RPA1

Gene Summary

Gene:RPA1; replication protein A1
Aliases: HSSB, RF-A, RP-A, REPA1, RPA70, MST075
Location:17p13.3
Summary:This gene encodes the largest subunit of the heterotrimeric Replication Protein A (RPA) complex, which binds to single-stranded DNA (ssDNA), forming a nucleoprotein complex that plays an important role in DNA metabolism, being involved in DNA replication, repair, recombination, telomere maintenance, and co-ordinating the cellular response to DNA damage through activation of the ataxia telangiectasia and Rad3-related protein (ATR) kinase. The nucleoprotein complex protects the single-stranded DNA from nucleases, prevents formation of secondary structures that would interfere with repair, and co-ordinates the recruitment and departure of different genome maintenance factors. This subunit contains four oligonucleotide/oligosaccharide-binding (OB) domains, though the majority of ssDNA binding occurs in two of these domains. The heterotrimeric complex has two different modes of ssDNA binding, a low-affinity and high-affinity mode, determined by which ssDNA binding domains are utilized. The different binding modes differ in the length of DNA bound and in the proteins with which it interacts, thereby playing a role in regulating different genomic maintenance pathways. [provided by RefSeq, Sep 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:replication protein A 70 kDa DNA-binding subunit
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (39)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RPA1 (cancer-related)

Gooding AJ, Zhang B, Gunawardane L, et al.
The lncRNA BORG facilitates the survival and chemoresistance of triple-negative breast cancers.
Oncogene. 2019; 38(12):2020-2041 [PubMed] Free Access to Full Article Related Publications
Disseminated breast cancer cells employ adaptive molecular responses following cytotoxic therapeutic insult which promotes their survival and subsequent outgrowth. Here we demonstrate that expression of the pro-metastatic lncRNA BORG (BMP/OP-Responsive Gene) is greatly induced within triple-negative breast cancer (TNBC) cells subjected to environmental and chemotherapeutic stresses commonly faced by TNBC cells throughout the metastatic cascade. This stress-mediated induction of BORG expression fosters the survival of TNBC cells and renders them resistant to the cytotoxic effects of doxorubicin both in vitro and in vivo. The chemoresistant traits of BORG depend upon its robust activation of the NF-κB signaling axis via a novel BORG-mediated feed-forward signaling loop, and via its ability to bind and activate RPA1. Indeed, genetic and pharmacologic inhibition of NF-κB signaling or the DNA-binding activity of RPA1 abrogates the pro-survival features of BORG and renders BORG-expressing TNBCs sensitive to doxorubicin-induced cytotoxicity. These findings suggest that therapeutic targeting of BORG or its downstream molecular effectors may provide a novel means to alleviate TNBC recurrence.

Xu MD, Liu SL, Zheng BB, et al.
The radiotherapy-sensitization effect of cantharidin: Mechanisms involving cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair.
Pancreatology. 2018; 18(7):822-832 [PubMed] Related Publications
BACKGROUND: Cantharidin is an inhibitor of protein phosphatase 2 A (PP2A), and has been frequently used in clinical practice. In our previous study, we proved that cantharidin could arrest cell cycle in G2/M phase. Since cells at G2/M phase are sensitive to radiotherapy, in the present study, we investigated the radiotherapy-sesitization effect of cantharidin and the potential mechanisms involved.
METHODS: Cell growth was determined by MTT assay. Cell cycle was evaluated by flow cytometry. DNA damage was visualized by phospho-Histone H2A.X staining. Expression of mRNA was tested by microarray assay and real-time PCR. Clinical information and RNA-Seq expression data were derived from The Cancer Genome Atlas (TCGA) pancreatic cancer cohort. Survival analysis was obtained by Kaplan-Meier estimates.
RESULTS: Cantharidin strengthened the growth inhibition effect of irradiation. Cantharidin drove pancreatic cancer cells out of quiescent G0/G1 phase and arrested cell cycle in G2/M phase. As a result, cantharidin strengthened DNA damage which was induced by irradiation. Moreover, cantharidin repressed expressions of several genes participating in DNA damage repair, including UBE2T, RPA1, GTF2HH5, LIG1, POLD3, RMI2, XRCC1, PRKDC, FANC1, FAAP100, RAD50, RAD51D, RAD51B and DMC1, through JNK, ERK, PKC, p38 and/or NF-κB pathway dependent manners. Among these genes, worse overall survival for pancreatic cancer patients were associated with high mRNA expressions of POLD3, RMI2, PRKDC, FANC1, RAD50 and RAD51B, all of which could be down-regulated by cantharidin.
CONCLUSION: Cantharidin can sensitize pancreatic cancer cells to radiotherapy. Multiple mechanisms, including cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair, may be involved.

Zhu Y, Yi Y, Bai B, et al.
The silencing of replication protein A1 induced cell apoptosis via regulating Caspase 3.
Life Sci. 2018; 201:141-149 [PubMed] Related Publications
AIMS: Gastrointestinal cancers are a kind of deadly malignancy afflicting close to a million peoples worldwide. 5-Fluorouracil (5-Fu) is a main chemotherapeutic agent for cancer treatment. However, prolonged exposure of 5-Fu to cancer cells may cause chemoresistance and decrease the therapeutic potential of 5-Fu.
MAIN METHODS: Replication protein A (RPA) is a component of the origin recognition complex. In our study, we explored the role of RPA1 in hepatocellular carcinoma cell SMMC-7721, gastric cancer cell SGC-7901 and colorectal cancer HT-29 via lentiviral particles infection. Flow cytometry assay was used to examine the effect of RPA1 on cell proliferation, cell cycle and apoptosis. Western blot was employed to determine the role of RPA1 on Caspase 3 expression.
KEY FINDINGS: Immunohistochemstry results showed that RPA1 was highly expressed in colorectal cancer tissues. Only 5-Fu or the knockdown of RPA1 suppressed cell clone formation, induced cell cycle arrest at the G1 phase and promoted cell apoptosis by regulating the protein level of Caspase 3. And the combination of the application of 5-Fu and RPA1 silencing significantly enhanced the above effects.
SIGNIFICANCE: RPA1 serves as an oncogene during gastrointestinal cancers progression. These studies reveal a new target for gastrointestinal cancers therapy, and the combination of 5-Fu and silencing of RPA1 provides a new attractive therapeutic measure for gastrointestinal cancers.

Wang J, Yang T, Chen H, et al.
Oncogene RPA1 promotes proliferation of hepatocellular carcinoma via CDK4/Cyclin-D pathway.
Biochem Biophys Res Commun. 2018; 498(3):424-430 [PubMed] Related Publications
As the sixth most prevalent cancer, hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Human replication protein A (RPA), a three-subunit protein, plays a central role in eukaryotic DNA replication, homologous recombination, and excision repair, including RPA1, RPA2 and RPA3. Recently, some studies focusing on the relation between RPA1 and carcinogenesis have demonstrated that RPA1 is a candidate oncogene and influences tumor biological behaviors in many cancers such as esophageal carcinoma, colon cancer, urothelial carcinomas, etc. However, the characteristic role of RPA1 in HCC and the detailed potential mechanism remain unknown. To identify the real effects of RPA1 on HCC and its potential pathway participating in the changes of liver cancer cells, we have conducted this study and demonstrated that RPA1 is up-regulated both in liver cancer cell lines and HCC tissues, which is associated with poorer prognosis, advanced TNM stage and larger tumor size. Stable knock-down of RPA1 by specific small hairpin RNA (shRNA) contributes to the impaired proliferate ability of SK-HEP-1 cells both in vitro and vivo. Consistently, upregulation of RPA1 in HuH-7 cells by specific adenovirus promotes tumor cells' proliferation. Furthermore, cyclin-dependent-kinase 4(CDK4)/Cyclin-D pathway is found to be well associated with RPA1 induced proliferation. In conclusion, RPA1 plays a pivotal role as a potential oncogene in HCC and promotes tumor proliferation via CDK4/Cyclin-D pathway.

Ni Z, Yao C, Zhu X, et al.
Ailanthone inhibits non-small cell lung cancer cell growth through repressing DNA replication via downregulating RPA1.
Br J Cancer. 2017; 117(11):1621-1630 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The identification of bioactive compounds from Chinese medicine plays a crucial role in the development of novel reagents against non-small lung cancer (NSCLC).
METHODS: High throughput screening assay and analyses of cell growth, cell cycle, apoptosis, cDNA microarray, BrdU incorporation and gene expression were performed.
RESULTS: Ailanthone (Aila) suppressed NSCLC cell growth and colony formation in vitro and inhibited NSCLC tumour growth in subcutaneously xenografted and orthotopic lung tumour models, leading to prolonged survival of tumour-bearing mice. Moreover, Aila induced cell cycle arrest in a dose-independent manner but did not induce apoptosis in all NSCLC cells. Furthermore, 1222 genes were differentially expressed upon Aila administration, which were involved in 21 signal pathways, such as DNA replication. In addition, Aila dose-dependently decreased BrdU incorporation and downregulated the expression of replication protein A1 (RPA1).
CONCLUSIONS: Aila inhibited the growth of NSCLC cells through the repression of DNA replication via downregulating RPA1, rather than through cell cycle arrest and apoptosis. Our findings suggested that Aila could be used as a promising therapeutic candidate for NSCLC patients.

Liao YH, Ren JT, Zhang W, et al.
Polymorphisms in homologous recombination repair genes and the risk and survival of breast cancer.
J Gene Med. 2017; 19(9-10) [PubMed] Related Publications
BACKGROUND: Immunoglobulin (Ig)A antibody of Epstein-Barr virus (EBV) was found to associate with breast cancer (BC), whereas IgA positivity was related to a series of genetic markers in the genes of homologous recombination repair system (HRRs). We assessed the associations of the polymorphisms in HRR genes with the risk and survival of BC.
METHODS: A case-control study was conducted with 1551 bc cases and 1605 age-matched healthy controls between October 2008 and March 2012 in the Guangzhou Breast Cancer Study (GZBCS), China, and the case population were followed up until 31 January 2016. Five single nucleotide polymorphisms of candidate genes in HRR system were genotyped. Odds ratios (ORs) and hazards ratios (HRs) were calculated using multivariate logistic regression and Cox proportional hazards regression to estimate the risk and prognostic effect, respectively.
RESULTS: RFC1 rs6829064 (AA) was associated with an increased BC risk [OR = 1.35; 95% confidence interval (CI) = 1.06-1.73] compared to the wild genotype (GG). NRM rs1075496 (GT/TT versus GG) was associated with a worse progression-free survival (PFS) and the HR was 1.34 (95% CI = 1.01-1.78), particularly among advanced patients. LIG3 rs1052536 (CT/TT versus CC) was associated with a better PFS and the HR was 0.70 (95% CI = 0.53-0.93). However, RAD54L rs1710286 and RPA1 rs11078676 were not observed to be associated with either the risk or survival of BC.
CONCLUSIONS: The findings of the present study suggest that the polymorphisms in HRR genes were associated with BC risk (RFC1 rs6829064) and prognosis (NRM rs1075496 and LIG3 rs1052536), whereas RAD54L rs1710286 and RPA1 rs11078676 had null associations with BC.

Song X, Wang S, Hong X, et al.
Single nucleotide polymorphisms of nucleotide excision repair pathway are significantly associated with outcomes of platinum-based chemotherapy in lung cancer.
Sci Rep. 2017; 7(1):11785 [PubMed] Free Access to Full Article Related Publications
Nucleotide excision repair (NER) pathway plays critical roles in repairing DNA disorders caused by platinum. To comprehensively understand the association between variants of NER and clinical outcomes of platinum-based chemotherapy, 173 SNPs in 27 genes were selected to evaluate association with toxicities and efficiency in 1004 patients with advanced non-small cell lung cancer. The results showed that consecutive significant signals were observed in XPA, RPA1, POLD1, POLD3. Further subgroup analysis showed that GTF2H4 presented consecutive significant signals in clinical benefit among adenocarcimoma. In squamous cell carcinoma, rs4150558, rs2290280, rs8067195 were significantly associated with anemia, rs3786136 was significantly related to thrombocytopenia, ERCC5 presented consecutive significant signals in response rate. In patients receiving TP regimen, significant association presented in neutropenia, thrombocytopenia and gastrointestinal toxicity. Association with anemia and neutropenia were found in GP regimen. rs4150558 showed significant association with anemia in NP regimen. In patients > 58, ERCC5 showed consecutive significant signals in gastrointestinal toxicity. Survival analysis showed SNPs in POLD2, XPA, ERCC6 and POLE were significantly associated with progression free survival, SNPs in GTF2H4, ERCC6, GTF2HA, MAT1, POLD1 were significantly associated with overall survival. This study suggests SNPs in NER pathway could be potential predictors for clinical outcomes of platinum-based chemotherapy among NSCLC.

Xiao W, Zheng J, Zhou B, Pan L
Replication Protein A 3 Is Associated with Hepatocellular Carcinoma Tumorigenesis and Poor Patient Survival.
Dig Dis. 2018; 36(1):26-32 [PubMed] Related Publications
BACKGROUND: Replication protein A (RPA) 3 is a subunit of the RPA protein complex, which functions in multiple processes of DNA metabolism. Dysregulation of RPA1 and RPA2 has been implicated in tumor progression in several cancer types. However, the function of RPA3 in hepatocellular carcinoma (HCC) tumorigenesis has not been elucidated.
METHOD: In this study, we investigated the function of RPA3 in HCC development by stably knocking down its expression using short hairpin RNA (shRNA) in HepG2 cell line, followed by cell proliferation, colony formation, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumor-promoting properties of RPA3.
RESULTS: Downregulation of RPA3-inhibited cell proliferation, colony formation, soft agar growth as well as invasion in HepG2 cells were observed. Stable knockdown of RPA3 significantly inhibited tumor growth in the xenograft mouse model. In addition, qRT-PCR analysis revealed that RPA3 was upregulated in human HCC tissues compared with matched noncancerous adjacent tissues (NATs). High expression of RPA3 was associated with poor overall survival and disease-free survival.
CONCLUSION: Elevated expression of RPA3 promotes tumor progression in HCC cells. RPA3 is upregulated in HCC tissues and high expression of RPA3 is associated with poorer patient survival. Therefore, this protein may represent a novel therapeutic target for intervention of HCC and prognostic biomarker for patient survival.

Li R, Gu J, Heymach JV, et al.
Hypoxia pathway genetic variants predict survival of non-small-cell lung cancer patients receiving platinum-based chemotherapy.
Carcinogenesis. 2017; 38(4):419-424 [PubMed] Free Access to Full Article Related Publications
Hypoxia is a hallmark of solid tumors and has been implicated in the development of advanced disease and poor clinical outcome. In this multi-stage study, we aimed to assess whether genetic variations in hypoxia pathway genes might affect overall survival (OS) in patients with advanced-stage non-small cell lung cancer (NSCLC). We genotyped 598 potentially functional and tagging single nucleotide polymorphisms (SNPs) in 42 genes of the hypoxia pathway in 602 advanced stage NSCLC patients who received platinum-based chemotherapy or chemoradiation (discovery phase). Significant SNPs were validated in an additional 278 advanced stage patients (validation phase). Cox proportional hazard regression analysis was used to evaluate the association of each SNP with OS. Results showed in chemotherapy only group the median survival time (MST) of NSCLC patients with RPA1: rs2270412 AA+GA genotype versus GG genotype was 10.5 versus 12.7 month [P = 0.004, hazard ratio (HR) = 1.42, 95% CI: 1.16-1.74, combined set]. The MST of patients with EXO1: rs9350 GA+AA genotype versus GG genotypes was 13.2 months versus 11.5 months (P = 0.009, HR = 0.70, 95% CI: 0.56-0.87, combined set). Patients harboring two unfavorable genotypes had a 2.02-fold increased risk of death (P = 3.16E-6) and chemoradiation would improve survival for them (HR = 0.75, 95% CI: 0.51-1.10, P = 0.27, combined set). The MST for patients with 0, 1, and 2 unfavorable genotypes was 13.2, 12.7 and 8.9 months, respectively (P = 0.0002, combined set). In summary, two variants in RPA1 and EXO1 were associated with poor survival in NSCLC patients treated by platinum-based chemotherapy. Adding radiotherapy could improve survival in patients harboring these risk genotypes.

Guo Q, Lu T, Chen Y, et al.
Genetic variations in the PI3K-PTEN-AKT-mTOR pathway are associated with distant metastasis in nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy.
Sci Rep. 2016; 6:37576 [PubMed] Free Access to Full Article Related Publications
Distant metastasis is the primary failure pattern of nasopharyngeal carcinoma(NPC) in intensity-modulated radiation therapy(IMRT) era. This study was conducted to find the impact of genetic variations in the phosphatidylinositol 3-kinase(PI3K)/phosphatase and tensin homologue(PTEN)/v-akt murine thymoma viral oncogene homologue(AKT)/mammalian target of rapamycin(mTOR) pathway on the risk of distant metastasis in NPC. We genotyped 16 single-nucleotide polymorphisms(SNPs) in five core genes in this pathway from 496 patients treated by IMRT with or without chemotherapy. The relationships between genetic polymorphisms and distant progression were evaluated. We observed that two loci in the AKT1 gene(rs3803300 and rs2494738 alone or combined) were associated with prognosis, with patients carrying at least one variant allele had significantly reduced risk of distant failure, especially in N2-3 group. In addition, we found that genetic variation may had some joint effect with N classification in recursive-partitioning analysis(RPA) analysis, with which patients were stratified into four different risk subgroups (RPA model): RPA1(low risk), RPA2(moderate risk), RPA3(high risk) and RPA4(highest risk). Our findings suggested that genetic variations within the PI3K signaling pathway modulate the development and invasion of NPC patients. Further research is needed to replicate the study in other centers and races, and to unravel the functional significance of these polymorphisms.

Domagala P, Hybiak J, Rys J, et al.
Pathological complete response after cisplatin neoadjuvant therapy is associated with the downregulation of DNA repair genes in BRCA1-associated triple-negative breast cancers.
Oncotarget. 2016; 7(42):68662-68673 [PubMed] Free Access to Full Article Related Publications
Pathologic complete response (pCR) after neoadjuvant chemotherapy is considered a suitable surrogate marker of treatment efficacy in patients with triple-negative breast cancers (TNBCs). However, the molecular mechanisms underlying pCR as a result of such treatment remain obscure. Using real-time PCR arrays we compared the expression levels of 120 genes involved in the main mechanisms of DNA repair in 43 pretreatment biopsies of BRCA1-associated TNBCs exhibiting pCR and no pathological complete response (non-pCR) after neoadjuvant chemotherapy with cisplatin. Altogether, 25 genes were significantly differentially expressed between tumors exhibiting pCR and non-pCR, and these genes were downregulated in the pCR group compared to the non-pCR group. A difference in expression level greater than 1.5-fold was detected for nine genes: MGMT, ERCC4, FANCB, UBA1, XRCC5, XPA, XPC, PARP3, and RPA1. The non-homologous end joining and nucleotide excision repair pathways of DNA repair showed the most significant relevance. Expression profile of DNA repair genes associated with pCR was different in the node-positive (20 genes with fold change >1.5) and node-negative (only 3 genes) subgroups. Although BRCA1 germline mutations are the principal defects in BRCA1-associated TNBC, our results indicate that the additional downregulation of other genes engaged in major pathways of DNA repair may play a decisive role in the pathological response of these tumors to cisplatin neoadjuvant chemotherapy. The results suggest that patients with node-positive BRCA1-associated TNBCs that do not exhibit pCR after cisplatin neoadjuvant chemotherapy may be candidates for subsequent therapy with PARP inhibitors, whereas UBA1 may be a potential therapeutic target in node-negative subgroup.

Cipollini M, Figlioli G, Maccari G, et al.
Polymorphisms within base and nucleotide excision repair pathways and risk of differentiated thyroid carcinoma.
DNA Repair (Amst). 2016; 41:27-31 [PubMed] Related Publications
The thyrocytes are exposed to high levels of oxidative stress which could induce DNA damages. Base excision repair (BER) is one of the principal mechanisms of defense against oxidative DNA damage, however recent evidences suggest that also nucleotide excision repair (NER) could be involved. The aim of present work was to identify novel differentiated thyroid cancer (DTC) risk variants in BER and NER genes. For this purpose, the most strongly associated SNPs within NER and BER genes found in our previous GWAS on DTC were selected and replicated in an independent series of samples for a new case-control study. Although a positive signal was detected at the nominal level of 0.05 for rs7689099 (encoding for an aminoacid change proline to arginine at codon 117 within NEIL3), none of the considered SNPs (i.e. rs7990340 and rs690860 within RFC3, rs3744767 and rs1131636 within RPA1, rs16962916 and rs3136166 in ERCC4, and rs17739370 and rs7689099 in NEIL3) was associated with the risk of DTC when the correction of multiple testing was applied. In conclusion, a role of NER and BER pathways was evoked in the susceptibility to DTC. However, this seemed to be limited to few polymorphic genes and the overall effect size appeared weak.

Chang ET, Parekh PR, Yang Q, et al.
Heterogenous ribonucleoprotein A18 (hnRNP A18) promotes tumor growth by increasing protein translation of selected transcripts in cancer cells.
Oncotarget. 2016; 7(9):10578-93 [PubMed] Free Access to Full Article Related Publications
The heterogenous ribonucleoprotein A18 (hnRNP A18) promotes tumor growth by coordinating the translation of selected transcripts associated with proliferation and survival. hnRNP A18 binds to and stabilizes the transcripts of pro-survival genes harboring its RNA signature motif in their 3'UTRs. hnRNP A18 binds to ATR, RPA, TRX, HIF-1α and several protein translation factor mRNAs on polysomes and increases de novo protein translation under cellular stress. Most importantly, down regulation of hnRNP A18 decreases proliferation, invasion and migration in addition to significantly reducing tumor growth in two mouse xenograft models, melanoma and breast cancer. Moreover, tissue microarrays performed on human melanoma, prostate, breast and colon cancer indicate that hnRNP A18 is over expressed in 40 to 60% of these malignant tissue as compared to normal adjacent tissue. Immunohistochemistry data indicate that hnRNP A18 is over expressed in the stroma and hypoxic areas of human tumors. These data thus indicate that hnRNP A18 can promote tumor growth in in vivo models by coordinating the translation of pro-survival transcripts to support the demands of proliferating cells and increase survival under cellular stress. hnRNP A18 therefore represents a new target to selectively inhibit protein translation in tumor cells.

Panero J, Stella F, Schutz N, et al.
Differential Expression of Non-Shelterin Genes Associated with High Telomerase Levels and Telomere Shortening in Plasma Cell Disorders.
PLoS One. 2015; 10(9):e0137972 [PubMed] Free Access to Full Article Related Publications
Telomerase, shelterin proteins and various interacting factors, named non-shelterin proteins, are involved in the regulation of telomere length (TL). Altered expression of any of these telomere-associated genes can lead to telomere dysfunction, causing genomic instability and disease development. In this study, we investigated the expression profile of a set of non-shelterin genes involved in essential processes such as replication (RPA1), DNA damage repair pathways (MRE11-RAD50-NBS1) and stabilization of telomerase complex (DKC1), in 35 patients with monoclonal gammopathy of undetermined significance (MGUS) and 40 cases with multiple myeloma (MM). Results were correlated with hTERT expression, TL and clinical parameters. Overall, a significant increase in DKC1, RAD50, MRE11, NBS1 and RPA1 expression along with an upregulation of hTERT in MM compared with MGUS was observed (p≤0.032). Interestingly, in both entities high mRNA levels of non-shelterin genes were associated with short TLs and increased hTERT expression. Significant differences were observed for DKC1 in MM (p ≤0.026), suggesting an important role for this gene in the maintenance of short telomeres by telomerase in myeloma plasma cells. With regard to clinical associations, we observed a significant increase in DKC1, RAD50, MRE11 and RPA1 expression in MM cases with high bone marrow infiltration (p≤0.03) and a tendency towards cases with advanced ISS stage, providing the first evidence of non-shelterin genes associated to risk factors in MM. Taken together, our findings bring new insights into the intricate mechanisms by which telomere-associated proteins collaborate in the maintenance of plasma cells immortalization and suggest a role for the upregulation of these genes in the progression of the disease.

Flynn RL, Cox KE, Jeitany M, et al.
Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors.
Science. 2015; 347(6219):273-7 [PubMed] Free Access to Full Article Related Publications
Cancer cells rely on telomerase or the alternative lengthening of telomeres (ALT) pathway to overcome replicative mortality. ALT is mediated by recombination and is prevalent in a subset of human cancers, yet whether it can be exploited therapeutically remains unknown. Loss of the chromatin-remodeling protein ATRX associates with ALT in cancers. Here, we show that ATRX loss compromises cell-cycle regulation of the telomeric noncoding RNA TERRA and leads to persistent association of replication protein A (RPA) with telomeres after DNA replication, creating a recombinogenic nucleoprotein structure. Inhibition of the protein kinase ATR, a critical regulator of recombination recruited by RPA, disrupts ALT and triggers chromosome fragmentation and apoptosis in ALT cells. The cell death induced by ATR inhibitors is highly selective for cancer cells that rely on ALT, suggesting that such inhibitors may be useful for treatment of ALT-positive cancers.

Smith SC, Petrova AV, Madden MZ, et al.
A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response.
Nucleic Acids Res. 2014; 42(18):11517-27 [PubMed] Free Access to Full Article Related Publications
The Replication Stress Response (RSR) is a signaling network that recognizes challenges to DNA replication and coordinates diverse DNA repair and cell-cycle checkpoint pathways. Gemcitabine is a nucleoside analogue that causes cytotoxicity by inducing DNA replication blocks. Using a synthetic lethal screen of a RNAi library of nuclear enzymes to identify genes that when silenced cause gemcitabine sensitization or resistance in human triple-negative breast cancer cells, we identified NIMA (never in mitosis gene A)-related kinase 9 (NEK9) as a key component of the RSR. NEK9 depletion in cells leads to replication stress hypersensitivity, spontaneous accumulation of DNA damage and RPA70 foci, and an impairment in recovery from replication arrest. NEK9 protein levels also increase in response to replication stress. NEK9 complexes with CHK1, and moreover, NEK9 depletion impairs CHK1 autophosphorylation and kinase activity in response to replication stress. Thus, NEK9 is a critical component of the RSR that promotes CHK1 activity, maintaining genome integrity following challenges to DNA replication.

Patterson MJ, Sutton RE, Forrest I, et al.
Assessing the function of homologous recombination DNA repair in malignant pleural effusion (MPE) samples.
Br J Cancer. 2014; 111(1):94-100 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Patients with malignant pleural effusions (MPEs) generally have advanced disease with poor survival and few therapeutic options. Cells within MPEs may be used to stratify patients for targeted therapy. Targeted therapy with poly(ADP ribose) polymerase inhibitors (PARPi) depends on identifying homologous recombination DNA repair (HRR)-defective cancer cells. We aimed to determine the feasibility of assaying HRR status in MPE cells.
METHODS: A total of 15 MPE samples were collected from consenting patients with non-small-cell lung cancer (NSCLC), mesothelioma and ovarian and breast cancer. Primary cultures were confirmed as epithelial by pancytokeratin, and HRR status was determined by the detection of γH2AX and RAD51 foci following a 24-h exposure to rucaparib, by immunofluorescence microscopy. Massively parallel next-generation sequencing of DNA repair genes was performed on cultured MPE cells.
RESULTS: From 15 MPE samples, 13 cultures were successfully established, with HRR function successfully determined in 12 cultures. Four samples - three NSCLC and one mesothelioma - were HRR defective and eight samples - one NSCLC, one mesothelioma, one sarcomatoid, one breast and four ovarian cancers - were HRR functional. No mutations in DNA repair genes were associated with HRR status, but there was probable loss of heterozygosity of FANCG, RPA1 and PARP1.
CONCLUSIONS: HRR function can be successfully detected in MPE cells demonstrating the potential to stratify patients for targeted therapy with PARPi.

Di Z, Sanyuan S, Hong L, Dahai Y
Enhanced radiosensitivity and G2/M arrest were observed in radioresistant esophageal cancer cells by knocking down RPA expression.
Cell Biochem Biophys. 2014; 70(2):887-91 [PubMed] Related Publications
The aim of this study was to evaluate the changes in radiosensitivity of radioresistant esophageal cancer cells (TE-1R) after disruption of replication protein A (RPA) expression and to explore the potential mechanism. A radioresistant human esophageal cancer cell line TE-1R was established by treating TE-1 cells with the radiation. Then, siRPA1 or -2 was transfected to TE-1R cells. The untransfected group (control) and nonsense short interfering RNA (siRNA) transfected group (NC) were used as controls. To investigate the radiosensitivity changes of TE-1R cells, the dose-survival curve was established by colony-forming assay, and the cell cycle distribution was measured by flow cytometry. (1) Comparing with control and NC groups, the protein expression of RPA1 and -2 decreased significantly 48 h after siRPA1 or -2 transfection. (2) The D 0, D q, and SF2 values reduced from 2.09, 1.70, and 0.85 in NC group to 1.67, 0.71, and 0.44 and 1.82, 0.89, and 0.51 in siRNA1 and siRPA2 transfected groups, respectively. The D q sensitization enhancement ratios (SERDq) were 2.39 and 1.91 in siRNA1 and siRPA2 transfected groups, respectively. (3) The G2/M arrest was significantly caused by siRPA1 or -2 transfection as compared with that in the NC group (t value was 2.827, 2.853, p < 0.05). Post transcriptional silencing of RPA1 or -2 via RNAi can enhance the radiosensitivity of human esophageal cancer cells TE-1R, and the potential mechanism may be related to the inhibition of post-radiation sublethal damage repair and the halted cell cycle progression at G2/M phase. Therefore, RPA may become a new target for radiosensitization enhancement in esophageal cancer.

Hoxha M, Fabris S, Agnelli L, et al.
Relevance of telomere/telomerase system impairment in early stage chronic lymphocytic leukemia.
Genes Chromosomes Cancer. 2014; 53(7):612-21 [PubMed] Related Publications
Several studies have proposed telomere length and telomerase activity as prognostic factors in chronic lymphocytic leukemia (CLL), whereas information addressing the role of telomere-associated genes is limited. We measured relative telomere length (RTL) and TERT expression levels in purified peripheral CD19(+) B-cells from seven healthy donors and 77 untreated CLLs in early stage disease (Binet A). Data were correlated with the major biological and cytogenetic markers, global DNA methylation (Alu and LINE-1), and clinical outcome. The expression profiles of telomere-associated genes were also investigated. RTL was decreased in CLLs as compared with controls (P < 0.001); within CLL, a progressive and significant RTL shortening was observed in patients from 13q- through +12, 11q-, and 17p- alterations; short telomeres were significantly associated with unmutated IGHV configuration and global DNA hypomethylation. Decreased RTL was associated with a shorter time to first treatment. A significant upregulation of POT1, TRF1, RAP1, MRE11A, RAD50, and RPA1 transcript levels was observed in CLLs compared with controls. Our study suggests that impairment of telomere/telomerase system represents an early event in CLL pathogenesis. Moreover, the correlation between telomere shortening and global DNA hypomethylation supports the involvement of DNA hypomethylation to increase chromosome instability. © 2014 Wiley Periodicals, Inc.

Ma Z, Bi Q, Wang Y
Hydrogen sulfide accelerates cell cycle progression in oral squamous cell carcinoma cell lines.
Oral Dis. 2015; 21(2):156-62 [PubMed] Related Publications
OBJECTIVE: To investigate the cell cycle regulator role of the third gaseous transmitter hydrogen sulfide (H2 S) in three oral SCC cell lines by using NaHS, a donor of H2 S.
METHODS: The synchronized oral squamous cell carcinoma cell lines (Cal27, GNM, and WSU-HN6) were treated with different concentrations of NaHS and then subjected to cell proliferation, cell cycle, and Western blot analyses.
RESULTS: The CCK-8 assay results showed that the exogenously administered H2 S donor, NaHS, induced CAL-27, and GNM cell proliferation in a concentration-dependent manner, and the cell cycle analysis indicated that NaHS accelerated cell cycle progression of the synchronized CAL-27, GNM, and WSU-HN6 cells. Western blot analysis revealed that the cell cycle regulatory genes RPA70 and RB1 were significantly down-regulated and that proliferating cell nuclear antigen (PCNA) and CDK4 were markedly up-regulated by NaHS at specific time points in the cell cycle. In addition, our results indicated that the phosphorylation of Akt and Erk1/2 was involved in exogenous H2 S-induced oral SCC cell proliferation.
CONCLUSIONS: H2 S is a potential pro-proliferative factor of human oral SCC cells that accelerates the progression of the SCC cell cycle; thus, H2 S plays a deleterious role in oral SCC cancer development.

Won KJ, Im JY, Yun CO, et al.
Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma.
Int J Cancer. 2014; 134(11):2595-604 [PubMed] Related Publications
Human Noxin (hNoxin, C11Orf82), a homolog of mouse noxin, is highly expressed in colorectal and lung cancer tissues. hNoxin contains a DNA-binding C-domain in RPA1, which mediates DNA metabolic processes, such as DNA replication and DNA repair. Expression of hNoxin is associated with S phase in cancer cells and in normal cells. Expression of hNoxin was induced by ultraviolet (UV) irradiation. Knockdown of hNoxin caused growth inhibition of colorectal and lung cancer cells. The comet assay and western blot analysis revealed that hNoxin knockdown induced apoptosis through activation of p38 mitogen-activated protein kinase (MAPK)/p53 in non-small cell lung carcinoma A549 cells. Furthermore, simultaneous hNoxin knockdown and treatment with DNA-damaging agents, such as camptothecin (CPT) and UV irradiation, enhanced apoptosis, whereas Trichostatin A (TSA) did not. However, transient overexpression of hNoxin rescued cells from DNA damage-induced apoptosis but did not block apoptosis in the absence of DNA damage. These results suggest that hNoxin may be associated with inhibition of apoptosis in response to DNA damage. An adenovirus expressing a short hairpin RNA against hNoxin transcripts significantly suppressed the growth of A549 tumor xenografts, indicating that hNoxin knockdown has in vivo anti-tumor efficacy. Thus, hNoxin is a DNA damage-induced anti-apoptotic protein and potential therapeutic target in cancer.

Liu M, Wu R, Yang F, et al.
Identification of FN1BP1 as a novel cell cycle regulator through modulating G1 checkpoint in human hepatocarcinoma Hep3B cells.
PLoS One. 2013; 8(2):e57574 [PubMed] Free Access to Full Article Related Publications
A novel human gene, FN1BP1 (fibronectin 1 binding protein 1), was identified using the human placenta cDNA library. Northern blotting showed a transcript of ∼2.8 kb in human placenta, liver, and skeletal muscle tissues. This mRNA transcript length was similar to the full FN1BP1 sequence obtained previously. We established a conditionally induced stable cell line of Hep3B-Tet-on-FN1BP1 to investigate the preliminary function and mechanism of the secretory FN1BP1 protein. Cell-proliferation and colony-conformation assays demonstrated that FN1BP1 protein suppressed Hep3B cell growth and colonization in vitro. Analysis of Atlas human cDNA expression indicated that after FN1BP1 Dox-inducing expression for 24 h, 19 genes were up-regulated and 22 genes were down-regulated more than two-fold. Most of these gene changes were related to cell-cycle-arrest proteins (p21cip1, p15, and cyclin E1), transcription factors (general transcription factors, zinc finger proteins, transcriptional enhancer factors), SWI/SNF (SWItch/Sucrose NonFermentable) complex units, early-response proteins, and nerve growth or neurotrophic factors. Down-regulated genes were subject to colony-stimulating factors (e.g., GMSFs), and many repair genes were involved in DNA damage (RAD, ERCC, DNA topoisomerase, polymerase, and ligase). Some interesting genes (p21cip1, ID2, GMSF, ERCC5, and RPA1), which changed in the cDNA microarray analysis, were confirmed by semi-qRT-PCR, and similar changes in expression were observed. FCM cell-cycle analysis indicated that FN1BP1 over-expression could result in G1 phase arrest. FN1BP1 might inhibit cell growth and/or colony conformation through G1 phase arrest of the Hep3B cell cycle. These results indicate the potential role of FN1BP1 as a treatment target for hepatocellular carcinoma.

Maute RL, Schneider C, Sumazin P, et al.
tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma.
Proc Natl Acad Sci U S A. 2013; 110(4):1404-9 [PubMed] Free Access to Full Article Related Publications
Sequencing studies from several model systems have suggested that diverse and abundant small RNAs may be derived from tRNA, but the function of these molecules remains undefined. Here, we demonstrate that one such tRNA-derived fragment, cloned from human mature B cells and designated CU1276, in fact possesses the functional characteristics of a microRNA, including a DICER1-dependent biogenesis, physical association with Argonaute proteins, and the ability to repress mRNA transcripts in a sequence-specific manner. Expression of CU1276 is abundant in normal germinal center B cells but absent in germinal center-derived lymphomas, suggesting a role in the pathogenesis of this disease. Furthermore, CU1276 represses endogenous RPA1, an essential gene involved in many aspects of DNA dynamics, and consequently, expression of this tRNA-derived microRNA in a lymphoma cell line suppresses proliferation and modulates the molecular response to DNA damage. These results establish that functionally active microRNAs can be derived from tRNA, thus defining a class of genetic entities with potentially important biological roles.

Calle ML, Urrea V, Boulesteix AL, Malats N
AUC-RF: a new strategy for genomic profiling with random forest.
Hum Hered. 2011; 72(2):121-32 [PubMed] Related Publications
OBJECTIVE: Genomic profiling, the use of genetic variants at multiple loci simultaneously for the prediction of disease risk, requires the selection of a set of genetic variants that best predicts disease status. The goal of this work was to provide a new selection algorithm for genomic profiling.
METHODS: We propose a new algorithm for genomic profiling based on optimizing the area under the receiver operating characteristic curve (AUC) of the random forest (RF). The proposed strategy implements a backward elimination process based on the initial ranking of variables.
RESULTS AND CONCLUSIONS: We demonstrate the advantage of using the AUC instead of the classification error as a measure of predictive accuracy of RF. In particular, we show that the use of the classification error is especially inappropriate when dealing with unbalanced data sets. The new procedure for variable selection and prediction, namely AUC-RF, is illustrated with data from a bladder cancer study and also with simulated data. The algorithm is publicly available as an R package, named AUCRF, at http://cran.r-project.org/.

Martrat G, Maxwell CM, Tominaga E, et al.
Exploring the link between MORF4L1 and risk of breast cancer.
Breast Cancer Res. 2011; 13(2):R40 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens.
METHODS: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk.
RESULTS: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively.
CONCLUSIONS: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.

Wu Q, Beland FA, Chang CW, Fang JL
XPC is essential for nucleotide excision repair of zidovudine-induced DNA damage in human hepatoma cells.
Toxicol Appl Pharmacol. 2011; 251(2):155-62 [PubMed] Related Publications
Zidovudine (3'-azido-3'-dexoythymidine, AZT), a nucleoside reverse transcriptase inhibitor, can be incorporated into DNA and cause DNA damage. The mechanisms underlying the repair of AZT-induced DNA damage are unknown. To investigate the pathways involved in the recognition and repair of AZT-induced DNA damage, human hepatoma HepG2 cells were incubated with AZT for 2 weeks and the expression of DNA damage signaling pathways was determined using a pathway-based real-time PCR array. Compared to control cultures, damaged DNA binding and nucleotide excision repair (NER) pathways showed significantly increased gene expression. Further analysis indicated that AZT treatment increased the expression of genes associated with NER, including XPC, XPA, RPA1, GTF2H1, and ERCC1. Western blot analysis demonstrated that the protein levels of XPC and GTF2H1 were also significantly up-regulated. To explore further the function of XPC in the repair of AZT-induced DNA damage, XPC expression was stably knocked down by 71% using short hairpin RNA interference. In the XPC knocked-down cells, 100 μM AZT treatment significantly increased [³H]AZT incorporation into DNA, decreased the total number of viable cells, increased the release of lactate dehydrogenase, induced apoptosis, and caused a more extensive G2/M cell cycle arrest when compared to non-transfected HepG2 cells or HepG2 cells transfected with a scrambled short hairpin RNA sequence. Overall, these data indicate that XPC plays an essential role in the NER repair of AZT-induced DNA damage.

Vaid M, Sharma SD, Katiyar SK
Proanthocyanidins inhibit photocarcinogenesis through enhancement of DNA repair and xeroderma pigmentosum group A-dependent mechanism.
Cancer Prev Res (Phila). 2010; 3(12):1621-9 [PubMed] Related Publications
Dietary grape seed proanthocyanidins (GSP) inhibit photocarcinogenesis in mice; however, the molecular mechanisms underlying this effect have not been fully elucidated. As ultraviolet B (UVB)-induced DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) has been implicated in skin cancer risk, we studied whether dietary GSPs enhance repair of UVB-induced DNA damage and, if so, what is the potential mechanism? Supplementation of GSPs (0.5%, w/w) with AIN76A control diet significantly reduced the levels of CPD(+) cells in UVB-exposed mouse skin; however, GSPs did not significantly reduce UVB-induced CPD(+) cells in the skin of interleukin-12p40 (IL-12) knockout (KO) mice, suggesting that IL-12 is required for the repair of CPDs by GSPs. Using IL-12 KO mice and their wild-type counterparts and standard photocarcinogenesis protocol, we found that supplementation of control diet with GSPs (0.5%, w/w) significantly reduced UVB-induced skin tumor development in wild-type mice, which was associated with the elevated mRNA levels of nucleotide excision repair genes, such as XPA, XPC, DDB2, and RPA1; however, this effect of GSPs was less pronounced in IL-12 KO mice. Cytostaining analysis revealed that GSPs repaired UV-induced CPD(+) cells in xeroderma pigmentosum complementation group A (XPA)-proficient fibroblasts from a healthy individual but did not repair in XPA-deficient fibroblasts from XPA patients. Furthermore, GSPs enhance nuclear translocation of XPA and enhanced its interactions with other DNA repair protein ERCC1. Together, our findings reveal that prevention of photocarcinogenesis by GSPs is mediated through enhanced DNA repair in epidermal cells by IL-12- and XPA-dependent mechanisms.

Guillem VM, Cervantes F, Martínez J, et al.
XPC genetic polymorphisms correlate with the response to imatinib treatment in patients with chronic phase chronic myeloid leukemia.
Am J Hematol. 2010; 85(7):482-6 [PubMed] Related Publications
Chronic myeloid leukemia (CML) is driven by the BCR-ABL protein, which promotes the proliferation and viability of the leukemic cells. Moreover, BCR-ABL induces genomic instability that can contribute to the emergence of resistant clones to the ABL kinase inhibitors. It is currently unknown whether the inherited individual capability to repair DNA damage could affect the treatment results. To address this, a comprehensive analysis of single nucleotide polymorphisms (SNPs) on the nucleotide excision repair (NER) genes (ERCC2-ERCC8, RPA1-RPA3, LIG1, RAD23B, XPA, XPC) was performed in 92 chronic phase CML patients treated with imatinib upfront. ERCC5 and XPC SNPs correlated with the response to imatinib. Haplotype analysis of XPC showed that the wild-type haplotype (499C-939A) was associated with a better response to imatinib. Moreover, the 5-year failure free survival for CA carriers was significantly better than that of the non-CA carriers (98% vs. 73%; P = 0.02). In the multivariate logistic model with genetic data and clinical covariates, the hemoglobin (Hb) level and the XPC haplotype were independently associated with the treatment response, with patients having a Hb < or =11 g/dl (Odds ratio [OR] = 5.0, 95% confidence interval [CI] = 1.5-16.1) or a non-CA XPC haplotype (OR = 4.1, 95% CI = 1.6-10.6) being at higher risk of suboptimal response/treatment failure. Our findings suggest that genetic polymorphisms in the NER pathway may influence the results to imatinib treatment in CML.

Guggenheim ER, Xu D, Zhang CX, et al.
Photoaffinity isolation and identification of proteins in cancer cell extracts that bind to platinum-modified DNA.
Chembiochem. 2009; 10(1):141-57 [PubMed] Free Access to Full Article Related Publications
The activity of the anticancer drug cisplatin is a consequence of its ability to bind DNA. Platinum adducts bend and unwind the DNA duplex, creating recognition sites for nuclear proteins. Following DNA damage recognition, the lesions will either be repaired, facilitating cell viability, or if repair is unsuccessful and the Pt adduct interrupts vital cellular functions, apoptosis will follow. With the use of the benzophenone-modified cisplatin analogue Pt-BP6, 25 bp DNA duplexes containing either a 1,2-d(G*pG*) intrastrand or a 1,3-d(G*pTpG*) intrastrand crosslink were synthesized, where the asterisks designate platinated nucleobases. Proteins having affinity for these platinated DNAs were photocrosslinked and identified in cervical, testicular, pancreatic and bone cancer-cell nuclear extracts. Proteins identified in this manner include the DNA repair factors RPA1, Ku70, Ku80, Msh2, DNA ligase III, PARP-1, and DNA-PKcs, as well as HMG-domain proteins HMGB1, HMGB2, HMGB3, and UBF1. The latter strongly associate with the 1,2-d(G*pG*) adduct and weakly or not at all with the 1,3-d(G*pTpG*) adduct. The nucleotide excision repair protein RPA1 was photocrosslinked only by the probe containing a 1,3-d(G*pTpG*) intrastrand crosslink. The affinity of PARP-1 for platinum-modified DNA was established using this type of probe for the first time. To ensure that the proteins were not photocrosslinked because of an affinity for DNA ends, a 90-base dumbbell probe modified with Pt-BP6 was investigated. Photocrosslinking experiments with this longer probe revealed the same proteins, as well as some additional proteins involved in chromatin remodeling, transcription, or repair. These findings reveal a more complete list of proteins involved in the early steps of the mechanism of action of the cisplatin and its close analogue carboplatin than previously was available.

Nishiwaki T, Kobayashi N, Iwamoto T, et al.
Comparative study of nucleotide excision repair defects between XPD-mutated fibroblasts derived from trichothiodystrophy and xeroderma pigmentosum patients.
DNA Repair (Amst). 2008; 7(12):1990-8 [PubMed] Related Publications
To get a clue to understand how mutations in the XPD gene result in different skin cancer susceptibilities in patients with xeroderma pigmentosum (XP) or trichothiodystrophy (TTD), a thorough understanding of their nucleotide excision repair (NER) defects is essential. Here, we extensively characterize the possible causes of NER defects in XP-D and in TTD fibroblasts. The 3 XP-D cell strains examined were similarly deficient in repairing UV-induced cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs) from genomic DNA. The severity of NER defects correlated with their UV sensitivities. Possible alterations of TFIIH (which consists of 10 subunits including XPD) were then examined. All XP-D cell strains were normal in their concentrations of TFIIH, and displayed normal abilities to recruit TFIIH to sites of UV-induced DNA damage. However, replication protein A (RPA; single-stranded DNA binding protein) accumulation at DNA damage sites, which probably reflects the in vivo XPD helicase activity of TFIIH, is similarly impaired in all XP-D cell strains. Meanwhile, all 3 TTD cell strains had approximately 50% decreases in cellular TFIIH content. Importantly, 2 of the 3 TTD cell strains, which carry the major XPD mutations found in TTD patients, showed defective recruitment of TFIIH to DNA damage sites. Moreover, RPA accumulation at damage sites was impaired in all TTD cell strains to different degrees, which correlated with the severity of their NER defects. These results demonstrate that XP-D and TTD cells are both deficient in the repair of CPDs and 6-4PPs, but TTD cells have more multiple causes for their NER defects than do XP-D cells. Since TFIIH is a repair/transcription factor, TTD-specific alterations of TFIIH possibly result in transcriptional defects, which might be implication for the lack of increased incidence of skin cancers in TTD patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RPA1, Cancer Genetics Web: http://www.cancer-genetics.org/RPA1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999