EPHB3

Gene Summary

Gene:EPHB3; EPH receptor B3
Aliases: EK2, ETK2, HEK2, TYRO6
Location:3q27.1
Summary:Ephrin receptors and their ligands, the ephrins, mediate numerous developmental processes, particularly in the nervous system. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. The Eph family of receptors are divided into two groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. Ephrin receptors make up the largest subgroup of the receptor tyrosine kinase (RTK) family. This gene encodes a receptor for ephrin-B family members. [provided by RefSeq, Mar 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:ephrin type-B receptor 3
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (26)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Neoplasm Invasiveness
  • Vimentin
  • Gene Expression Profiling
  • Eph Family Receptors
  • Colorectal Cancer
  • DNA Methylation
  • Neoplasm Metastasis
  • Cancer Gene Expression Regulation
  • Down-Regulation
  • Apoptosis
  • Wnt Signaling Pathway
  • fas Receptor
  • Skin Ulcer
  • Chromosome 3
  • Signal Transduction
  • beta Catenin
  • Messenger RNA
  • Lung Cancer
  • Oligonucleotide Array Sequence Analysis
  • Cell Movement
  • Receptor, EphB3
  • Cell Differentiation
  • Basic Helix-Loop-Helix Transcription Factors
  • Wnt Proteins
  • p300-CBP Transcription Factors
  • Immunohistochemistry
  • snail family transcription factors
  • Transcription Factors
  • Gene Silencing
  • Biomarkers, Tumor
  • Up-Regulation
  • src-Family Kinases
  • Colonic Neoplasms
  • Mutation
  • Cell Proliferation
  • RTPCR
  • Disease Progression
  • rac1 GTP-Binding Protein
  • MicroRNAs
  • Stomach Cancer
  • HEK293 Cells
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: EPHB3 (cancer-related)

Zhao Y, Huang W, Kim TM, et al.
MicroRNA-29a activates a multi-component growth and invasion program in glioblastoma.
J Exp Clin Cancer Res. 2019; 38(1):36 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma is a malignant brain tumor characterized by rapid growth, diffuse invasion and therapeutic resistance. We recently used microRNA expression profiles to subclassify glioblastoma into five genetically and clinically distinct subclasses, and showed that microRNAs both define and contribute to the phenotypes of these subclasses. Here we show that miR-29a activates a multi-faceted growth and invasion program that promotes glioblastoma aggressiveness.
METHODS: microRNA expression profiles from 197 glioblastomas were analyzed to identify the candidate miRNAs that are correlated to glioblastoma aggressiveness. The candidate miRNA, miR-29a, was further studied in vitro and in vivo.
RESULTS: Members of the miR-29 subfamily display increased expression in the two glioblastoma subclasses with the worst prognoses (astrocytic and neural). We observed that miR-29a is among the microRNAs that are most positively-correlated with PTEN copy number in glioblastoma, and that miR-29a promotes glioblastoma growth and invasion in part by targeting PTEN. In PTEN-deficient glioblastoma cells, however, miR-29a nevertheless activates AKT by downregulating the metastasis suppressor, EphB3. In addition, miR-29a robustly promotes invasion in PTEN-deficient glioblastoma cells by repressing translation of the Sox4 transcription factor, and this upregulates the invasion-promoting protein, HIC5. Indeed, we identified Sox4 as the most anti-correlated predicted target of miR-29a in glioblastoma. Importantly, inhibition of endogenous miR-29a decreases glioblastoma growth and invasion in vitro and in vivo, and increased miR-29a expression in glioblastoma specimens correlates with decreased patient survival.
CONCLUSIONS: Taken together, these data identify miR-29a as a master regulator of glioblastoma growth and invasion.

Peng J, Xu H, Chen Y, et al.
Screening for therapeutic targets of tumor angiogenesis signatures in 31 cancer types and potential insights.
Biochem Biophys Res Commun. 2019; 508(2):465-471 [PubMed] Related Publications
Tumor vessel normalization can increase pericyte coverage, perfusion efficiency and immune infiltration, while reducing hypoxia, vessel leakage, CTC and metastasis. In this study, we systemically presented the expression pattern of tumor angiogenesis gene signatures in 31 cancer types and its association with immune infiltration and cancer metastasis. Specifically, READ, COAD etc. have relatively similar expression patterns with low GPAGs and high PPAGs. Patients with this expression pattern may benefit from tumor vessel normalization. COAD was selected for further investigation and we found GPAG CXCL12 was downregulated while PPAG EPHB3 was overexpressed in COAD, which were further validated using two independent colon cancer dataset. Further study indicated that CXCL12 expression was positively correlated innate inflammation pathways such as NFκB and negatively correlated with metastasis, while EPHB3 had a reverse result. Moreover, CXCL12 was positively correlated with cancer immune infiltration while EPHB3 was negatively correlated with cancer immune infiltration. Besides, the association between CXCL12/EPHB3 and mutation/CNA landscape were also explored. We also discussed the potential application of gut microbiota in cancer treatment. In summary, blood vessel normalization could promote immune infiltration and repress cancer metastasis while immune cell infiltration can promote blood vessel normalization through a positive feedback loop.

Zhao K, He J, Wang YF, et al.
EZH2-mediated epigenetic suppression of EphB3 inhibits gastric cancer proliferation and metastasis by affecting E-cadherin and vimentin expression.
Gene. 2019; 686:118-124 [PubMed] Related Publications
EphB3 is a member of the EPH family of receptors and has been found to play a role in the carcinogenesis of some human cancers. However, its expression and clinical significance in gastric cancer (GC) have not been well documented. In the present study, we detected the expression of EphB3 in GC and adjacent noncancerous tissues and explored its relationships with the clinicopathological features and prognosis of GC patients. It was found that EphB3 silenced GC cells epigenetically by direct transcriptional repression of GC cells via polycomb group protein EZH2 mediation. EphB3 was downregulated in GC cells and tissues, and EphB3 depletion promoted GC cell growth and invasion, while ectopic overexpression of EphB3 produced a significant anti-tumor effect. EphB3 was found to be involved in epithelial-mesenchymal transition by regulating E-cadherin and vimentin expression. In addition, patients with reduced EphB3 expression had shorter disease-free survival (DFS), indicating that EphB3 may prove to be a biomarker for prognosis of GC. These results demonstrated that EphB3 functioned as a tumor-suppressor and prognostic biomarker in GC.

Xu TP, Wang WY, Ma P, et al.
Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer.
Oncogene. 2018; 37(36):5020-5036 [PubMed] Related Publications
Accumulating data indicate that long noncoding RNAs (lncRNAs) serve as important modulators in biological processes and are dysregulated in diverse tumors. The function of FOXD2-AS1 in gastric cancer (GC) progression and related biological mechanisms remain undefined. A comprehensive analysis identified that FOXD2-AS1 enrichment was upregulated markedly in GC and positively correlated with a large tumor size, a later pathologic stage, and a poor prognosis. Gene-set enrichment analysis (GSEA) in GEO datasets uncovered that cell cycle and DNA replication associated genes were enriched in patients with high FOXD2-AS1 expression. Loss of FOXD2-AS1 function inhibited cell growth via inhibiting the cell cycle in GC, whereas upregulation of FOXD2-AS1 expression promoted cancer progression. The enhancer of zeste homolog 2 (EZH2) and lysine (K)-specific demethylase 1A (LSD1) proteins were found to serve as binding partners of FOXD2-AS1 and mediators of FOXD2-AS1 function. Mechanically, FOXD2-AS1 promoted GC tumorigenesis partly through EZH2 and LSD1 mediated EphB3 downregulation. The present results revealed that FOXD2-AS1 acted as a tumor inducer in GC partly through EphB3 inhibition by direct interaction with EZH2 and LSD1, and may prove to be a potential biomarker of carcinogenesis.

Wang AL, Li Y, Zhao Q, Fan LQ
Formononetin inhibits colon carcinoma cell growth and invasion by microRNA‑149‑mediated EphB3 downregulation and inhibition of PI3K/AKT and STAT3 signaling pathways.
Mol Med Rep. 2018; 17(6):7721-7729 [PubMed] Free Access to Full Article Related Publications
Formononetin (Form), a phytoestrogen extracted from the roots of Astragalus membranaceus, is one of the fundamental herbs used in traditional Chinese medicine because of its protective effects against certain malignant tumors. However, its role in colon carcinoma cells and the underlying molecular mechanisms have not been completely elucidated. The present study aimed to demonstrate that Form significantly inhibited the proliferation and invasion of the colon carcinoma cell lines SW1116 and HCT116. Mechanistic studies have suggested that Form suppresses colon carcinoma cell growth by downregulating cell cycle‑associated protein (cyclin D1) expression and arresting the cell cycle at the G0‑G1 checkpoint. Further studies revealed that treatment with Form inhibits matrix metalloproteinase (MMP)2 and MMP9 expression. Aditionally, the results demonstrated that Form significantly increased microRNA (miR)‑149 expression. Following miR‑149 overexpression in SW1116 and HCT116 cells using an miR‑149 mimic, cell viability and Ephrin type‑B receptor 3 (EphB3) levels decreased. Furthermore, the inhibitory effects of Form were associated with phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (AKT) and signal transducer and activator of transcription 3 (STAT3) signaling pathways. These results indicated the suppressive effect of Form on colon carcinoma cell proliferation and invasion, possibly via miR‑149‑induced EphB3 downregulation and the inhibition of the PI3K/AKT and STAT3 signaling pathways. Overall, Form may be used as a novel candidate for the clinical treatment of colorectal cancer in the future.

Jägle S, Busch H, Freihen V, et al.
SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells.
PLoS Genet. 2017; 13(11):e1007109 [PubMed] Free Access to Full Article Related Publications
Phenotypic conversion of tumor cells through epithelial-mesenchymal transition (EMT) requires massive gene expression changes. How these are brought about is not clear. Here we examined the impact of the EMT master regulator SNAIL1 on the FOXA family of transcription factors which are distinguished by their particular competence to induce chromatin reorganization for the activation of transcriptional enhancer elements. We show that the expression of SNAIL1 and FOXA genes is anticorrelated in transcriptomes of colorectal tumors and cell lines. In cellular EMT models, ectopically expressed Snail1 directly represses FOXA1 and triggers downregulation of all FOXA family members, suggesting that loss of FOXA expression promotes EMT. Indeed, cells with CRISPR/Cas9-induced FOXA-deficiency acquire mesenchymal characteristics. Furthermore, ChIP-seq data analysis of FOXA chromosomal distribution in relation to chromatin structural features which characterize distinct states of transcriptional activity, revealed preferential localization of FOXA factors to transcriptional enhancers at signature genes that distinguish epithelial from mesenchymal colon tumors. To validate the significance of this association, we investigated the impact of FOXA factors on structure and function of enhancers at the CDH1, CDX2 and EPHB3 genes. FOXA-deficiency and expression of dominant negative FOXA2 led to chromatin condensation at these enhancer elements. Site-directed mutagenesis of FOXA binding sites in reporter gene constructs and by genome-editing in situ impaired enhancer activity and completely abolished the active chromatin state of the EPHB3 enhancer. Conversely, expression of FOXA factors in cells with inactive CDX2 and EPHB3 enhancers led to chromatin opening and de novo deposition of the H3K4me1 and H3K27ac marks. These findings establish the pioneer function of FOXA factors at enhancer regions of epithelial genes and demonstrate their essential role in maintaining enhancer structure and function. Thus, by repressing FOXA family members, SNAIL1 targets transcription factors at strategically important positions in gene-regulatory hierarchies, which may facilitate transcriptional reprogramming during EMT.

Zhang G, Liu X, Li Y, et al.
EphB3-targeted regulation of miR-149 in the migration and invasion of human colonic carcinoma HCT116 and SW620 cells.
Cancer Sci. 2017; 108(3):408-418 [PubMed] Free Access to Full Article Related Publications
microRNAs play key roles during various crucial cell processes such as proliferation, migration, invasion and apoptosis. Also, microRNAs have been shown to possess oncogenic and tumor-suppressive functions in human cancers. Here, we describe the regulation and function of miR-149 in colorectal cancer cell lines. miR-149 expression patterns were detected in human colorectal cell lines and tissue samples, and then focused on its role in regulation of cell growth, migration, invasion, and its target gene identification. Furthermore, the function of the target gene of miR-149 was analyzed in vitro and in vivo. miR-149 expression was downregulated in human colorectal cancer HCT116 and SW620 cell lines compared to the normal colon epithelial NCM460 cell line using quantitative real-time polymerase chain reaction methods. Further studies indicated that introduction of miR-149 was able to suppress cell migration and invasion. Then, EphB3 was identified as a direct target gene of miR-149 in colorectal cancer cells. Moreover, experiments in vitro showed that knockdown expression of EphB3 could suppress cell proliferation and invasion, and ectopic expression of EphB3 restored the phenotypes of CRC cell lines transfected with miR149. In addition, silencing of EphB3 significantly affected cycle progression distribution and increased apoptosis in CRC cell lines. Finally, in vivo results demonstrated that knockdown of EphB3 by siRNA inhibited tumor growth. In conclusion,the important role of miR-149 in colorectal cancer progression suggesting that miR-149 may serve as a therapeutic target for colorectal cancer treatment.

Dewan R, Pemov A, Dutra AS, et al.
First insight into the somatic mutation burden of neurofibromatosis type 2-associated grade I and grade II meningiomas: a case report comprehensive genomic study of two cranial meningiomas with vastly different clinical presentation.
BMC Cancer. 2017; 17(1):127 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Neurofibromatosis type 2 (NF2) is a rare autosomal dominant nervous system tumor predisposition disorder caused by constitutive inactivation of one of the two copies of NF2. Meningiomas affect about one half of NF2 patients, and are associated with a higher disease burden. Currently, the somatic mutation landscape in NF2-associated meningiomas remains largely unexamined.
CASE PRESENTATION: Here, we present an in-depth genomic study of benign and atypical meningiomas, both from a single NF2 patient. While the grade I tumor was asymptomatic, the grade II tumor exhibited an unusually high growth rate: expanding to 335 times its initial volume within one year. The genomes of both tumors were examined by whole-exome sequencing (WES) complemented with spectral karyotyping (SKY) and SNP-array copy-number analyses. To better understand the clonal composition of the atypical meningioma, the tumor was divided in four sections and each section was investigated independently. Both tumors had second copy inactivation of NF2, confirming the central role of the gene in meningioma formation. The genome of the benign tumor closely resembled that of a normal diploid cell and had only one other deleterious mutation (EPHB3). In contrast, the chromosomal architecture of the grade II tumor was highly re-arranged, yet uniform among all analyzed fragments, implying that this large and fast growing tumor was composed of relatively few clones. Besides multiple gains and losses, the grade II meningioma harbored numerous chromosomal translocations. WES analysis of the atypical tumor identified deleterious mutations in two genes: ADAMTSL3 and CAPN5 in all fragments, indicating that the mutations were present in the cell undergoing fast clonal expansion CONCLUSIONS: This is the first WES study of NF2-associated meningiomas. Besides second NF2 copy inactivation, we found low somatic burden in both tumors and high level of genomic instability in the atypical meningioma. Genomic instability resulting in altered gene dosage and compromised structural integrity of multiple genes may be the primary reason of the high growth rate for the grade II tumor. Further study of ADAMTSL3 and CAPN5 may lead to elucidation of their molecular implications in meningioma pathogenesis.

Li JJ, Sun ZJ, Yuan YM, et al.
EphB3 Stimulates Cell Migration and Metastasis in a Kinase-dependent Manner through Vav2-Rho GTPase Axis in Papillary Thyroid Cancer.
J Biol Chem. 2017; 292(3):1112-1121 [PubMed] Free Access to Full Article Related Publications
Eph receptors, the largest subfamily of transmembrane tyrosine kinase receptors, have been increasingly implicated in various physiologic and pathologic processes, and the roles of the Eph family members during tumorigenesis have recently attracted growing attentions. In the present study, we explored the function of EphB3, one member of Eph family, in papillary thyroid cancer (PTC). We found that the expression of EphB3 was significantly elevated in PTC. Either overexpression of EphB3 or activation of EphB3 by EfnB1-Fc/EfnB2-Fc stimulated in vitro migration of PTC cells. In contrast, siRNA-mediated knockdown of EphB3 or EphB3-Fc treatment, which only blocked EphB3-mediated forward signaling, inhibited migration and metastasis of PTC cells. A mechanism study revealed that EphB3 knockdown led to suppressed activity of Rac1 and enhanced activity of RhoA. Moreover, we found that Vav2, an important regulator of Rho family GTPases, was activated by EphB3 in a kinase-dependent manner. Altogether, our work suggested that EphB3 acted as a tumor promoter in PTC by increasing the in vitro migration as well as the in vivo metastasis of PTC cells through regulating the activities of Vav2 and Rho GTPases in a kinase-dependent manner.

Wang X, Guda C
Integrative exploration of genomic profiles for triple negative breast cancer identifies potential drug targets.
Medicine (Baltimore). 2016; 95(30):e4321 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Triple negative breast cancer (TNBC) is high-risk due to its rapid drug resistance and recurrence, metastasis, and lack of targeted therapy. So far, no molecularly targeted therapeutic agents have been clinically approved for TNBC. It is imperative that we discover new targets for TNBC therapy.
OBJECTIVES: A large volume of cancer genomics data are emerging and advancing breast cancer research. We may integrate different types of TNBC genomic data to discover molecular targets for TNBC therapy.
DATA SOURCES: We used publicly available TNBC tumor tissue genomic data in the Cancer Genome Atlas database in this study.
METHODS: We integratively explored genomic profiles (gene expression, copy number, methylation, microRNA [miRNA], and gene mutation) in TNBC and identified hyperactivated genes that have higher expression, more copy numbers, lower methylation level, or are targets of miRNAs with lower expression in TNBC than in normal samples. We ranked the hyperactivated genes into different levels based on all the genomic evidence and performed functional analyses of the sets of genes identified. More importantly, we proposed potential molecular targets for TNBC therapy based on the hyperactivated genes.
RESULTS: Some of the genes we identified such as FGFR2, MAPK13, TP53, SRC family, MUC family, and BCL2 family have been suggested to be potential targets for TNBC treatment. Others such as CSF1R, EPHB3, TRIB1, and LAD1 could be promising new targets for TNBC treatment. By utilizing this integrative analysis of genomic profiles for TNBC, we hypothesized that some of the targeted treatment strategies for TNBC currently in development are more likely to be promising, such as poly (ADP-ribose) polymerase inhibitors, while the others are more likely to be discouraging, such as angiogenesis inhibitors.
LIMITATIONS: The findings in this study need to be experimentally validated in the future.
CONCLUSION: This is a systematic study that combined 5 different types of genomic data to molecularly characterize TNBC and identify potential targets for TNBC therapy. The integrative analysis of genomic profiles for TNBC could assist in identifying potential new therapeutic targets and predicting the effectiveness of a targeted treatment strategy for TNBC therapy.

Murphy M, Chatterjee SS, Jain S, et al.
TCF7L1 Modulates Colorectal Cancer Growth by Inhibiting Expression of the Tumor-Suppressor Gene EPHB3.
Sci Rep. 2016; 6:28299 [PubMed] Free Access to Full Article Related Publications
Dysregulation of the Wnt pathway leading to accumulation of β-catenin (CTNNB1) is a hallmark of colorectal cancer (CRC). Nuclear CTNNB1 acts as a transcriptional coactivator with TCF/LEF transcription factors, promoting expression of a broad set of target genes, some of which promote tumor growth. However, it remains poorly understood how CTNNB1 interacts with different transcription factors in different contexts to promote different outcomes. While some CTNNB1 target genes are oncogenic, others regulate differentiation. Here, we found that TCF7L1, a Wnt pathway repressor, buffers CTNNB1/TCF target gene expression to promote CRC growth. Loss of TCF7L1 impaired growth and colony formation of HCT116 CRC cells and reduced tumor growth in a mouse xenograft model. We identified a group of CTNNB1/TCF target genes that are activated in the absence of TCF7L1, including EPHB3, a marker of Paneth cell differentiation that has also been implicated as a tumor suppressor in CRC. Knockdown of EPHB3 partially restores growth and normal cell cycle progression of TCF7L1-Null cells. These findings suggest that while CTNNB1 accumulation is critical for CRC progression, activation of specific Wnt target genes in certain contexts may in fact inhibit tumor growth.

Dominguez-Brauer C, Hao Z, Elia AJ, et al.
Mule Regulates the Intestinal Stem Cell Niche via the Wnt Pathway and Targets EphB3 for Proteasomal and Lysosomal Degradation.
Cell Stem Cell. 2016; 19(2):205-216 [PubMed] Free Access to Full Article Related Publications
The E3 ubiquitin ligase Mule is often overexpressed in human colorectal cancers, but its role in gut tumorigenesis is unknown. Here, we show in vivo that Mule controls murine intestinal stem and progenitor cell proliferation by modulating Wnt signaling via c-Myc. Mule also regulates protein levels of the receptor tyrosine kinase EphB3 by targeting it for proteasomal and lysosomal degradation. In the intestine, EphB/ephrinB interactions position cells along the crypt-villus axis and compartmentalize incipient colorectal tumors. Our study thus unveils an important new avenue by which Mule acts as an intestinal tumor suppressor by regulation of the intestinal stem cell niche.

Kuan CS, See Too WC, Few LL
Sp1 and Sp3 Are the Transcription Activators of Human ek1 Promoter in TSA-Treated Human Colon Carcinoma Cells.
PLoS One. 2016; 11(1):e0147886 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Ethanolamine kinase (EK) catalyzes the phosphorylation of ethanolamine, the first step in the CDP-ethanolamine pathway for the biosynthesis of phosphatidylethanolamine (PE). Human EK exists as EK1, EK2α and EK2β isoforms, encoded by two separate genes, named ek1 and ek2. EK activity is stimulated by carcinogens and oncogenes, suggesting the involvement of EK in carcinogenesis. Currently, little is known about EK transcriptional regulation by endogenous or exogenous signals, and the ek gene promoter has never been studied.
METHODOLOGY/PRINCIPAL FINDINGS: In this report, we mapped the important regulatory regions in the human ek1 promoter. 5' deletion analysis and site-directed mutagenesis identified a Sp site at position (-40/-31) that was essential for the basal transcription of this gene. Treatment of HCT116 cells with trichostatin A (TSA), a histone deacetylase inhibitor, significantly upregulated the ek1 promoter activity through the Sp(-40/-31) site and increased the endogenous expression of ek1. Chromatin immunoprecipitation assay revealed that TSA increased the binding of Sp1, Sp3 and RNA polymerase II to the ek1 promoter in HCT116 cells. The effect of TSA on ek1 promoter activity was cell-line specific as TSA treatment did not affect ek1 promoter activity in HepG2 cells.
CONCLUSION/SIGNIFICANCE: In conclusion, we showed that Sp1 and Sp3 are not only essential for the basal transcription of the ek1 gene, their accessibility to the target site on the ek1 promoter is regulated by histone protein modification in a cell line dependent manner.

Rönsch K, Jägle S, Rose K, et al.
SNAIL1 combines competitive displacement of ASCL2 and epigenetic mechanisms to rapidly silence the EPHB3 tumor suppressor in colorectal cancer.
Mol Oncol. 2015; 9(2):335-54 [PubMed] Free Access to Full Article Related Publications
EPHB3 is a critical cellular guidance factor in the intestinal epithelium and an important tumor suppressor in colorectal cancer (CRC) whose expression is frequently lost at the adenoma-carcinoma transition when tumor cells become invasive. The molecular mechanisms underlying EPHB3 silencing are incompletely understood. Here we show that EPHB3 expression is anti-correlated with inducers of epithelial-mesenchymal transition (EMT) in primary tumors and CRC cells. In vitro, SNAIL1 and SNAIL2, but not ZEB1, repress EPHB3 reporter constructs and compete with the stem cell factor ASCL2 for binding to an E-box motif. At the endogenous EPHB3 locus, SNAIL1 triggers the displacement of ASCL2, p300 and the Wnt pathway effector TCF7L2 and engages corepressor complexes containing HDACs and the histone demethylase LSD1 to collapse active chromatin structure, resulting in rapid downregulation of EPHB3. Beyond its impact on EPHB3, SNAIL1 deregulates markers of intestinal identity and stemness and in vitro forces CRC cells to undergo EMT with altered morphology, increased motility and invasiveness. In xenotransplants, SNAIL1 expression abrogated tumor cell palisading and led to focal loss of tumor encapsulation and the appearance of areas with tumor cells displaying a migratory phenotype. These changes were accompanied by loss of EPHB3 and CDH1 expression. Intriguingly, SNAIL1-induced phenotypic changes of CRC cells are significantly impaired by sustained EPHB3 expression both in vitro and in vivo. Altogether, our results identify EPHB3 as a novel target of SNAIL1 and suggest that disabling EPHB3 signaling is an important aspect to eliminate a roadblock at the onset of EMT processes.

Jägle S, Rönsch K, Timme S, et al.
Silencing of the EPHB3 tumor-suppressor gene in human colorectal cancer through decommissioning of a transcriptional enhancer.
Proc Natl Acad Sci U S A. 2014; 111(13):4886-91 [PubMed] Free Access to Full Article Related Publications
The protein tyrosine kinase Ephrin type-B receptor 3 (EPHB3) counteracts tumor-cell dissemination by regulating intercellular adhesion and repulsion and acts as tumor/invasion suppressor in colorectal cancer. This protective mechanism frequently collapses at the adenoma-carcinoma transition due to EPHB3 transcriptional silencing. Here, we identify a transcriptional enhancer at the EPHB3 gene that integrates input from the intestinal stem-cell regulator achaete-scute family basic helix-loop-helix transcription factor 2 (ASCL2), Wnt/β-catenin, MAP kinase, and Notch signaling. EPHB3 enhancer activity is highly variable in colorectal carcinoma cells and precisely reflects EPHB3 expression states, suggesting that enhancer dysfunction underlies EPHB3 silencing. Interestingly, low Notch activity parallels reduced EPHB3 expression in colorectal carcinoma cell lines and poorly differentiated tumor-tissue specimens. Restoring Notch activity reestablished enhancer function and EPHB3 expression. Although essential for intestinal stem-cell maintenance and adenoma formation, Notch activity seems dispensable in colorectal carcinomas. Notch activation even promoted growth arrest and apoptosis of colorectal carcinoma cells, attenuated their self-renewal capacity in vitro, and blocked tumor growth in vivo. Higher levels of Notch activity also correlated with longer disease-free survival of colorectal cancer patients. In summary, our results uncover enhancer decommissioning as a mechanism for transcriptional silencing of the EPHB3 tumor suppressor and argue for an antitumorigenic function of Notch signaling in advanced colorectal cancer.

Shinmura K, Kiyose S, Nagura K, et al.
TNK2 gene amplification is a novel predictor of a poor prognosis in patients with gastric cancer.
J Surg Oncol. 2014; 109(3):189-97 [PubMed] Related Publications
BACKGROUNDS AND OBJECTIVES: We previously examined the amplification status of 10 kinase genes (PIK3CA, EPHB3, TNK2, PTK7, EGFR, MET, ERBB2, HCK, SRC, and AURKA) in gastric cancer (GC). This study aimed to determine the prognostic significance of these gene amplifications in GC.
METHODS: A survival analysis was performed for GC patients. Since TNK2 amplification was identified as a prognostic marker in the analysis, we also examined the functional effect of TNK2 overexpression on gastric cells.
RESULTS: A Kaplan-Meier analysis showed that the prognosis of patients with GC exhibiting TNK2 or AURKA amplification was significantly poorer than the prognosis of patients with GC without TNK2 or AURKA amplification. A further multivariate analysis revealed that TNK2 amplification was an independent predictor of a poor survival outcome among patients with GC (hazard ratio, 3.668; 95% confidence interval, 1.513-7.968; P = 0.0056). TNK2-overexpressing GC cells showed an increase in cell migration and non-anchored cell growth. Finally, microarray and pathway analyses revealed the aberrant regulation of some cancer-related pathways in TNK2-overexpressing GC cells.
CONCLUSIONS: These results suggested that TNK2 amplification is an independent predictor of a poor prognosis in patients with GC and leads to an increase in the malignant potential of GC cells.

Baniwal SK, Chimge NO, Jordan VC, et al.
Prolactin-induced protein (PIP) regulates proliferation of luminal A type breast cancer cells in an estrogen-independent manner.
PLoS One. 2014; 8(6):e62361 [PubMed] Free Access to Full Article Related Publications
Prolactin-induced Protein (PIP), an aspartyl protease unessential for normal mammalian cell function, is required for the proliferation and invasion of some breast cancer (BCa) cell types. Because PIP expression is particularly high in the Luminal A BCa subtype, we investigated the roles of PIP in the related T47D BCa cell line. Nucleic acid and antibody arrays were employed to screen effects of PIP silencing on global gene expression and activation of receptor tyrosine kinases (RTKs), respectively. Expression of PIP-stimulated genes, as defined in the T47D cell culture model, was well correlated with the expression of PIP itself across a cohort of 557 mRNA profiles of diverse BCa tumors, and bioinformatics analysis revealed cJUN and cMYC as major nodes in the PIP-dependent gene network. Among 71 RTKs tested, PIP silencing resulted in decreased phosphorylation of focal adhesion kinase (FAK), ephrin B3 (EphB3), FYN, and hemopoietic cell kinase (HCK). Ablation of PIP also abrogated serum-induced activation of the downstream serine/threonine kinases AKT, ERK1/2, and JNK1. Consistent with these results, PIP-depleted cells exhibited defects in adhesion to fibronectin, cytoskeletal stress fiber assembly and protein secretion. In addition, PIP silencing abrogated the mitogenic response of T47D BCa cells to estradiol (E2). The dependence of BCa cell proliferation was unrelated, however, to estrogen signaling because: 1) PIP silencing did not affect the transcriptional response of estrogen target genes to hormone treatment, and 2) PIP was required for the proliferation of tamoxifen-resistant BCa cells. Pharmacological inhibition of PIP may therefore serve the bases for both augmentation of existing therapies for hormone-dependent tumors and the development of novel therapeutic approaches for hormone-resistant BCa.

Marinova Z, Walitza S, Grünblatt E
5-HT2A serotonin receptor agonist DOI alleviates cytotoxicity in neuroblastoma cells: role of the ERK pathway.
Prog Neuropsychopharmacol Biol Psychiatry. 2013; 44:64-72 [PubMed] Related Publications
Disturbances of serotonergic signaling, including the serotonin 2A (5-HT2A) receptor, have been implicated in neuropsychiatric and neurodegenerative disorders. The aim of the present study was to characterize the effect of a 5-HT2A receptor agonist on cytotoxicity in a neuronal cell line and address the involved mechanism. HTR2A mRNA and protein expression in human neuroblastoma SK-N-SH cells was confirmed. Cells were subjected to serum deprivation and cell viability was monitored continuously with xCELLigence. In a dose-response study the 5-HT2A agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) (25 nM to 5 μM) protected against serum deprivation cytotoxicity. The selective 5-HT2A receptor antagonist MDL 11,939, the general protein tyrosine kinase inhibitor genistein, and the extracellular signal-regulated kinase (ERK) pathway MEK inhibitor U0126, all attenuated DOI's protective effect. An antibody array suggested that 1 μM DOI affected phosphorylation of several tyrosine kinases. Western blot further confirmed that DOI transiently increased ERK phosphorylation, indicating its activation. Finally, protective concentrations of DOI increased cellular mitochondrial mass, an effect prevented by pretreatment with U0126. In conclusion, our results suggest that DOI protects SK-N-SH cells against serum deprivation through ERK pathway activation. They imply 5-HT2A receptor modulation as a potential target for neuroprotection.

Kiyose S, Nagura K, Tao H, et al.
Detection of kinase amplifications in gastric cancer archives using fluorescence in situ hybridization.
Pathol Int. 2012; 62(7):477-84 [PubMed] Related Publications
To test the feasibility of using bacterial artificial chromosomes (BAC) containing kinases for pathological diagnosis using fluorescence in situ hybridization (FISH), 10 BAC probes containing a gene amplified in 5% or more of a pilot cohort were selected from a previous survey using arbitrarily selected BAC clones harboring 100 kinases. In this report, we describe the prevalence and association with the clinicopathological profile of these selected 10 BAC probes in 365 gastric cancer tissues. FISH analyses using these 10 BAC probes containing loci encoding EGFR, ERBB2(HER2), EPHB3, PIK3CA, MET, PTK7, ACK1, STK15, SRC, and HCK showed detectable amplifications in paraffin-embedded tissue in 2.83% to 13.6% of the gastric cancer tissues. Considerable numbers of the cases showed the co-amplification of two or more of the probes that were tested. BAC probes located within a genome neighborhood, such as PIK3CA, EPHB3, and ACK1 at 3q26-29 or HCK, SRC, and STK15 at 20q11-13.1, were often co-amplified in the same cases, but non-random co-amplifications of genes at distant genomic loci were also observed. These findings provide basic information regarding the creation of a strategy for personalizing gastric cancer therapy, especially when using multiple kinase inhibitors.

Stephen JH, Sievert AJ, Madsen PJ, et al.
Spinal cord ependymomas and myxopapillary ependymomas in the first 2 decades of life: a clinicopathological and immunohistochemical characterization of 19 cases.
J Neurosurg Pediatr. 2012; 9(6):646-53 [PubMed] Related Publications
OBJECT: Primary spinal cord ependymomas (EPNs) are rare in children, comprising classical WHO Grade II and III tumors and Grade I myxopapillary ependymomas (MEPNs). Despite their benign histology, recurrences and neural-axis dissemination have been reported in up to 33% MEPNs in the pediatric population. Treatment options beyond resection are limited, and little is known about their tumorigenesis. The purpose of this study was to explore the tumor biology and outcomes in a consecutive series of pediatric patients treated at a single institution.
METHODS: The authors performed a retrospective clinicopathological review of 19 patients at a tertiary referral children's hospital for resection of a spinal cord ependymoma. The population included 8 patients with a pathological diagnosis of MEPN and 11 patients with a pathological diagnosis of spinal EPN (10 cases were Grade II and 1 case was Grade III). The upregulation of the following genes HOXB13, NEFL, PDGFRα, EGFR, EPHB3, AQP1, and JAGGED 1 was studied by immunohistochemistry from archived paraffin-embedded tumor samples of the entire cohort to compare the expression in MEPN versus EPN.
RESULTS: Gross-total resection was achieved in 75% of patients presenting with MEPNs and in 100% of those with EPNs. The average follow-up period was 79 months for the MEPN subset and 53 months for Grade II/III EPNs. Overall survival for both subsets was 100%. However, event-free survival was only 50% for patients with MEPNs. Of note, in all cases involving MEPNs that recurred, the patients had undergone gross-total resection on initial surgery. In contrast, there were no tumor recurrences in patients with EPNs. Immunohistochemistry revealed no significant differences in protein expression between the two tumor types with the exception of EPHB3, which demonstrates a tendency to be positive in MEPNs (6 reactive tumors of 9) rather than in EPN (2 reactive tumors of 10).
CONCLUSIONS: The authors' experience shows that, following a gross-total resection, MEPNs are more likely to recur than their higher-grade counterpart, EPNs. This supports the recommendation for close long-term radiological follow-up of pediatric patients with MEPNs to monitor for recurrence, despite the tumor's low-grade histological feature. No significant difference in the protein expression of HOXB13, NEFL, PDGFRα, EGFR, EPHB3, AQP1, and JAGGED 1 was present in this selected cohort of pediatric patients.

Li G, Ji XD, Gao H, et al.
EphB3 suppresses non-small-cell lung cancer metastasis via a PP2A/RACK1/Akt signalling complex.
Nat Commun. 2012; 3:667 [PubMed] Related Publications
Eph receptors are implicated in regulating the malignant progression of cancer. Here we find that despite overexpression of EphB3 in human non-small-cell lung cancer, as reported previously, the expression of its cognate ligands, either ephrin-B1 or ephrin-B2, is significantly downregulated, leading to reduced tyrosine phosphorylation of EphB3. Forced activation of EphB3 kinase in EphB3-overexpressing non-small-cell lung cancer cells inhibits cell migratory capability in vitro as well as metastatic seeding in vivo. Furthermore, we identify a novel EphB3-binding protein, the receptor for activated C-kinase 1, which mediates the assembly of a ternary signal complex comprising protein phosphatase 2A, Akt and itself in response to EphB3 activation, leading to reduced Akt phosphorylation and subsequent inhibition of cell migration. Our study reveals a novel tumour-suppressive signalling pathway associated with kinase-activated EphB3 in non-small-cell lung cancer, and provides a potential therapeutic strategy by activating EphB3 signalling, thus inhibiting tumour metastasis.

Merlos-Suárez A, Barriga FM, Jung P, et al.
The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse.
Cell Stem Cell. 2011; 8(5):511-24 [PubMed] Related Publications
A frequent complication in colorectal cancer (CRC) is regeneration of the tumor after therapy. Here, we report that a gene signature specific for adult intestinal stem cells (ISCs) predicts disease relapse in CRC patients. ISCs are marked by high expression of the EphB2 receptor, which becomes gradually silenced as cells differentiate. Using EphB2 and the ISC marker Lgr5, we have FACS-purified and profiled mouse ISCs, crypt proliferative progenitors, and late transient amplifying cells to define a gene program specific for normal ISCs. Furthermore, we discovered that ISC-specific genes identify a stem-like cell population positioned at the bottom of tumor structures reminiscent of crypts. EphB2 sorted ISC-like tumor cells display robust tumor-initiating capacity in immunodeficient mice as well as long-term self-renewal potential. Taken together, our data suggest that the ISC program defines a cancer stem cell niche within colorectal tumors and plays a central role in CRC relapse.

Rönsch K, Jäger M, Schöpflin A, et al.
Class I and III HDACs and loss of active chromatin features contribute to epigenetic silencing of CDX1 and EPHB tumor suppressor genes in colorectal cancer.
Epigenetics. 2011; 6(5):610-22 [PubMed] Related Publications
Aberrant Wnt/β-catenin signaling is a driving force during initiation and progression of colorectal cancer. Yet, the Wnt/β-catenin targets CDX1, EPHB2, EPHB3 and EPHB4 (EPHB2-4) act as tumor suppressors in intestinal epithelial cells and frequently appear to be transcriptionally silenced in carcinomas. The molecular mechanisms which underlie the apparent loss of expression of a subset of Wnt/β-catenin targets in a background of persistent pathway activity are largely unknown. To gain insight into this, we quantified expression of CDX1 and EPHB2-4 in human tissue specimens of case-matched colorectal normal mucosa, adenoma and invasive carcinoma. In particular EPHB2-4 display biphasic, albeit not strictly coincident, expression profiles with elevated levels in adenomas and decreased transcription in approximately 30% of the corresponding carcinomas. Consistent with their divergent and variable expression we observed considerable heterogeneity among the epigenetic landscapes at CDX1 and EPHB2-4 in a model of colorectal carcinoma cell lines. Unlike the inactive CDX1 locus, EPHB2-4 maintain DNA hypomethylation of their promoter regions in the silent state. A strong reduction of active histone modifications consistently parallels reduced expression of CDX1 and EPHB3 and to some extent of EPHB2. Accordingly, treatment with inhibitors for DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) restored CDX1 and EPHB2-4 expression depending upon epigenetic features at their promoters but also upon cellular background. Overall our findings show that downregulation of CDX1 and EphB receptor genes occurs independently and that different branches of epigenetic control systems including class I and III HDACs contribute to epigenetic silencing of Wnt/β-catenin targets during colorectal tumorigenesis.

Nagaraj SH, Reverter A
A Boolean-based systems biology approach to predict novel genes associated with cancer: Application to colorectal cancer.
BMC Syst Biol. 2011; 5:35 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer has remarkable complexity at the molecular level, with multiple genes, proteins, pathways and regulatory interconnections being affected. We introduce a systems biology approach to study cancer that formally integrates the available genetic, transcriptomic, epigenetic and molecular knowledge on cancer biology and, as a proof of concept, we apply it to colorectal cancer.
RESULTS: We first classified all the genes in the human genome into cancer-associated and non-cancer-associated genes based on extensive literature mining. We then selected a set of functional attributes proven to be highly relevant to cancer biology that includes protein kinases, secreted proteins, transcription factors, post-translational modifications of proteins, DNA methylation and tissue specificity. These cancer-associated genes were used to extract 'common cancer fingerprints' through these molecular attributes, and a Boolean logic was implemented in such a way that both the expression data and functional attributes could be rationally integrated, allowing for the generation of a guilt-by-association algorithm to identify novel cancer-associated genes. Finally, these candidate genes are interlaced with the known cancer-related genes in a network analysis aimed at identifying highly conserved gene interactions that impact cancer outcome. We demonstrate the effectiveness of this approach using colorectal cancer as a test case and identify several novel candidate genes that are classified according to their functional attributes. These genes include the following: 1) secreted proteins as potential biomarkers for the early detection of colorectal cancer (FXYD1, GUCA2B, REG3A); 2) kinases as potential drug candidates to prevent tumor growth (CDC42BPB, EPHB3, TRPM6); and 3) potential oncogenic transcription factors (CDK8, MEF2C, ZIC2).
CONCLUSION: We argue that this is a holistic approach that faithfully mimics cancer characteristics, efficiently predicts novel cancer-associated genes and has universal applicability to the study and advancement of cancer research.

Ji XD, Li G, Feng YX, et al.
EphB3 is overexpressed in non-small-cell lung cancer and promotes tumor metastasis by enhancing cell survival and migration.
Cancer Res. 2011; 71(3):1156-66 [PubMed] Related Publications
Eph receptors, the largest subfamily of transmembrane tyrosine kinase receptors, have been increasingly implicated in various physiologic and pathologic processes, and the roles of the Eph family members during tumorigenesis have recently attracted growing attention. Until now, research on EphB3 function in cancer is limited to focusing on tumor suppression by EphB receptors in colorectal cancer. However, its function in other types of cancer remains poorly investigated. In this study, we explored the function of EphB3 in non-small-cell lung cancer (NSCLC). We found that the expression of EphB3 was significantly upregulated in clinical samples and cell lines, and the expression level correlated with the patient pathologic characteristics, including tumor size, differentiation, and metastasis. Overexpression of EphB3 in NSCLC cell lines accelerated cell growth and migration and promoted tumorigenicity in xenografts in a kinase-independent manner. In contrast, downregulation of EphB3 inhibited cell proliferation and migration and suppressed in vivo tumor growth and metastasis. Furthermore, we showed that silencing of EphB3 inhibited cell growth by reducing DNA synthesis and caspase-8-mediated apoptosis and suppressed cell migration by increasing accumulation of focal adhesion formation. Taken together, our findings suggest that EphB3 provides critical support to the development and progression of NSCLC by stimulating cell growth, migration, and survival, thereby implicating EphB3 as a potential therapeutic target in NSCLC.

Astin JW, Batson J, Kadir S, et al.
Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells.
Nat Cell Biol. 2010; 12(12):1194-204 [PubMed] Related Publications
Metastatic cancer cells typically fail to halt migration on contact with non-cancer cells. This invasiveness is in contrast to normal mesenchymal cells that retract on contact with another cell. Why cancer cells are defective in contact inhibition of locomotion is not understood. Here, we analyse the dynamics of prostate cancer cell lines co-cultured with fibroblasts, and demonstrate that a combinatorial code of Eph receptor activation dictates whether cell migration will be contact inhibited. The unimpeded migration of metastatic PC-3 cells towards fibroblasts is dependent on activation of EphB3 and EphB4 by ephrin-B2, which we show activates Cdc42 and cell migration. Knockdown of EphB3 and EphB4 restores contact inhibition of locomotion to PC-3 cells. Conversely, homotypic collisions between two cancer cells results in contact inhibition of locomotion, mediated by EphA-Rho-Rho kinase (ROCK) signalling. Thus, the migration of cancer cells can switch from restrained to invasive, depending on the Eph-receptor profile of the cancer cell and the reciprocal ephrin ligands expressed by neighbouring cells.

Stange DE, Engel F, Longerich T, et al.
Expression of an ASCL2 related stem cell signature and IGF2 in colorectal cancer liver metastases with 11p15.5 gain.
Gut. 2010; 59(9):1236-44 [PubMed] Related Publications
BACKGROUND AND AIMS: Liver metastases are the leading cause of death in colorectal cancer. To gain better insight into the biology of metastasis and possibly identify new therapeutic targets we systematically investigated liver-metastasis-specific molecular aberrations.
METHODS: Primary colorectal cancer (pCRC) and matched liver metastases (LMs) from the same patients were analysed by microarray-based comparative genomic hybridisation in 21 pairs and gene expression profiling in 18 pairs. Publicly available databases were used to confirm findings in independent datasets.
RESULTS: Chromosome aberration patterns and expression profiles of pCRC and matched LMs were strikingly similar. Unsupervised cluster analysis of genomic data showed that 20/21 pairs were more similar to each other than to any other analysed tumour. A median of only 11 aberrations per patient was found to be different between pCRC and LM, and expression of only 16 genes was overall changed upon metastasis. One region on chromosome band 11p15.5 showed a characteristic gain in LMs in 6/21 patients. This gain could be confirmed in an independent dataset of LMs (n=50). Localised within this region, the growth factor IGF2 (p=0.003) and the intestinal stem cell specific transcription factor ASCL2 (p=0.029) were found to be over-expressed in affected LM. Several ASCL2 target genes were upregulated in this subgroup of LM, including the intestinal stem cell marker OLFM4 (p=0.013). The correlation between ASCL2 expression and four known direct transcriptional targets (LGR5, EPHB3, ETS2 and SOX9) could be confirmed in an independent expression dataset (n=50).
CONCLUSIONS: With unprecedented resolution a striking conservation of genomic alterations was demonstrated in liver metastases, suggesting that metastasis typically occurs after the pCRC has fully matured. In addition, we characterised a subset of liver metastases with an ASCL2-related stem-cell signature likely to affect metastatic behaviour of tumour cells.

Herath NI, Boyd AW
The role of Eph receptors and ephrin ligands in colorectal cancer.
Int J Cancer. 2010; 126(9):2003-11 [PubMed] Related Publications
Eph receptors and their ephrin ligands constitute the largest subfamily of receptor tyrosine kinases and are components of the cell signaling pathways involved during development. Eph and ephrin overexpression have been documented in a variety of human cancers including gastrointestinal malignancies and in particular colorectal malignancies. EphB and ephrin B proteins have been implicated in the homeostasis of the gastrointestinal tract where EphB2- and EphB3-ephrin B signaling regulates cell sorting in the mature epithelium. These proteins are also reported to be upregulated in colon carcinomas. The EphA/ephrin A system has also been implicated in epithelial tissue structure and function. More recently, EphA receptors and their corresponding ligands have been implicated in numerous malignancies. Of these, EphA2 in particular has been intensively investigated and has been proposed as a therapeutic target. An interesting observation emerging from these studies is the role for Ephs and ephrins in critical aspects of cell adhesion, migration and positioning, and a crucial role in tumor progression and metastasis. However, the underlying role of Ephs and ephrins in these processes has generally been studied on individual Eph or ephrin genes. Given the multiplicity of Eph expression on gut epithelial cells, a more global approach is needed to define the precise role of Eph-ephrin interaction in malignant transformation. Here, we will review the recent advances on the role of Eph-ephrin signaling in colorectal malignancies.

Kang JU, Koo SH, Kwon KC, et al.
Identification of novel candidate target genes, including EPHB3, MASP1 and SST at 3q26.2-q29 in squamous cell carcinoma of the lung.
BMC Cancer. 2009; 9:237 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The underlying genetic alterations for squamous cell carcinoma (SCC) and adenocarcinoma (AC) carcinogenesis are largely unknown.
METHODS: High-resolution array- CGH was performed to identify the differences in the patterns of genomic imbalances between SCC and AC of non-small cell lung cancer (NSCLC).
RESULTS: On a genome-wide profile, SCCs showed higher frequency of gains than ACs (p = 0.067). More specifically, statistically significant differences were observed across the histologic subtypes for gains at 2q14.2, 3q26.2-q29, 12p13.2-p13.33, and 19p13.3, as well as losses at 3p26.2-p26.3, 16p13.11, and 17p11.2 in SCC, and gains at 7q22.1 and losses at 15q22.2-q25.2 occurred in AC (P < 0.05). The most striking difference between SCC and AC was gains at the 3q26.2-q29, occurring in 86% (19/22) of SCCs, but in only 21% (3/14) of ACs. Many significant genes at the 3q26.2-q29 regions previously linked to a specific histology, such as EVI1,MDS1, PIK3CA and TP73L, were observed in SCC (P < 0.05). In addition, we identified the following possible target genes (> 30% of patients) at 3q26.2-q29: LOC389174 (3q26.2),KCNMB3 (3q26.32),EPHB3 (3q27.1), MASP1 and SST (3q27.3), LPP and FGF12 (3q28), and OPA1,KIAA022,LOC220729, LOC440996,LOC440997, and LOC440998 (3q29), all of which were significantly targeted in SCC (P < 0.05). Among these same genes, high-level amplifications were detected for the gene, EPHB3, at 3q27.1, and MASP1 and SST, at 3q27.3 (18, 18, and 14%, respectively). Quantitative real time PCR demonstrated array CGH detected potential candidate genes that were over expressed in SCCs.
CONCLUSION: Using whole-genome array CGH, we have successfully identified significant differences and unique information of chromosomal signatures prevalent between the SCC and AC subtypes of NSCLC. The newly identified candidate target genes may prove to be highly attractive candidate molecular markers for the classification of NSCLC histologic subtypes, and could potentially contribute to the pathogenesis of the squamous cell carcinoma of the lung.

Calicchio ML, Collins T, Kozakewich HP
Identification of signaling systems in proliferating and involuting phase infantile hemangiomas by genome-wide transcriptional profiling.
Am J Pathol. 2009; 174(5):1638-49 [PubMed] Free Access to Full Article Related Publications
Infantile hemangiomas are characterized by rapid capillary growth during the first year of life followed by involution during early childhood. The natural history of these lesions creates a unique opportunity to study the changes in gene expression that occur in the vessels of these tumors as they proliferate and regress. Here we use laser capture microdissection and genome-wide transcriptional profiling of vessels from proliferating and involuting hemangiomas to identify differentially expressed genes. Relative to normal placental vessels, proliferating hemangiomas were characterized by increased expression of genes involved in endothelial-pericyte interactions, such as angiopoietin-2 (ANGPT2), jagged-1 (JAG1), and notch-4 (NOTCH4), as well as genes involved in neural and vascular patterning, such as neuropilin-2 (NETO2), a plexin domain containing receptor (plexinC1), and an ephrin receptor (EPHB3). Insulin-like growth factor binding protein-3 (IGFBP3) was down-regulated in proliferating hemangiomas. Involuting hemangiomas were characterized by the expression of chronic inflammatory mediators, such as the chemokine, stromal cell-derived factor-1 (SDF-1), and factors that may attenuate the angiogenic response, such as a member of the Down syndrome critical region (DSCR) family. The identification of genes differentially expressed in proliferating and involuting hemangiomas in vivo will contribute to our understanding of this vascular lesion, which remains a leading cause of morbidity in newborn children.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. EPHB3, Cancer Genetics Web: http://www.cancer-genetics.org/EPHB3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999