squamous cell carcinoma with (n = 20) and without (n = 20) diabetes. Immunohistochemical expression of eight EMT markers was analyzed, including transforming growth factor-beta (TGF-β), epidermal growth factor receptor (EGFR), insulin-like growth factor 1 receptor (IGF-1R), vimentin, E-cadherin, N-cadherin, HtrA1, and beta-catenin. Five markers (E-cadherin, HtrA1, TGF-β, IGF-1R and vimentin) demonstrated significantly higher expression in diabetics than in non-diabetics in both histology types. N-cadherin had higher expression in diabetics, though the difference did not reach statistical significance. EGFR showed a higher expression in diabetics in squamous cell carcinoma only. Beta-catenin was the only marker with no difference in expression between diabetics versus non-diabetics. Our findings suggest that diabetes is associated with enhanced EMT in NSCLC, which may contribute to growth and invasiveness of NSCLC.

Schmidt N, Irle I, Ripkens K, et al.
Epigenetic silencing of serine protease HTRA1 drives polyploidy.
BMC Cancer. 2016; 16:399 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation.
METHODS: Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated.
RESULTS: HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs).
CONCLUSIONS: Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation.

Halberg N, Sengelaub CA, Navrazhina K, et al.
PITPNC1 Recruits RAB1B to the Golgi Network to Drive Malignant Secretion.
Cancer Cell. 2016; 29(3):339-353 [PubMed] Free Access to Full Article Related Publications
Enhanced secretion of tumorigenic effector proteins is a feature of malignant cells. The molecular mechanisms underlying this feature are poorly defined. We identify PITPNC1 as a gene amplified in a large fraction of human breast cancer and overexpressed in metastatic breast, melanoma, and colon cancers. Biochemical, molecular, and cell-biological studies reveal that PITPNC1 promotes malignant secretion by binding Golgi-resident PI4P and localizing RAB1B to the Golgi. RAB1B localization to the Golgi allows for the recruitment of GOLPH3, which facilitates Golgi extension and enhanced vesicular release. PITPNC1-mediated vesicular release drives metastasis by increasing the secretion of pro-invasive and pro-angiogenic mediators HTRA1, MMP1, FAM3C, PDGFA, and ADAM10. We establish PITPNC1 as a PI4P-binding protein that enhances vesicular secretion capacity in malignancy.

Ciferri C, Lipari MT, Liang WC, et al.
The trimeric serine protease HtrA1 forms a cage-like inhibition complex with an anti-HtrA1 antibody.
Biochem J. 2015; 472(2):169-81 [PubMed] Related Publications
High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease implicated in the progression of age-related macular degeneration (AMD). Our interest in an antibody therapy to neutralize HtrA1 faces the complication that the target adopts a trimeric arrangement, with three active sites in close proximity. In the present study, we describe antibody 94, obtained from a human antibody phage display library, which forms a distinct macromolecular complex with HtrA1 and inhibits the enzymatic activity of recombinant and native HtrA1 forms. Using biochemical methods and negative-staining EM we were able to elucidate the molecular composition of the IgG94 and Fab94 complexes and the associated inhibition mechanism. The 246-kDa complex between the HtrA1 catalytic domain trimer (HtrA1_Cat) and Fab94 had a propeller-like organization with one Fab bound peripherally to each protomer. Low-resolution EM structures and epitope mapping indicated that the antibody binds to the surface-exposed loops B and C of the catalytic domain, suggesting an allosteric inhibition mechanism. The HtrA1_Cat-IgG94 complex (636 kDa) is a cage-like structure with three centrally located IgG94 molecules co-ordinating two HtrA1_Cat trimers and the six active sites pointing into the cavity of the cage. In both complexes, all antigen-recognition regions (paratopes) are found to bind one HtrA1 protomer and all protomers are bound by a paratope, consistent with the complete inhibition of enzyme activity. Therefore, in addition to its potential therapeutic usefulness, antibody 94 establishes a new paradigm of multimeric serine protease inhibition.

Hassan WA, Udaka N, Ueda A, et al.
Neoplastic lesions in CADASIL syndrome: report of an autopsied Japanese case.
Int J Clin Exp Pathol. 2015; 8(6):7533-9 [PubMed] Free Access to Full Article Related Publications
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is one of the most common heritable causes of stroke and dementia in adults. The gene involved in the pathogenesis of CADASIL is Notch3; in which mutations affect the number of cysteine residues in its extracellular domain, causing its accumulation in small arteries and arterioles of the affected individuals. Besides the usual neurological and vascular findings that have been well-documented in CADASIL patients, this paper additionally reports multiple neoplastic lesions that were observed in an autopsy case of CADASIL patient; that could be related to Notch3 mutation. The patient was a 62 years old male, presented with a past history of neurological manifestations, including gait disturbance and frequent convulsive attacks. He was diagnosed as CADASIL syndrome with Notch3 Arg133Cys mutation. He eventually developed hemiplegia and died of systemic convulsions. Autopsy examination revealed-besides the vascular and neurological lesions characteristic of CADASIL- multiple neoplastic lesions in the body; carcinoid tumorlet and diffuse idiopathic pulmonary neuro-endocrine cell hyperplasia (DIPNECH) in the lungs, renal cell carcinoma (RCC), prostatic adenocarcinoma (ADC) and adenomatoid tumor of the epididymis. This report describes a spectrum of neoplastic lesions that were found in a case of CADASIL patient that could be related to Notch3 gene mutations.

Altobelli E, Marzioni D, Lattanzi A, Angeletti PM
HtrA1: Its future potential as a novel biomarker for cancer.
Oncol Rep. 2015; 34(2):555-66 [PubMed] Free Access to Full Article Related Publications
HtrA1 appears to be involved in several physiological processes as well as in the pathogenesis of conditions such as Alzheimer's disease and osteoarthritis. It has also been hypothesized to play a role as a tumor suppressor. This manuscript reviews the current cancer-related HtrA1 research from the methodological and clinical standpoints including studies regarding its potential role as a tumor marker and/or prognostic factor. PRISMA method was used for study selection. The articles thus collected were examined and selected by two independent reviewers; any disagreement was resolved by a methodologist. A laboratory researcher reviewed the methods and laboratory techniques. Fifteen studies met the inclusion criteria and concerned the following cancer sites: the nervous system, bladder, breast, esophagus, stomach, liver, endometrium, thyroid, ovaries, pleura, lung and skin. Most articles described in vivo studies using a morphological approach and immunohistochemistry, whereas protein expression was quantified as staining intensity scored by two raters. Often the results were not comparable due to the different rating scales and study design. Current research on HtrA1 does not conclusively support its role as a tumor suppressor.

Minchenko DO, Kharkova AP, Karbovskyi LL, Minchenko OH
Expression of insulin-like growth factor binding protein genes and its hypoxic regulation in U87 glioma cells depends on ERN1 mediated signaling pathway of endoplasmic reticulum stress.
Endocr Regul. 2015; 49(2):73-83 [PubMed] Related Publications
OBJECTIVE: The aim of the present study was to examine the association between the expression of insulin-like growth binding protein-1 and -2 (IGFBP1 and IGFBP2), insulin-like growth factor 2 mRNA binding protein 3/KH domain containing protein over-expressed in cancer (IGF2BP3/KOC1), and HtrA serine peptidase 1/serine protease with IGF-binding domain (HTRA1/PRSS11) genes and function of endoplasmic reticulum stress signaling mediated by ERN1 (endoplasmic reticulum to nucleus signaling 1) as well as the regulation of these genes by hypoxia in U87glioma cells.
METHODS: The expression of IGFBP1, IGFBP2, IGF2BP3, and HTRA1 genes in U87 glioma cells and its subline with ERN1 signaling enzyme loss of function, were analyzed by qPCR. Cells underwent to hypoxia exposure (3% oxygen, 16 h).
RESULTS: The blockade of both enzymatic activities (kinase and endoribonuclease) of ERN1 in glioma cells led to a significant down-regulation of the expression of IGFBP1, IGFBP2, and IGF2BP3 genes and strong up-regulation of HTRA1. At the same time, the inhibition of ERN1 endoribonuclease significantly increased the expression of IGFBP1, IGFBP2, and HTRA1 genes and did not affect the IGF2BP3 gene expression. Hypoxia up-regulated the expression of IGFBP1 and IGFBP2 genes in control glioma cells, with more significant changes in IGFBP1 gene. Furthermore, effect of hypoxia on these gene expressions was significantly lower in glioma cells without ERN1 signaling enzyme function.
CONCLUSIONS: Results of this study demonstrate the dependence of insulin-like growth binding proteins as well as IGF2BP3 and HTRA1 gene expressions in U87 glioma cells on ERN1 signaling enzyme function and hypoxia, indicating its participation in the regulation of metabolic and proliferative processes via IGF/INS receptors, because endoplasmic reticulum stress is an important component of tumor growth and metabolic diseases.

Kiflemariam S, Ljungström V, Pontén F, Sjöblom T
Tumor vessel up-regulation of INSR revealed by single-cell expression analysis of the tyrosine kinome and phosphatome in human cancers.
Am J Pathol. 2015; 185(6):1600-9 [PubMed] Related Publications
The tyrosine kinome and phosphatome harbor oncogenes and tumor suppressor genes and important regulators of angiogenesis and tumor stroma formation. To provide a better understanding of their potential roles in cancer, we analyzed the expression of 85 tyrosine kinases and 42 tyrosine phosphatases by in situ hybridization 48 human normal and 24 tumor tissue specimens. Nine-tenths of the assessed transcripts had tumor cell expression concordant with expression array databases. Further, pan-cancer expression of AATK, PTPRK, and PTPRU and expression of PTPRS in a subset of tumors were observed. To demonstrate tumor subcompartment resolution, we validated the predicted tumor stroma-specific markers HTRA1, HTRA3, MXRA5, MXRA8, and SERPING1 in situ. In addition to known vascular and stromal markers such as PDGFRB, we observed stromal expression of PTK6 and TNS1 and vascular expression of INSR, PTPRF, PTPRG, PTPRU, and TNS1, of which INSR emerged as a tumor-specific vessel marker. This study demonstrates the feasibility of large-scale analyses to chart the transcriptome in situ in human cancers and their ability to identify novel cancer biomarkers.

Bao W, Zhu F, Duan Y, et al.
HtrA1 resensitizes multidrug-resistant hepatocellular carcinoma cells by targeting XIAP.
Biomed Pharmacother. 2015; 70:97-102 [PubMed] Related Publications
The study aims to clarify the relation between chemosensitivity and HtrA1 expression, and the possible way HtrA1 works. Drug-resistant cell line HepG2/ADM was induced by increasing adriamycin (ADM), and eukaryotic expression vector pEGFP-N1-HtrA1 was constructed using BamHI and EcoRI restriction enzymes, after which, HepG2/ADM was transfected with pEGFP-N1-HtrA1. Resistance index (RI) of the hepatoma cell lines to different anti-cancer drugs (ADM, 5-Fu, MMC, L-OHP and VCR) was determined by MTT assay before and after HtrA1 high expression. After an HtrA1 inhibitor, NVP-LEB748 was adopted in the HtrA1 overexpressing cells, expression of proteins P-gp, MRP and XIAP (X-linked inhibitor of apoptosis protein) in HepG2/ADM cells were analyzed by western blot, and the activities of caspases 3, 7 and 9 were respectively measured using activity assay kits. The results showed that RI was negatively correlated with the expression of HtrA1, upregulated XIAP expression was resulted from the HtrA1 inhibitor, and variance of activities of caspases 3, 7 and 9 were remarkably descended with its increasing concentration. It was concluded that high expression of HtrA1 could significantly reverse multidrug resistance of hepatoma cells by targeting XIAP. HtrA1 is therefore expected to be an effective tool in the therapy of hepatocellular carcinoma.

Zhao Z, Li H, Wang C, et al.
Serine protease HtrA1 as an inhibitor on proliferation invasion and migration of gastric cancer.
Med Oncol. 2015; 32(4):112 [PubMed] Related Publications
HtrA1, as serine protease lower expressed in various human solid tumors, can down-regulate cell growth and proliferation. In this study, we focus on whether overexpressed HtrA1 can inhibit the growth of gastric cancer in vitro. This study found the HtrA1 is lower expressed in gastric cancer tissue than in normal gastric tissue. When HtrA1 is highly expressing with recombinant plasmid in gastric cancer cell lines SGC-7901 and AGS, it weakened cell proliferation, invasion, and migration in vitro. These data suggested that HtrA1 as an inhibitor in gastric cancer cells resulted in anti-proliferation, reduced invasion, decreased migration, and suppressed growth and may be an effective molecular targets on gastric cancer treatment.

Rose M, Schubert C, Dierichs L, et al.
OASIS/CREB3L1 is epigenetically silenced in human bladder cancer facilitating tumor cell spreading and migration in vitro.
Epigenetics. 2014; 9(12):1626-40 [PubMed] Free Access to Full Article Related Publications
CREB3L1 has been recently proposed as a novel metastasis suppressor gene in breast cancer. Our current study highlights CREB3L1 expression, regulation, and function in bladder cancer. We demonstrate a significant downregulation of CREB3L1 mRNA expression (n = 64) in primary bladder cancer tissues caused by tumor-specific CREB3L1 promoter hypermethylation (n = 51). Based on pyrosequencing CREB3L1 methylation was shown to be potentially associated with a more aggressive phenotype of bladder cancer. These findings were verified by an independent public data set containing data from 184 bladder tumors. In addition, immunohistochemical evaluation showed that CREB3L1 protein expression is decreased in bladder cancer tissues as well. Interestingly, protein loss is predominately observed in the nuclei of aggressive tumor cells. Based on in vitro models we clearly show that CREB3L1 re-expression mediates suppression of tumor cell migration and colony growth of high grade and invasive bladder cancer cells. The candidate tumor suppressor and TGF-β signaling inhibitor HTRA3 was furthermore identified as putative target gene of CREB3L1 in both invasive J82 bladder cells and primary bladder tumors. Hence, our data provide for the first time evidence that the transcription factor CREB3L1 may have an important role as a putative tumor suppressor in bladder cancer.

Arribas AJ, Rinaldi A, Mensah AA, et al.
DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features.
Blood. 2015; 125(12):1922-31 [PubMed] Free Access to Full Article Related Publications
Splenic marginal zone lymphoma is a rare lymphoma. Loss of 7q31 and somatic mutations affecting the NOTCH2 and KLF2 genes are the commonest genomic aberrations. Epigenetic changes can be pharmacologically reverted; therefore, identification of groups of patients with specific epigenomic alterations might have therapeutic relevance. Here we integrated genome-wide DNA-promoter methylation profiling with gene expression profiling, and clinical and biological variables. An unsupervised clustering analysis of a test series of 98 samples identified 2 clusters with different degrees of promoter methylation. The cluster comprising samples with higher-promoter methylation (High-M) had a poorer overall survival compared with the lower (Low-M) cluster. The prognostic relevance of the High-M phenotype was confirmed in an independent validation set of 36 patients. In the whole series, the High-M phenotype was associated with IGHV1-02 usage, mutations of NOTCH2 gene, 7q31-32 loss, and histologic transformation. In the High-M set, a number of tumor-suppressor genes were methylated and repressed. PRC2 subunit genes and several prosurvival lymphoma genes were unmethylated and overexpressed. A model based on the methylation of 3 genes (CACNB2, HTRA1, KLF4) identified a poorer-outcome patient subset. Exposure of splenic marginal zone lymphoma cell lines to a demethylating agent caused partial reversion of the High-M phenotype and inhibition of proliferation.

Sahasrabuddhe NA, Barbhuiya MA, Bhunia S, et al.
Identification of prosaposin and transgelin as potential biomarkers for gallbladder cancer using quantitative proteomics.
Biochem Biophys Res Commun. 2014; 446(4):863-9 [PubMed] Free Access to Full Article Related Publications
Gallbladder cancer is an uncommon but lethal malignancy with particularly high incidence in Chile, India, Japan and China. There is a paucity of unbiased large-scale studies investigating molecular basis of gallbladder cancer. To systematically identify differentially regulated proteins in gallbladder cancer, iTRAQ-based quantitative proteomics of gallbladder cancer was carried out using Fourier transform high resolution mass spectrometry. Of the 2575 proteins identified, proteins upregulated in gallbladder cancer included several lysosomal proteins such as prosaposin, cathepsin Z and cathepsin H. Downregulated proteins included serine protease HTRA1 and transgelin, which have been reported to be downregulated in several other cancers. Novel biomarker candidates including prosaposin and transgelin were validated to be upregulated and downregulated, respectively, in gallbladder cancer using tissue microarrays. Our study provides the first large scale proteomic characterization of gallbladder cancer which will serve as a resource for future discovery of biomarkers for gallbladder cancer.

Fujinaga T, Kumamaru W, Sugiura T, et al.
Biological characterization and analysis of metastasis-related genes in cell lines derived from the primary lesion and lymph node metastasis of a squamous cell carcinoma arising in the mandibular gingiva.
Int J Oncol. 2014; 44(5):1614-24 [PubMed] Related Publications
Controlling metastatic lesions is an important part of improving cancer prognosis, in addition to controlling the primary lesion. There have been numerous histological studies on primary and metastatic lesions, but little basic research has been performed using cell lines from primary and metastatic lesions belonging to the same patient. In this study, we successfully established a cell line derived from lower gingival carcinoma (WK2) as well as a line derived from secondary cervical lymph node metastasis (WK3F) through primary cultures of tissue from a patient with oral squamous cell carcinoma. We then investigated the biological characteristics of the cancer cell lines from these primary and metastatic lesions and analyzed metastasis-related genes. Comparison of the biological characteristics in vitro showed that WK3F had higher cell proliferation ability and shorter cell doubling time than WK2. WK3F also had increased cell migratory ability and higher invasive and self-replication abilities. Heterotransplantation into nude mice resulted in high tumor formation rates in the tongue and high metastasis rates in the cervical lymph nodes. Changes in WK2 and WK3F gene expression were then comprehensively analyzed using microarrays. Genes with increased expression in WK3F compared to WK2 were extracted when the Z-score was ≥2.0 and the ratio was ≥5.0, while genes with reduced expression in WK3F compared to WK2 were extracted when the Z-score was ≤-2.0 and the ratio was ≤0.2; differences were found in 604 genes. From these, MAGEC1 (88.0-fold), MMP-7 (18.6-fold), SNAI1 (6.6-fold), MACC1 (6.2-fold), and HTRA1 (0.012-fold) were selected as metastasis-related candidate genes. The results suggest that these molecules could be important for clarifying the mechanisms that regulate metastasis and provide new therapeutic targets for inhibiting tumor invasion.

Oliveras-Ferraros C, Vazquez-Martin A, Cuyàs E, et al.
Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile.
Cell Cycle. 2014; 13(7):1132-44 [PubMed] Free Access to Full Article Related Publications
Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA, AURKB, BUB1, CENP-A, CENP-M) and pro-autophagic features (i.e., TRAIL upregulation and BCL-2 downregulation), it appears that the unique mechanism of acquired resistance to metformin has opposing roles in growth and metastatic dissemination. While refractoriness to metformin limits breast cancer cell growth, likely due to aberrant mitotic/cytokinetic machinery and accelerated autophagy, it notably increases the potential of metastatic dissemination by amplifying the number of pro-migratory and stemness inputs via the activation of a significant number of proteases and EMT regulators. Future studies should elucidate whether our findings using supra-physiological concentrations of metformin mechanistically mimic the ultimate processes that could paradoxically occur in a polyploid, senescent-autophagic scenario triggered by the chronic metabolic stresses that occur during cancer development and after treatment with cancer drugs.

Prorok-Hamon M, Friswell MK, Alswied A, et al.
Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer.
Gut. 2014; 63(5):761-70 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Colonic mucosa-associated Escherichia coli are increased in Crohn's disease (CD) and colorectal cancer (CRC). They variously haemagglutinate, invade epithelial cell lines, replicate within macrophages, translocate across M (microfold) cells and damage DNA. We investigated genes responsible for these effects and their co-association in colonic mucosal isolates.
DESIGN: A fosmid library yielding 968 clones was prepared in E coli EPI300-T1 using DNA from a haemagglutinating CRC isolate, and resulting haemagglutinating clones were 454-pyrosequenced. PCR screening was performed on 281 colonic E coli isolates from inflammatory bowel disease (IBD) (35 patients), CRC (21) and controls (24; sporadic polyps or irritable bowel syndrome).
RESULTS: 454-Pyrosequencing of fosmids from the haemagglutinating clones (n=8) identified the afimbrial adhesin afa-1 operon. Transfection of afa-1 into E coli K-12 predictably conferred diffuse adherence plus invasion of HEp-2 and I-407 epithelial cells, and upregulation of vascular endothelial growth factor. E coli expressing afaC were common in CRC (14/21, p=0.0009) and CD (9/14, p=0.005) but not ulcerative colitis (UC; 8/21) compared with controls (4/24). E coli expressing both afaC and lpfA (relevant to M-cell translocation) were common in CD (8/14, p=0.0019) and CRC (14/21, p=0.0001), but not UC (6/21) compared with controls (2/24). E coli expressing both afaC and pks (genotoxic) were common in CRC (11/21, p=0.0015) and UC (8/21, p=0.022), but not CD (4/14) compared with controls (2/24). All isolates expressed dsbA and htrA relevant to intra-macrophage replication, and 242/281 expressed fimH encoding type-1 fimbrial adhesin.
CONCLUSIONS: IBD and CRC commonly have colonic mucosal E coli that express genes that confer properties relevant to pathogenesis including M-cell translocation, angiogenesis and genotoxicity.

Yin W, Wang P, Wang X, et al.
Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells.
Braz J Med Biol Res. 2013; 46(6):546-54 [PubMed] Free Access to Full Article Related Publications
Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (≈ 45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33 ± 1.76 vs 28.75 ± 1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98 ± 0.52 vs 69.14 ± 0.89, P<0.05), increased efflux of rhodamine 123 (95.97 ± 0.56 vs 12.40 ± 0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.

Spugnini EP, Cardillo I, Fanciulli M, et al.
Electroporation as a strategy to promote HtrA1 gene uptake and chemotherapy efficacy in a mouse model of mesothelioma.
Front Biosci (Elite Ed). 2013; 5:974-81 [PubMed] Related Publications
There is not a consensus on the best therapeutic approach to mesothelioma and the prognosis is still dismal. We have recently demonstrated that HtrA1 is a potential therapeutic target in mesothelioma cells. In this manuscript we describe that electroporation in a mouse mesothelioma xenograft was able to facilitate the expression of exogenous HtrA1 injected intra-lesionally in the tumors and to increase the penetration in the neoplastic cells of cisplatin given intra-peritoneally. Indeed, HtrA1 over-expression caused a significant slowing down of tumor growth; moreover, cisplatin efficacy in reducing tumor mass was amplified by electroporation and this phenomenon was even more significant when combining the electroporation of cisplatin and HtrA1. Considering that a substantial number of mesothelioma patients develop early local recurrence, even with radical resection combined with aggressive chemo- and radiotherapy, this multi-modality approach could be very effective in improving local tumor control after surgery. The identification of effective combination coupled with the development of novel equipments and electrodes will be instrumental in planning the translation of these results to humans as per correct laboratory-clinical interface.

Lehner A, Magdolen V, Schuster T, et al.
Downregulation of serine protease HTRA1 is associated with poor survival in breast cancer.
PLoS One. 2013; 8(4):e60359 [PubMed] Free Access to Full Article Related Publications
HTRA1 is a highly conserved serine protease which has been implicated in suppression of epithelial-to-mesenchymal-transition (EMT) and cell motility in breast cancer. Its prognostic relevance for breast cancer is unclear so far. Therefore, we evaluated the impact of HTRA1 mRNA expression on patient outcome using a cohort of 131 breast cancer patients as well as a validation cohort including 2809 publically available data sets. Additionally, we aimed at investigating for the presence of promoter hypermethylation as a mechanism for silencing the HTRA1 gene in breast tumors. HTRA1 downregulation was detected in more than 50% of the breast cancer specimens and was associated with higher tumor stage (p = 0.025). By applying Cox proportional hazard models, we observed favorable overall (OS) and disease-free survival (DFS) related to high HTRA1 expression (HR = 0.45 [CI 0.23-0.90], p = 0.023; HR = 0.55 [CI 0.32-0.94], p = 0.028, respectively), with even more pronounced impact in node-positive patients (HR = 0.21 [CI 0.07-0.63], p = 0.006; HR = 0.29 [CI 0.13-0.65], p = 0.002, respectively). Moreover, HTRA1 remained a statistically significant factor predicting DFS among established clinical parameters in the multivariable analysis. Its impact on patient outcome was independently confirmed in the validation set (for relapse-free survival (n = 2809): HR = 0.79 [CI 0.7-0.9], log-rank p = 0.0003; for OS (n = 971): HR = 0.63 [CI 0.48-0.83], log-rank p = 0.0009). In promoter analyses, we in fact detected methylation of HTRA1 in a small subset of breast cancer specimens (two out of a series of 12), and in MCF-7 breast cancer cells which exhibited 22-fold lower HTRA1 mRNA expression levels compared to unmethylated MDA-MB-231 cells. In conclusion, we show that downregulation of HTRA1 is associated with shorter patient survival, particularly in node-positive breast cancer. Since HTRA1 loss was demonstrated to induce EMT and cancer cell invasion, these patients might benefit from demethylating agents or histone deacetylase inhibitors previously reported to lead to HTRA1 upregulation, or from novel small-molecule inhibitors targeting EMT-related processes.

Zurawa-Janicka D, Kobiela J, Galczynska N, et al.
Changes in expression of human serine protease HtrA1, HtrA2 and HtrA3 genes in benign and malignant thyroid tumors.
Oncol Rep. 2012; 28(5):1838-44 [PubMed] Related Publications
Human HtrA proteins are serine proteases involved in essential physiological processes. HtrA1 and HtrA3 function as tumor suppressors and inhibitors of the TGF-β signaling pathway. HtrA2 regulates mitochondrial homeostasis and plays a pivotal role in the induction of apoptosis. The aim of the study was to determine whether the HtrA proteins are involved in thyroid carcinogenesis. We used the immunoblotting technique to estimate protein levels of HtrA1, HtrA2, long and short variants of HtrA3 (HtrA3-L and HtrA3-S) and TGF-β1 in tissues of benign and malignant thyroid lesions, and control groups. We found that the levels of HtrA2 and HtrA3-S were higher in thyroid malignant tumors compared to normal tissues and benign tumors. The HtrA3-L level was increased in malignant tumor tissues compared to benign tumor tissues and control tissues from patients with benign lesions, and elevated in normal tissues from patients with thyroid carcinoma compared to normal tissues from patients with benign lesions. We also compared levels of HtrA proteins in follicular thyroid carcinoma (FTC) and papillary thyroid carcinoma (PTC) and found that these types of carcinoma differed in the expression of HtrA3-S and HtrA1. These results indicate the implication of HtrA proteins in thyroid carcinogenesis suggest that HtrA3 variants may play different roles in cancer development, and that the increased HtrA3-L levels in thyroid tissue could be correlated with the development of malignant lesions. The TGF-β1 levels in tumor tissues were not significantly altered compared to control tissues.

Wang N, Eckert KA, Zomorrodi AR, et al.
Down-regulation of HtrA1 activates the epithelial-mesenchymal transition and ATM DNA damage response pathways.
PLoS One. 2012; 7(6):e39446 [PubMed] Free Access to Full Article Related Publications
Expression of the serine protease HtrA1 is decreased or abrogated in a variety of human primary cancers, and higher levels of HtrA1 expression are directly related to better response to chemotherapeutics. However, the precise mechanisms leading to HtrA1 down regulation during malignant transformation are unclear. To investigate HtrA1 gene regulation in breast cancer, we characterized expression in primary breast tissues and seven human breast epithelial cell lines, including two non-tumorigenic cell lines. In human breast tissues, HtrA1 expression was prominent in normal ductal glands. In DCIS and in invasive cancers, HtrA1 expression was greatly reduced or lost entirely. HtrA1 staining was also reduced in all of the human breast cancer cell lines, compared with the normal tissue and non-tumorigenic cell line controls. Loss of HtrA1 gene expression was attributable primarily to epigenetic silencing mechanisms, with different mechanisms operative in the various cell lines. To mechanistically examine the functional consequences of HtrA1 loss, we stably reduced and/or overexpressed HtrA1 in the non-tumorigenic MCF10A cell line. Reduction of HtrA1 levels resulted in the epithelial-to-mesenchymal transition with acquisition of mesenchymal phenotypic characteristics, including increased growth rate, migration, and invasion, as well as expression of mesenchymal biomarkers. A concomitant decrease in expression of epithelial biomarkers and all microRNA 200 family members was also observed. Moreover, reduction of HtrA1 expression resulted in activation of the ATM and DNA damage response, whereas overexpression of HtrA1 prevented this activation. Collectively, these results suggest that HtrA1 may function as a tumor suppressor by controlling the epithelial-to-mesenchymal transition, and may function in chemotherapeutic responsiveness by mediating DNA damage response pathways.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HTRA1, Cancer Genetics Web: http://www.cancer-genetics.org/HTRA1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999