PRKCA

Gene Summary

Gene:PRKCA; protein kinase C, alpha
Aliases: AAG6, PKCA, PRKACA, PKC-alpha
Location:17q22-q23.2
Summary:Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role in cells. The protein encoded by this gene is one of the PKC family members. This kinase has been reported to play roles in many different cellular processes, such as cell adhesion, cell transformation, cell cycle checkpoint, and cell volume control. Knockout studies in mice suggest that this kinase may be a fundamental regulator of cardiac contractility and Ca(2+) handling in myocytes. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:protein kinase C alpha type
HPRD
Source:NCBIAccessed: 17 August, 2015

Ontology:

What does this gene/protein do?
Show (93)
Pathways:What pathways are this gene/protein implicaed in?
Show (53)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Telomerase
  • Transfection
  • Temporal Lobe
  • Western Blotting
  • siRNA
  • Phosphorylation
  • Messenger RNA
  • Enzymologic Gene Expression Regulation
  • Apoptosis
  • Oligonucleotide Array Sequence Analysis
  • Protein Kinase C
  • Isoenzymes
  • RNA, Catalytic
  • Skin Cancer
  • Lung Cancer
  • p53 Protein
  • Antineoplastic Agents
  • Tetradecanoylphorbol Acetate
  • Reproducibility of Results
  • Enzyme Inhibitors
  • Neoplasm Proteins
  • Cancer Gene Expression Regulation
  • beta Catenin
  • Tumor Suppressor Proteins
  • Enzyme Activation
  • Immunohistochemistry
  • Vitronectin
  • Weightlessness Simulation
  • Transcription
  • Breast Cancer
  • Oligonucleotides, Antisense
  • ras Proteins
  • Tamoxifen
  • Stomach Cancer
  • VEGFA
  • Chromosome 17
  • Gene Expression Profiling
  • Drug Resistance
  • Down-Regulation
  • Protein Kinase C-alpha
  • Cell Proliferation
  • Thyroid Cancer
  • PRKCA
Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PRKCA (cancer-related)

Cornella H, Alsinet C, Sayols S, et al.
Unique genomic profile of fibrolamellar hepatocellular carcinoma.
Gastroenterology. 2015; 148(4):806-18.e10 [PubMed] Article available free on PMC after 01/04/2016 Related Publications
BACKGROUND & AIMS: Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary hepatic cancer that develops in children and young adults without cirrhosis. Little is known about its pathogenesis, and it can be treated only with surgery. We performed an integrative genomic analysis of a large series of patients with FLC to identify associated genetic factors.
METHODS: By using 78 clinically annotated FLC samples, we performed whole-transcriptome (n = 58), single-nucleotide polymorphism array (n = 41), and next-generation sequencing (n = 48) analyses; we also assessed the prevalence of the DNAJB1-PRKACA fusion transcript associated with this cancer (n = 73). We performed class discovery using non-negative matrix factorization, and functional annotation using gene-set enrichment analyses, nearest template prediction, ingenuity pathway analyses, and immunohistochemistry. The genomic identification of significant targets in a cancer algorithm was used to identify chromosomal aberrations, MuTect and VarScan2 were used to identify somatic mutations, and the random survival forest was used to determine patient prognoses. Findings were validated in an independent cohort.
RESULTS: Unsupervised gene expression clustering showed 3 robust molecular classes of tumors: the proliferation class (51% of samples) had altered expression of genes that regulate proliferation and mammalian target of rapamycin signaling activation; the inflammation class (26% of samples) had altered expression of genes that regulate inflammation and cytokine enriched production; and the unannotated class (23% of samples) had a gene expression signature that was not associated previously with liver tumors. Expression of genes that regulate neuroendocrine function, as well as histologic markers of cholangiocytes and hepatocytes, were detected in all 3 classes. FLCs had few copy number variations; the most frequent were focal amplification at 8q24.3 (in 12.5% of samples), and deletions at 19p13 (in 28% of samples) and 22q13.32 (in 25% of samples). The DNAJB1-PRKACA fusion transcript was detected in 79% of samples. FLC samples also contained mutations in cancer-related genes such as BRCA2 (in 4.2% of samples), which are uncommon in liver neoplasms. However, FLCs did not contain mutations most commonly detected in liver cancers. We identified an 8-gene signature that predicted survival of patients with FLC.
CONCLUSIONS: In a genomic analysis of 78 FLC samples, we identified 3 classes based on gene expression profiles. FLCs contain mutations and chromosomal aberrations not previously associated with liver cancer, and almost 80% contain the DNAJB1-PRKACA fusion transcript. By using this information, we identified a gene signature that is associated with patient survival time.

Duan K, Gomez Hernandez K, Mete O
Clinicopathological correlates of adrenal Cushing's syndrome.
J Clin Pathol. 2015; 68(3):175-86 [PubMed] Related Publications
Endogenous Cushing's syndrome is a rare endocrine disorder that incurs significant cardiovascular morbidity and mortality, due to glucocorticoid excess. It comprises adrenal (20%) and non-adrenal (80%) aetiologies. While the majority of cases are attributed to pituitary or ectopic corticotropin (ACTH) overproduction, primary cortisol-producing adrenal cortical lesions are increasingly recognised in the pathophysiology of Cushing's syndrome. Our understanding of this disease has progressed substantially over the past decade. Recently, important mechanisms underlying the pathogenesis of adrenal hypercortisolism have been elucidated with the discovery of mutations in cyclic AMP signalling (PRKACA, PRKAR1A, GNAS, PDE11A, PDE8B), armadillo repeat containing 5 gene (ARMC5) a putative tumour suppressor gene, aberrant G-protein-coupled receptors, and intra-adrenal secretion of ACTH. Accurate subtyping of Cushing's syndrome is crucial for treatment decision-making and requires a complete integration of clinical, biochemical, imaging and pathology findings. Pathological correlates in the adrenal glands include hyperplasia, adenoma and carcinoma. While the most common presentation is diffuse adrenocortical hyperplasia secondary to excess ACTH production, this entity is usually treated with pituitary or ectopic tumour resection. Therefore, when confronted with adrenalectomy specimens in the setting of Cushing's syndrome, surgical pathologists are most commonly exposed to adrenocortical adenomas, carcinomas and primary macronodular or micronodular hyperplasia. This review provides an update on the rapidly evolving knowledge of adrenal Cushing's syndrome and discusses the clinicopathological correlations of this important disease.

Larkin SJ, Ferraù F, Karavitaki N, et al.
Sequence analysis of the catalytic subunit of PKA in somatotroph adenomas.
Eur J Endocrinol. 2014; 171(6):705-10 [PubMed] Related Publications
OBJECTIVE: The pathogenetic mechanisms of sporadic somatotroph adenomas are not well understood, but derangements of the cAMP pathway have been implicated. Recent studies have identified L206R mutations in the alpha catalytic subunit of protein kinase A (PRKACA) in cortisol-producing adrenocortical adenomas and amplification of the beta catalytic subunit of protein kinase A PRKACB in acromegaly associated with Carney complex. Given that both adrenocortical adenomas and somatotroph adenomas are known to be reliant on the cAMP signalling pathway, we sought to determine the relevance of the L206R mutation in both PRKACA and PRKACB for the pathogenesis of sporadic somatotroph adenomas.
DESIGN: Somatotroph adenoma specimens, both frozen and formalin-fixed, from patients who underwent surgery for their acromegaly between 1995 and 2012, were used in the study.
METHODS: The DNA sequence at codon 206 of PRKACA and PRKACB was determined by PCR amplification and sequencing. The results were compared with patient characteristics, the mutational status of the GNAS complex locus and the tumour granulation pattern.
RESULTS: No mutations at codon 206 of PRKACA or PRKACB were found in a total of 92 specimens, comprising both WT and mutant GNAS cases, and densely, sparsely and mixed granulation patterns.
CONCLUSIONS: It is unlikely that mutation at this locus is involved in the pathogenesis of sporadic somatotroph adenoma; however, gene amplification or mutations at other loci or in other components of the cAMP signalling pathway, while unlikely, cannot be ruled out.

Agostinelli C, Rizvi H, Paterson J, et al.
Intracellular TCR-signaling pathway: novel markers for lymphoma diagnosis and potential therapeutic targets.
Am J Surg Pathol. 2014; 38(10):1349-59 [PubMed] Related Publications
Despite the immunologic functions of T-cell receptor signaling molecules being extensively investigated, their potential as immunohistochemical markers has been poorly explored. With this background, we evaluated the expression of 5 intracellular proteins-GADS, DOK2, SKAP55, ITK, and PKCα-involved in T-cell receptor signaling in normal and neoplastic hematologic tissue samples, using antibodies raised against fixation-resistant epitopes of the 5 molecules. All 5 antibodies were associated with normal T-cell differentiation. GADS, DOK2, SKAP55, and ITK turned out to be T-cell lineage-specific markers in the setting of lymphoid and myeloid precursor neoplasms but showed differential expression in peripheral T-cell lymphoma (PTCL) subtypes, being detected in PTCL/not otherwise specified (NOS) and angioimmunoblastic T-cell lymphoma but negative in anaplastic large cell lymphoma (ALCL). Peripheral B-cell lymphomas were consistently negative for ITK, with occasional cases showing expression of DOK2 and SKAP55, and a proportion (47%) of hairy cell leukemias were GADS. Notably, PKCα highlighted a defective antigen in both PTCL/NOS (6%) and angioimmunoblastic T-cell lymphoma (10%), mostly negative in ALCL, and was aberrantly expressed in classical Hodgkin lymphoma (65%), Burkitt lymphoma (48%), and plasma cell myeloma (48%). In conclusion, all five molecules evaluated play a role in T-cell differentiation in normal and neoplastic tissues. They can be applied confidently to routine sections contributing primarily to assignment of T-lineage differentiation in the setting of hematopoietic precursor neoplasms (GADS/DOK2/SKAP55/ITK) and for the differential diagnosis between ALCL and PTCL/NOS (GADS/DOK2/SKAP55/ITK) or classical Hodgkin lymphoma (PKCα). Finally, association with specific tumor subtypes may have therapeutic potential.

Espiard S, Ragazzon B, Bertherat J
Protein kinase A alterations in adrenocortical tumors.
Horm Metab Res. 2014; 46(12):869-75 [PubMed] Related Publications
Stimulation of the cAMP pathway by adrenocorticotropin (ACTH) is essential for adrenal cortex maintenance, glucocorticoid and adrenal androgens synthesis, and secretion. Various molecular and cellular alterations of the cAMP pathway have been observed in endocrine tumors. Protein kinase A (PKA) is a central key component of the cAMP pathway. Molecular alterations of PKA subunits have been observed in adrenocortical tumors. PKA molecular defects can be germline in hereditary disorders or somatic in sporadic tumors. Heterozygous germline inactivating mutations of the PKA regulatory subunit RIα gene (PRKAR1A) can be observed in patients with ACTH-independent Cushing's syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A is considered as a tumor suppressor gene. Interestingly, these mutations can also be observed as somatic alterations in sporadic cortisol-secreting adrenocortical adenomas. Germline gene duplication of the catalytic subunits Cα (PRKACA) has been observed in patients with PPNAD. Furthermore, exome sequencing revealed recently activating somatic mutations of PRKACA in about 40% of cortisol-secreting adrenocortical adenomas. In vitro and in vivo functional studies help in the progress to understand the mechanisms of adrenocortical tumors development due to PKA regulatory subunits alterations. All these alterations are observed in benign oversecreting tumors and are mimicking in some way cAMP pathway constitutive activation. On the long term, unraveling these alterations will open new strategies of pharmacological treatment targeting the cAMP pathway in adrenal tumors and cortisol-secretion disorders.

Nakajima Y, Okamura T, Gohko T, et al.
Somatic mutations of the catalytic subunit of cyclic AMP-dependent protein kinase (PRKACA) gene in Japanese patients with several adrenal adenomas secreting cortisol [Rapid Communication].
Endocr J. 2014; 61(8):825-32 [PubMed] Related Publications
Somatic mutations of the catalytic subunit of the cyclic AMP-dependent protein kinase (PRKACA) gene have recently been identified in about 35% of cortisol-producing adenomas (CPAs), with the affected patients showing overt Cushing's syndrome. Since we recently reported higher prevalence of mutations of the KCNJ5 gene and associations with autonomous cortisol secretion in Japanese aldosterone-producing adenomas than in Western countries, there might be different features of CPAs between Japan and the West. We therefore investigated mutations of the PRKACA gene in Japanese patients with several adrenal tumors secreting cortisol, including overt Cushing's syndrome, subclinical Cushing's syndrome, and aldosterone-producing adenomas (APAs) co-secreting cortisol operated on at Gunma University Hospital. Of the 13 patients with CPA who showed overt Cushing's syndrome, 3 (23%) had recurrent somatic mutations of the PRKACA gene, p.L206R (c.617 T>G), and there were no mutations in subclinical Cushing's syndrome. Among 33 APAs, 24 had somatic mutations of the KCNJ5 gene, either G151R or L168R, 11 (33%) had autonomous cortisol secretion, but there were no mutations of the PRKACA gene. We established a PCR-restriction fragment length polymorphism assay and revealed that the mutated allele was expressed at a similar level to the wild-type allele. These findings demonstrated that 1) the prevalence of Japanese patients with CPA who showed overt Cushing's syndrome and whose somatic mutations in the PRKACA gene was similar to that in Western countries, 2) the mutation might be specific for CPAs causing overt Cushing's syndrome, and 3) the mutant PRKACA allele was expressed appropriately in CPAs.

Achari C, Winslow S, Ceder Y, Larsson C
Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells.
BMC Cancer. 2014; 14:538 [PubMed] Article available free on PMC after 01/04/2016 Related Publications
BACKGROUND: MicroRNA-34 is a family of three miRNAs that have been reported to function as tumor suppressor miRNAs and show decreased expression in various cancers. Here, we examine functions of miR-34c in basal-like breast cancer cells.
METHODS: Data from The Cancer Genome Atlas (TCGA) were used for evaluation of expression in primary breast cancers. Cellular processes affected by miR-34c were investigated by thymidine incorporation, Annexin V-assays and cell cycle analysis using breast cancer cell lines. Effects on potential targets were analyzed with qPCR and Western blot.
RESULTS: TCGA data revealed that miR-34c was expressed at lower levels in basal-like breast cancer tumors and low expression was associated with poor prognosis. Ectopic expression of miR-34c in basal-like breast cancer cell lines resulted in suppressed proliferation and increased cell death. Additionally, miR-34c influenced the cell cycle mainly by inducing an arrest in the G2/M phase. We found that expression levels of the known cell cycle-regulating miR-34 targets CCND1, CDK4 and CDK6, were downregulated upon miR-34c expression in breast cancer cell lines. In addition, the levels of CDC23, an important mediator in mitotic progression, were suppressed following miR-34c expression, and siRNAs targeting CDC23 mimicked the effect of miR-34c on G2/M arrest. However, protein levels of PRKCA, a predicted miR-34c target and a known regulator of breast cancer cell proliferation were not influenced by miR-34c.
CONCLUSIONS: Together, our results support the role of miR-34c as a tumor suppressor miRNA also in breast cancer.

Di Dalmazi G, Kisker C, Calebiro D, et al.
Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing's syndrome: a European multicentric study.
J Clin Endocrinol Metab. 2014; 99(10):E2093-100 [PubMed] Related Publications
CONTEXT: Somatic mutations in PRKACA gene, encoding the catalytic subunit of protein kinase A (PKA), have been recently found in a high proportion of sporadic adenomas associated with Cushing's syndrome. The aim was to analyze the PRKACA mutation in a large cohort of patients with adrenocortical masses.
METHODS: Samples from nine European centers were included (Germany, n = 4; Italy, n = 4; France, n = 1). Samples were drawn from 149 patients with nonsecreting adenomas (n = 32 + 2 peritumoral), subclinical hypercortisolism (n = 36), Cushing's syndrome (n = 64 + 2 peritumoral), androgen-producing tumors (n = 4), adrenocortical carcinomas (n = 5 + 2 peritumoral), and primary bilateral macronodular adrenal hyperplasias (n = 8). Blood samples were available from patients with nonsecreting adenomas (n = 15), subclinical hypercortisolism (n = 10), and Cushing's syndrome (n = 35). Clinical and hormonal data were collected. DNA amplification by PCR of exons 6 and 7 of the PRKACA gene and direct sequencing were performed.
RESULTS: PRKACA heterozygous mutations were found in 22/64 samples of Cushing's syndrome patients (34%). No mutations were found in peritumoral tissue and blood samples or in other tumors examined. The c.617A>C (p.Leu206Arg) occurred in 18/22 patients. Furthermore, two novel mutations were identified: c.600_601insGTG/p.Cys200_Gly201insVal in three patients and c.639C>G+c.638_640insATTATCCTGAGG/p.Ser213Arg+p.Leu212_Lys214insIle-Ile-Leu-Arg) in one. All the mutations involved a region implicated in interaction between PKA regulatory and catalytic subunits. Patients with somatic PRKACA mutations showed higher levels of cortisol after dexamethasone test and a smaller adenoma size, compared with nonmutated subjects.
CONCLUSIONS: These data confirm and extend previous observations that somatic PRKACA mutations are specific for adrenocortical adenomas causing Cushing's syndrome.

Hsu YH, Yao J, Chan LC, et al.
Definition of PKC-α, CDK6, and MET as therapeutic targets in triple-negative breast cancer.
Cancer Res. 2014; 74(17):4822-35 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Triple-negative breast cancer (TNBC) is a highly heterogeneous and recurrent subtype of breast cancer that lacks an effective targeted therapy. To identify candidate therapeutic targets, we profiled global gene expression in TNBC and breast tumor-initiating cells with a patient survival dataset. Eight TNBC-related kinases were found to be overexpressed in TNBC cells with stem-like properties. Among them, expression of PKC-α, MET, and CDK6 correlated with poorer survival outcomes. In cases coexpressing two of these three kinases, survival rates were lower than in cases where only one of these kinases was expressed. In functional tests, two-drug combinations targeting these three kinases inhibited TNBC cell proliferation and tumorigenic potential in a cooperative manner. A combination of PKC-α-MET inhibitors also attenuated tumor growth in a cooperative manner in vivo. Our findings define three kinases critical for TNBC growth and offer a preclinical rationale for their candidacy as effective therapeutic targets in treating TNBC.

Moody SE, Schinzel AC, Singh S, et al.
PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling.
Oncogene. 2015; 34(16):2061-71 [PubMed] Article available free on PMC after 16/10/2015 Related Publications
Targeting HER2 with antibodies or small molecule inhibitors in HER2-positive breast cancer leads to improved survival, but resistance is a common clinical problem. To uncover novel mechanisms of resistance to anti-HER2 therapy in breast cancer, we performed a kinase open reading frame screen to identify genes that rescue HER2-amplified breast cancer cells from HER2 inhibition or suppression. In addition to multiple members of the MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) signaling pathways, we discovered that expression of the survival kinases PRKACA and PIM1 rescued cells from anti-HER2 therapy. Furthermore, we observed elevated PRKACA expression in trastuzumab-resistant breast cancer samples, indicating that this pathway is activated in breast cancers that are clinically resistant to trastuzumab-containing therapy. We found that neither PRKACA nor PIM1 restored MAPK or PI3K activation after lapatinib or trastuzumab treatment, but rather inactivated the pro-apoptotic protein BAD, the BCl-2-associated death promoter, thereby permitting survival signaling through BCL-XL. Pharmacological blockade of BCL-XL/BCL-2 partially abrogated the rescue effects conferred by PRKACA and PIM1, and sensitized cells to lapatinib treatment. These observations suggest that combined targeting of HER2 and the BCL-XL/BCL-2 anti-apoptotic pathway may increase responses to anti-HER2 therapy in breast cancer and decrease the emergence of resistant disease.

Elias D, Vever H, Lænkholm AV, et al.
Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy.
Oncogene. 2015; 34(15):1919-27 [PubMed] Related Publications
To elucidate the molecular mechanisms of tamoxifen resistance in breast cancer, we performed gene array analyses and identified 366 genes with altered expression in four unique tamoxifen-resistant (TamR) cell lines vs the parental tamoxifen-sensitive MCF-7/S0.5 cell line. Most of these genes were functionally linked to cell proliferation, death and control of gene expression, and include FYN, PRKCA, ITPR1, DPYD, DACH1, LYN, GBP1 and PRLR. Treatment with FYN-specific small interfering RNA or a SRC family kinase inhibitor reduced cell growth of TamR cell lines while exerting no significant effect on MCF-7/S0.5 cells. Moreover, overexpression of FYN in parental tamoxifen-sensitive MCF-7/S0.5 cells resulted in reduced sensitivity to tamoxifen treatment, whereas knockdown of FYN in the FYN-overexpressing MCF-7/S0.5 cells restored sensitivity to tamoxifen, demonstrating growth- and survival-promoting function of FYN in MCF-7 cells. FYN knockdown in TamR cells led to reduced phosphorylation of 14-3-3 and Cdc25A, suggesting that FYN, by activation of important cell cycle-associated proteins, may overcome the anti-proliferative effects of tamoxifen. Evaluation of the subcellular localization of FYN in primary breast tumors from two cohorts of endocrine-treated ER+ breast cancer patients, one with advanced disease (N=47) and the other with early disease (N=76), showed that in the former, plasma membrane-associated FYN expression strongly correlated with longer progression-free survival (P<0.0002). Similarly, in early breast cancer patients, membrane-associated expression of FYN in the primary breast tumor was significantly associated with increased metastasis-free (P<0.04) and overall (P<0.004) survival independent of tumor size, grade or lymph node status. Our results indicate that FYN has an important role in tamoxifen resistance, and its subcellular localization in breast tumor cells may be an important novel biomarker of response to endocrine therapy in breast cancer.

Ruvolo PP, Ruvolo VR, Jacamo R, et al.
The protein phosphatase 2A regulatory subunit B55α is a modulator of signaling and microRNA expression in acute myeloid leukemia cells.
Biochim Biophys Acta. 2014; 1843(9):1969-77 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
We recently discovered that the protein phosphatase 2A (PP2A) B55α subunit (PPP2R2A) is under-expressed in primary blast cells and is unfavorable for remission duration in AML patients. In this study, reverse phase protein analysis (RPPA) of 230 proteins in 511 AML patient samples revealed a strong correlation of B55α with a number of proteins including MYC, PKC α, and SRC. B55α suppression in OCI-AML3 cells by shRNA demonstrated that the B subunit is a PKCα phosphatase. B55α does not target SRC, but rather the kinase suppresses protein expression of the B subunit. Finally, the correlation between B55α and MYC levels reflected a complex stoichiometric competition between B subunits. Loss of B55α in OCI-AML3 cells did not change global PP2A activity and the only isoform that is induced is the one containing B56α. In cells containing B55α shRNA, MYC was suppressed with concomitant induction of the competing B subunit B56α (PPP2R5A). A recent study determined that FTY-720, a drug whose action involves the activation of PP2A, resulted in the induction of B55α In AML cells, and a reduction of the B subunit rendered these cells resistant to FTY-720. Finally, reduction of the B subunit resulted in an increase in the expression of miR-191-5p and a suppression of miR-142-3p. B55α regulation of these miRs was intriguing as high levels of miR-191 portend poor survival in AML, and miR-142-3p is mutated in 2% of AML patient samples. In summary, the suppression of B55α activates signaling pathways that could support leukemia cell survival.

Yang HY, Wu ZY, Bian JS
Hydrogen sulfide inhibits opioid withdrawal-induced pain sensitization in rats by down-regulation of spinal calcitonin gene-related peptide expression in the spine.
Int J Neuropsychopharmacol. 2014; 17(9):1387-95 [PubMed] Related Publications
Hyperalgesia often occurs in opioid-induced withdrawal syndrome. In the present study, we found that three hourly injections of DAMGO (a μ-opioid receptor agonist) followed by naloxone administration at the fourth hour significantly decreased rat paw nociceptive threshold, indicating the induction of withdrawal hyperalgesia. Application of NaHS (a hydrogen sulfide donor) together with each injection of DAMGO attenuated naloxone-precipitated withdrawal hyperalgesia. RT-PCR and Western blot analysis showed that NaHS significantly reversed the gene and protein expression of up-regulated spinal calcitonin gene-related peptide (CGRP) in naloxone-treated animals. NaHS also inhibited naloxone-induced cAMP rebound and cAMP response element-binding protein (CREB) phosphorylation in rat spinal cord. In SH-SY5Y neuronal cells, NaHS inhibited forskolin-stimulated cAMP production and adenylate cyclase (AC) activity. Moreover, NaHS pre-treatment suppressed naloxone-stimulated activation of protein kinase C (PKC) α, Raf-1, and extracellular signal-regulated kinase (ERK) 1/2 in rat spinal cord. Our data suggest that H2S prevents the development of opioid withdrawal-induced hyperalgesia via suppression of synthesis of CGRP in spine through inhibition of AC/cAMP and PKC/Raf-1/ERK pathways.

Goh G, Scholl UI, Healy JM, et al.
Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors.
Nat Genet. 2014; 46(6):613-7 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Adrenal tumors autonomously producing cortisol cause Cushing's syndrome. We performed exome sequencing of 25 tumor-normal pairs and identified 2 subgroups. Eight tumors (including three carcinomas) had many somatic copy number variants (CNVs) with frequent deletion of CDC42 and CDKN2A, amplification of 5q31.2 and protein-altering mutations in TP53 and RB1. Seventeen tumors (all adenomas) had no somatic CNVs or TP53 or RB1 mutations. Six of these had known gain-of-function mutations in CTNNB1 (β-catenin) or GNAS (Gαs). Six others had somatic mutations in PRKACA (protein kinase A (PKA) catalytic subunit) resulting in a p.Leu206Arg substitution. Further sequencing identified this mutation in 13 of 63 tumors (35% of adenomas with overt Cushing's syndrome). PRKACA, GNAS and CTNNB1 mutations were mutually exclusive. Leu206 directly interacts with the regulatory subunit of PKA, PRKAR1A. Leu206Arg PRKACA loses PRKAR1A binding, increasing the phosphorylation of downstream targets. PKA activity induces cortisol production and cell proliferation, providing a mechanism for tumor development. These findings define distinct mechanisms underlying adrenal cortisol-producing tumors.

Cao Y, He M, Gao Z, et al.
Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome.
Science. 2014; 344(6186):913-7 [PubMed] Related Publications
Adrenal Cushing's syndrome is caused by excess production of glucocorticoid from adrenocortical tumors and hyperplasias, which leads to metabolic disorders. We performed whole-exome sequencing of 49 blood-tumor pairs and RNA sequencing of 44 tumors from cortisol-producing adrenocortical adenomas (ACAs), adrenocorticotropic hormone-independent macronodular adrenocortical hyperplasias (AIMAHs), and adrenocortical oncocytomas (ADOs). We identified a hotspot in the PRKACA gene with a L205R mutation in 69.2% (27 out of 39) of ACAs and validated in 65.5% of a total of 87 ACAs. Our data revealed that the activating L205R mutation, which locates in the P+1 loop of the protein kinase A (PKA) catalytic subunit, promoted PKA substrate phosphorylation and target gene expression. Moreover, we discovered the recurrently mutated gene DOT1L in AIMAHs and CLASP2 in ADOs. Collectively, these data highlight potentially functional mutated genes in adrenal Cushing's syndrome.

Honeyman JN, Simon EP, Robine N, et al.
Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma.
Science. 2014; 343(6174):1010-4 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare liver tumor affecting adolescents and young adults with no history of primary liver disease or cirrhosis. We identified a chimeric transcript that is expressed in FL-HCC but not in adjacent normal liver and that arises as the result of a ~400-kilobase deletion on chromosome 19. The chimeric RNA is predicted to code for a protein containing the amino-terminal domain of DNAJB1, a homolog of the molecular chaperone DNAJ, fused in frame with PRKACA, the catalytic domain of protein kinase A. Immunoprecipitation and Western blot analyses confirmed that the chimeric protein is expressed in tumor tissue, and a cell culture assay indicated that it retains kinase activity. Evidence supporting the presence of the DNAJB1-PRKACA chimeric transcript in 100% of the FL-HCCs examined (15/15) suggests that this genetic alteration contributes to tumor pathogenesis.

Beuschlein F, Fassnacht M, Assié G, et al.
Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome.
N Engl J Med. 2014; 370(11):1019-28 [PubMed] Related Publications
BACKGROUND: Corticotropin-independent Cushing's syndrome is caused by tumors or hyperplasia of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal adenomas is not well understood.
METHODS: We performed exome sequencing of tumor-tissue specimens from 10 patients with cortisol-producing adrenal adenomas and evaluated recurrent mutations in candidate genes in an additional 171 patients with adrenocortical tumors. We also performed genomewide copy-number analysis in 35 patients with cortisol-secreting bilateral adrenal hyperplasias. We studied the effects of these genetic defects both clinically and in vitro.
RESULTS: Exome sequencing revealed somatic mutations in PRKACA, which encodes the catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A [PKA]), in 8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA somatic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients with overt Cushing's syndrome; these mutations were not detectable in 40 patients with subclinical hypercortisolism or in 82 patients with other adrenal tumors. Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree relatives) carried a germline copy-number gain (duplication) of the genomic region on chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells from patients with germline chromosomal gains showed increased protein levels of the PKA catalytic subunit; in both instances, basal PKA activity was increased.
CONCLUSIONS: Genetic alterations of the catalytic subunit of PKA were found to be associated with human disease. Germline duplications of this gene resulted in bilateral adrenal hyperplasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing adrenal adenomas. (Funded by the European Commission Seventh Framework Program and others.).

Howard B, Wang Y, Xekouki P, et al.
Integrated analysis of genome-wide methylation and gene expression shows epigenetic regulation of CYP11B2 in aldosteronomas.
J Clin Endocrinol Metab. 2014; 99(3):E536-43 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
CONTEXT: Differential methylation of CpG regions is the best-defined mechanism of epigenetic regulation of gene expression.
OBJECTIVE: Our objective was to determine whether any changes in methylation are associated with aldosteronomas.
METHODS: We performed integrated genome-wide methylation and gene expression profiling in aldosteronomas (n = 25) as compared with normal adrenal cortical tissue (n = 10) and nonfunctioning adrenocortical tumors (n = 13). To determine the effect of demethylation on gene expression of CYP11B2, the H295R cell line was used.
RESULTS: The methylome of aldosteronomas, normal adrenal cortex, and nonfunctioning adrenocortical tumors was distinct, with hypomethylation of aldosteronomas. Integrated analysis of gene expression and methylation status showed that 53 of 60 genes were hypermethylated and downregulated, or hypomethylated and upregulated, in aldosteronomas. Of these, 3 genes that regulate steroidogenic signals and synthesis in adrenocortical cells were differentially methylated: AVPR1α and PRKCA were downregulated and hypermethylated, and CYP11B2 was upregulated and hypomethylated. Demethylation treatment resulted in upregulation of these genes, with direct hypomethylation of CpG sites associated with the genes. The CpG island in the promoter region of CYP11B2 was hypomethylated in aldosteronomas but not in blood DNA from the same patients (P = .0004).
CONCLUSIONS: Altered methylation in aldosteronomas is associated with dysregulated expression of genes involved in steroid biosynthesis. Aldosteronomas are hypomethylated, and CYP11B2 is overexpressed and hypomethylated in these tumors.

Kim S, Lee J, Lee SK, et al.
Protein kinase C-α downregulates estrogen receptor-α by suppressing c-Jun phosphorylation in estrogen receptor-positive breast cancer cells.
Oncol Rep. 2014; 31(3):1423-8 [PubMed] Related Publications
Protein kinase C (PKC) activity is elevated in malignant compared with that in normal human breast tissue. In the present study, we investigated the regulatory mechanism and the co-relationship between PKC-α and estrogen receptor-α (ER-α) in ER-α-positive and tamoxifen-resistant (TAMR) breast cancer cells. Our results showed that the level of ER-α expression was significantly decreased in TAMR when compared with that in tamoxifen-sensitive (TAMS) breast cancer cells. However, PKC-α phosphorylation was increased in TAMR breast cancer cells when compared to that in TAMS breast cancer cells. Additionally, ER-α expression was significantly decreased due to the overexpression of constitutively active PKC-α (CA-PKC-α). Next, we investigated the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), a reversible activator of PKC, on ER-α expression in ER-α-positive breast cancer cells. TPA decreased the levels of ER-α expression in a time- and dose-dependent manner. In contrast, the TPA-induced downregulation of ER-α was prevented by Go6983, a specific PKC inhibitor. Notably, we found that CA-PKC-α suppressed c-JUN phosphorylation, which is a major activating protein-1 factor, and TPA-induced downregulation of ER-α was prevented by SR11302, a specific activator protein-1 inhibitor. Taken together, we demonstrated that PKC-α activity suppressed the level of ER-α expression by inhibiting c-JUN phosphorylation in ER-α-positive breast cancer cells. Therefore, we suggest that PKC-α may be a potential therapeutic target for treating ER-positive and TAMR breast cancer.

Lin X, Li J, Yin G, et al.
Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties.
Breast Cancer Res. 2013; 15(6):R119 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
INTRODUCTION: Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal for estrogen-dependent growth. Alternatively, tamoxifen resistance may be due to selection of pre-existing resistant cells, or a combination of the two mechanisms.
METHODS: To evaluate the contribution of these possible tamoxifen resistance mechanisms, we applied modified DNA methylation-specific digital karyotyping (MMSDK) and digital gene expression (DGE) in combination with massive parallel sequencing to analyze a well-established tamoxifen-resistant cell line model (TAM(R)), consisting of 4 resistant and one parental cell line. Another tamoxifen-resistant cell line model system (LCC1/LCC2) was used to validate the DNA methylation and gene expression results.
RESULTS: Significant differences were observed in global gene expression and DNA methylation profiles between the parental tamoxifen-sensitive cell line and the 4 tamoxifen-resistant TAM(R) sublines. The 4 TAM(R) cell lines exhibited higher methylation levels as well as an inverse relationship between gene expression and DNA methylation in the promoter regions. A panel of genes, including NRIP1, HECA and FIS1, exhibited lower gene expression in resistant vs. parental cells and concurrent increased promoter CGI methylation in resistant vs. parental cell lines. A major part of the methylation, gene expression, and pathway alterations observed in the TAM(R) model were also present in the LCC1/LCC2 cell line model. More importantly, high expression of SOX2 and alterations of other SOX and E2F gene family members, as well as RB-related pocket protein genes in TAMR highlighted stem cell-associated pathways as being central in the resistant cells and imply that cancer-initiating cells/cancer stem-like cells may be involved in tamoxifen resistance in this model.
CONCLUSION: Our data highlight the likelihood that resistant cells emerge from cancer-initiating cells/cancer stem-like cells and imply that these cells may gain further advantage in growth via epigenetic mechanisms. Illuminating the expression and DNA methylation features of putative cancer-initiating cells/cancer stem cells may suggest novel strategies to overcome tamoxifen resistance.

Grosse J, Warnke E, Wehland M, et al.
Mechanisms of apoptosis in irradiated and sunitinib-treated follicular thyroid cancer cells.
Apoptosis. 2014; 19(3):480-90 [PubMed] Related Publications
The multikinase inhibitor sunitinib (S) seems to have promising potential in the treatment of thyroid cancer. We focused on the impact of S and/or irradiation (R) on mechanisms of apoptosis in follicular thyroid cancer cells. The effects of R, S and their combination were evaluated 2 and 4 days after treatment, using the human thyroid cancer cell line CGTH W-1. The transcription of genes involved in the regulation of apoptosis was investigated using quantitative real-time PCR. Western blot analyses of caspases and survivin were also performed. S elevated BAX (day 4), CASP9, CASP3, BIRC5 (day 4) and PRKACA (day 4) gene expression, whereas the mRNAs of BCL2, CASP8, PRKCA, ERK1, and ERK2 were not significantly changed. S, R and R+S clearly induced caspase-9 protein and elevated caspase-3 activity. Survivin was down-regulated at day 4 in control cells and the expression was blunted by S treatment. R+S induced survivin expression at day 2 followed by a reduction at day 4 of treatment. Sunitinib and the combined application with radiation induced apoptosis in follicular thyroid cancer cells via the intrinsic pathway of apoptosis. In addition, sunitinib might induce apoptosis via decreased expression of the anti-apoptotic protein survivin. These findings suggest the potential use of sunitinib for the treatment of poorly differentiated follicular thyroid carcinomas.

Ma X, Pietsch J, Wehland M, et al.
Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space.
FASEB J. 2014; 28(2):813-35 [PubMed] Related Publications
This study focuses on the effects of short-term [22 s, parabolic flight campaign (PFC)] and long-term (10 d, Shenzhou 8 space mission) real microgravity on changes in cytokine secretion and gene expression patterns in poorly differentiated thyroid cancer cells. FTC-133 cells were cultured in space and on a random positioning machine (RPM) for 10 d, to evaluate differences between real and simulated microgravity. Multianalyte profiling was used to evaluate 128 secreted cytokines. Microarray analysis revealed 63 significantly regulated transcripts after 22 s of microgravity during a PFC and 2881 after 10 d on the RPM or in space. Genes in several biological processes, including apoptosis (n=182), cytoskeleton (n=80), adhesion/extracellular matrix (n=98), proliferation (n=184), stress response (n=268), migration (n=63), angiogenesis (n=39), and signal transduction (n=429), were differentially expressed. Genes and proteins involved in the regulation of cancer cell proliferation and metastasis, such as IL6, IL8, IL15, OPN, VEGFA, VEGFD, FGF17, MMP2, MMP3, TIMP1, PRKAA, and PRKACA, were similarly regulated under RPM and spaceflight conditions. The resulting effect was mostly antiproliferative. Gene expression during the PFC was often regulated in the opposite direction. In summary, microgravity is an invaluable tool for exploring new targets in anticancer therapy and can be simulated in some aspects in ground-based facilities.

Wang NN, Zhao LJ, Wu LN, et al.
Mechanistic analysis of taxol-induced multidrug resistance in an ovarian cancer cell line.
Asian Pac J Cancer Prev. 2013; 14(9):4983-8 [PubMed] Related Publications
OBJECTIVES: To establish a taxol-resistant cell line of human ovarian carcinoma (A2780/Taxol) and investigate its biological features.
METHODS: The drug-resistant cell line (A2780/Taxol) was established by continuous stepwise selection with increasing concentrations of Taxol. Cell morphology was assessed by microscopy and growth curves were generated with in vitro and in vivo tumor xenograft models. With rhodamine123 (Rh123) assays, cell cycle distribution and the apoptotic rate were analyzed by flow cytometry (FCM). Drug resistance-related and signal associated proteins, including P-gp, MRPs, caveolin-1, PKC-α, Akt, ERK1/2, were detected by Western blotting.
RESULTS: A2780/Taxol cells were established with stable resistance to taxol. The drug resistance index (RI) was 430.7. Cross-resistance to other drugs was also shown, but there was no significant change to radioresistance. Compared with parental cells, A2780/Taxol cells were significantly heteromorphous, with a significant delay in population doubling time and reduced uptake of Rh123 (p < 0.01). In vivo, tumor take by A2780 cells was 80%, and tumor volume increased gradually. In contrast, with A2780/Taxol cells in xenograft models there was no tumor development. FCM analysis revealed that A2780/Taxol cells had a higher percentage of G0/G1 and lower S phase, but no changes of G2 phase and the apoptosis rate. Expression of P-gp, MRP1, MRP2, BCRP, LRP, caveolin-1, PKC-α, Phospho-ERK1/2 and Phospho-JNK protein was significantly up-regulated, while Akt and p38 MARK protein expression was not changed in A2780/Taxol cells.
CONCLUSION: The A2780/Taxol cell line is an ideal model to investigate the mechanism of muti-drug resistance related to overexpression of drug-resistance associated proteins and activation of the PKC-α/ERK (JNK) signaling pathway.

Wang C, Wang X, Liang H, et al.
miR-203 inhibits cell proliferation and migration of lung cancer cells by targeting PKCα.
PLoS One. 2013; 8(9):e73985 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
PKCα (protein kinase C alpha, PRKCA) is an important protein involved in several steps of signaling pathways in lung cancer, and microRNAs (miRNAs) have also been shown to participate in lung carcinogenesis. However, it is not clear how PKCα and miRNAs are correlated in the disease. In this report, we aimed to identify novel miRNAs that target PKCα and to study their biological function. Using bioinformatics analysis, we predicted one novel candidate, miR-203, and found differential expression patterns of miR-203 and PKCα in human lung cancer tissues. Moreover, we experimentally validated miR-203 as a direct regulator of PKCα. Finally, we demonstrated that the targeting of PKCα by miR-203 played a critical role in regulating cell proliferation, apoptosis and migration in lung cancer cells. In summary, this study identifies a novel miRNA that targets PKCα and illustrates that the downregulation of PKCα by miR-203 modulates biological processes in lung cancer cells.

Evensen NA, Kuscu C, Nguyen HL, et al.
Unraveling the role of KIAA1199, a novel endoplasmic reticulum protein, in cancer cell migration.
J Natl Cancer Inst. 2013; 105(18):1402-16 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Cell migration is a critical determinant of cancer metastasis, and a better understanding of the genes involved will lead to the identification of novel targets aimed at preventing cancer dissemination. KIAA1199 has been shown to be upregulated in human cancers, yet its role in cancer progression was hitherto unknown.
METHODS: Clinical relevance was assessed by examining KIAA1199 expression in human cancer specimens. In vitro and in vivo studies were employed to determine the function of KIAA1199 in cancer progression. Cellular localization of KIAA1199 was microscopically determined. SNAP-tag pull-down assays were used to identify binding partner(s) of KIAA1199. Calcium levels were evaluated using spectrofluorometric and fluorescence resonance energy transfer analyses. Signaling pathways were dissected by Western blotting. Student t test was used to assess differences. All statistical tests were two-sided.
RESULTS: KIAA1199 was upregulated in invasive breast cancer specimens and inversely associated with patient survival rate. Silencing of KIAA1199 in MDA-MB-435 cancer cells resulted in a mesenchymal-to-epithelial transition that reduced cell migratory ability in vitro (75% reduction; P < .001) and decreased metastasis in vivo (80% reduction; P < .001). Gain-of-function assays further demonstrated the role of KIAA1199 in cell migration. KIAA1199-enhanced cell migration required endoplasmic reticulum (ER) localization, where it forms a stable complex with the chaperone binding immunoglobulin protein (BiP). A novel ER-retention motif within KIAA1199 that is required for its ER localization, BiP interaction, and enhanced cell migration was identified. Mechanistically, KIAA1199 was found to mediate ER calcium leakage, and the resultant increase in cytosolic calcium ultimately led to protein kinase C alpha activation and cell migration.
CONCLUSIONS: KIAA1199 serves as a novel cell migration-promoting gene and plays a critical role in maintaining cancer mesenchymal status.

Roszak J, Smok-Pieniążek A, Nocuń M, Stępnik M
Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: focus on PI3K/Akt signaling pathway.
Chem Biol Interact. 2013; 205(3):198-211 [PubMed] Related Publications
In this study the role of PI3K/Akt signaling pathway in arsenic trioxide (ATO)-treated parental Jurkat cells and also in derived ATO-resistant clones grown in the presence of given ATO concentration was investigated. ATO-resistant clones (cultured for 8-12weeks in the presence of 1, 2.5 and 5μM ATO) were characterized by high viability in the presence of ATO but slower growth rate compared to the parental cells. Morphological and functional characterization of derived ATO-resistant clones revealed that they did not differ fundamentally from parental Jurkat cells in terms of cell size, level of GSH, the lysosomal fluorescence or CD95/Fas surface antigen expression. However, a slight increase in the mitochondrial potential (JC-1 staining) was detected in the clones compared to parental Jurkat cells. Side population analysis (Vybrant DyeCycle Violet™ staining) in ATO resistant clones did not indicate any enrichment withcancer stem cells. Akt1/2, AktV or wortmannin inhibitors decreased viability of ATO-resistant clones grown in the presence of ATO, with no effect on ATO-treated parental cells. Flow cytometry analysis showed that ATO decreased the level of p-Akt in ATO-treated parental cells, while the resistant clones exhibited higher levels of p-Akt immunostaining than parental Jurkat cells. Expression analysis of 84 genes involved in the PI3K/Akt pathway revealed that this pathway was predominantly active in ATO-resistant clones. c-JUN seems to play a key role in the induction of cell death in ATO-treated parental Jurkat cells, as dose-dependent strong up-regulation of JUN was specific for the ATO-treated parental Jurkat cells. On the other hand, changes in expression of cyclin D1 (CCND1), insulin receptor substrate 1 (IRS1) and protein kinase C isoforms (PRKCZ,PRKCB and PRKCA) may be responsible for the induction of resistance to ATO. The changes in expression of growth factor receptor-bound protein 10 (GRB10) observed in ATO-resistant clones suggest a possibility of induction of different mechanisms in development of resistance to ATO depending on the drug concentration and thus involvement of different signaling mediators.

Jang JH, Cotterchio M, Borgida A, et al.
Interaction of polymorphisms in mitotic regulator genes with cigarette smoking and pancreatic cancer risk.
Mol Carcinog. 2013; 52 Suppl 1:E103-9 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Mitotic regulator genes have been associated with several cancers, however little is known about their possible association with pancreatic cancer. Smoking and family history are the strongest risk factors for this highly fatal disease. The main purpose of this study was to determine if polymorphisms of mitotic regulator genes are associated with pancreatic cancer and whether they modify the association between cigarette smoking and pancreatic cancer risk. A population-based case-control study was conducted in Ontario with 455 pathology-confirmed pancreatic cancer cases and 893 controls. Cigarette smoking history was collected using questionnaires and DNA obtained from blood samples. Genotypes were determined by mass-spectrometry. Odds ratio estimates were obtained using multivariate logistic regression. Interactions between genetic variant and smoking were assessed using stratified analyses and the likelihood ratio statistic (significance P < 0.05). Variants of MCPH1, FYN, APC, PRKCA, NIN, TopBP1, RIPK1, and SNW1 were not independently associated with pancreatic cancer risk. A significant interaction was observed between pack-years and MCPH1-2550-C > T (P = 0.02). Compared to never smokers, individuals with 10-27 pack-years and MCPH1-2550-CC genotype were at increased risk for pancreatic cancer (MVOR = 2.49, 95% confidence interval [95% CI]: 1.55, 4.00) as were those with >27 pack-years and MCPH1-2550-TC genotype (MVOR = 2.42, 95% CI: 1.45, 4.05). A significant interaction was observed between smoking status and TopBP1-3257-A > G (P = 0.04) using a dominant model. Current smokers with the TopBP1-3257 A allele were at increased risk for pancreatic cancer (MVOR = 2.55, 95% CI: 1.77, 3.67). MCPH1-2550-C > T and TopBP1-3257-A > G modify the association between smoking and pancreatic cancer. These findings provide insights into the potential molecular mechanisms behind smoking-associated pancreatic cancer.

Ma X, Wehland M, Aleshcheva G, et al.
Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells.
PLoS One. 2013; 8(7):e68140 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities. We placed follicular thyroid ML-1 and CGTH W-1 cancer cells in a specific centrifuge (MuSIC Multi Sample Incubator Centrifuge; SAHC Short Arm Human Centrifuge) simulating the hypergravity phases that occur during one (P1) and 31 parabolas (P31) of parabolic flights, respectively. On the Vibraplex device, the same cell lines were treated with vibration waves corresponding to those that occur during a whole parabolic flight lasting for two hours. After the various treatments, cells were harvested and analyzed by quantitative real-time PCR, focusing on the genes involved in forming (ACTB, MYO9, TUBB, VIM, TLN1, and ITGB1) and modulating (EZR, RDX, and MSN) the cytoskeleton, as well as those encoding growth factors (EGF, CTGF, IL6, and IL8) or protein kinases (PRKAA1 and PRKCA). The analysis revealed alterations in several genes in both cell lines; however, fewer genes were affected in ML-1 than CGTH W-1 cells. Interestingly, IL6 was the only gene whose expression was changed in both cell lines by each treatment, while PKCA transcription remained unaffected in all experiments. We conclude that a PKCa-independent mechanism of IL6 gene activation is very sensitive to physical forces in thyroid cells cultured in vitro as monolayers.

Kang JH, Mori T, Kitazaki H, et al.
Serum protein kinase Cα as a diagnostic biomarker of cancers.
Cancer Biomark. 2013; 13(2):99-103 [PubMed] Related Publications
BACKGROUND: Several serum biomarkers such as antigens, soluble proteins, metabolites, and genes have been identified for the diagnosis of cancers and for monitoring the recurrence after cancer treatment.
METHODS: In the present study, a protein kinase C (PKC) α-specific peptide substrate was phosphorylated with serum samples collected from cancer-bearing mice (U87, A431, HepG2, and A549) and the phosphorylation ratio was detected by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS).
RESULTS: The phosphorylation ratio for peptide substrates significantly increased in the serum of cancer-bearing mice compared with the ratio found in control mice. The addition of a PKCα inhibitor induced a concentration-dependent decrease in phosphorylation ratios, but the non-PKCα inhibitors, rottlerin and H-89, did not significantly effect phosphorylation ratios.
CONCLUSIONS: These results suggest that serum activated PKCα is a good biomarker applicable to cancer diagnosis.

Kong CZ, Liu J, Liu L, et al.
Interactional expression of netrin-1 and its dependence receptor UNC5B in prostate carcinoma.
Tumour Biol. 2013; 34(5):2765-72 [PubMed] Related Publications
Acting via its receptor UNC5B, netrin-1, one of the major neuronal guidance cues, plays an important role in angiogenesis, neurogenesis, tissue morphogenesis, embryonic development, cancer, inflammation, and various pathologies. However, its role has not been reported in prostate carcinoma. To investigate the association of netrin-1 and UNC5B expression with prostate carcinoma, several human prostate carcinoma cell lines were cultured and the expression levels of netrin-1 and UNC5B were determined by real-time PCR and Western blot. Calphostin C, (the inhibitor of PKC α) and phorbol-12-myristate 13-acetate-PMA (the agonist of PKC α) were used to treat the prostate carcinoma cells, and the cell proliferation and invasion abilities were measured by CCK-8 and wound-healing assays. Proliferation of DU145 cells was affected by the recruitment of PMA and calphostin C in a dose-dependent manner. By immunofluorescence, we identified the localization of netrin-1 and UNC5B in prostate carcinoma cell lines (DU145, 22RV1, PC3, PC3M, and RWEP) and found that netrin-1 was highly expressed in the nucleolus but there was no expression of UNC5B. The co-localization expression of PKC α and UNC5B was confirmed by the confocal immunofluorescence. Higher netrin-1 and lower UNC5B expression in all prostate carcinoma cell lines indicated that netrin-1 and UNC5B could be used to predict metastasis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PRKCA, Cancer Genetics Web: http://www.cancer-genetics.org/PRKCA.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999