PIM1

Gene Summary

Gene:PIM1; Pim-1 proto-oncogene, serine/threonine kinase
Aliases: PIM
Location:6p21.2
Summary:The protein encoded by this gene belongs to the Ser/Thr protein kinase family, and PIM subfamily. This gene is expressed primarily in B-lymphoid and myeloid cell lines, and is overexpressed in hematopoietic malignancies and in prostate cancer. It plays a role in signal transduction in blood cells, contributing to both cell proliferation and survival, and thus provides a selective advantage in tumorigenesis. Both the human and orthologous mouse genes have been reported to encode two isoforms (with preferential cellular localization) resulting from the use of alternative in-frame translation initiation codons, the upstream non-AUG (CUG) and downstream AUG codons (PMIDs:16186805, 1825810).[provided by RefSeq, Aug 2011]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:serine/threonine-protein kinase pim-1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (17)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Translocation
  • RNA Interference
  • Ubiquitination
  • Biomarkers, Tumor
  • Protein Kinase Inhibitors
  • MicroRNAs
  • Acute Myeloid Leukaemia
  • rho GTP-Binding Proteins
  • Ubiquitin-Protein Ligases
  • RNA-Binding Proteins
  • siRNA
  • Ribonuclease III
  • Gene Expression Profiling
  • Tristetraprolin
  • Mutation
  • Spindle Apparatus
  • Tetradecanoylphorbol Acetate
  • Transcriptional Regulator ERG
  • Tumor Burden
  • Protein-Serine-Threonine Kinases
  • Vacuoles
  • Messenger RNA
  • Urea
  • Cell Proliferation
  • Diffuse Large B-Cell Lymphoma
  • RT-PCR
  • Apoptosis
  • p53 Protein
  • Chromosome 6
  • Up-Regulation
  • Proto-Oncogene Proteins c-pim-1
  • Signal Transduction
  • Proto-Oncogenes
  • STAT5 Transcription Factor
  • Cancer Gene Expression Regulation
  • Tissue Kallikreins
  • Antineoplastic Agents
  • Prostate Cancer
  • Proto-Oncogene Proteins
  • Neoplastic Cell Transformation
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PIM1 (cancer-related)

Coppé JP, Mori M, Pan B, et al.
Mapping phospho-catalytic dependencies of therapy-resistant tumours reveals actionable vulnerabilities.
Nat Cell Biol. 2019; 21(6):778-790 [PubMed] Related Publications
Phosphorylation networks intimately regulate mechanisms of response to therapies. Mapping the phospho-catalytic profile of kinases in cells or tissues remains a challenge. Here, we introduce a practical high-throughput system to measure the enzymatic activity of kinases using biological peptide targets as phospho-sensors to reveal kinase dependencies in tumour biopsies and cell lines. A 228-peptide screen was developed to detect the activity of >60 kinases, including ABLs, AKTs, CDKs and MAPKs. Focusing on BRAF

Stafman LL, Waldrop MG, Williams AP, et al.
The presence of PIM3 increases hepatoblastoma tumorigenesis and tumor initiating cell phenotype and is associated with decreased patient survival.
J Pediatr Surg. 2019; 54(6):1206-1213 [PubMed] Article available free on PMC after 01/06/2020 Related Publications
PURPOSE: Hepatoblastoma is the most common primary liver cancer of childhood and has few prognostic indicators. We have previously shown that Proviral Integration site for Moloney murine leukemia virus (PIM3) kinase decreased hepatoblastoma tumorigenicity. We sought to determine the effect of PIM3 overexpression on hepatoblastoma cells and whether expression of PIM3 correlated with patient/tumor characteristics or survival.
METHODS: The hepatoblastoma cell line, HuH6, and patient-derived xenograft, COA67, were utilized. Viability, proliferation, migration, sphere formation, and tumor growth in mice were assessed in PIM3-overexpressing cells. Immunohistochemistry was performed for PIM3 on patient samples. Correlation between stain score and clinical/pathologic characteristics was assessed.
RESULTS: PIM3 overexpression rescued the anti-proliferative effect observed with PIM3 knockdown. Sphere formation was increased in PIM3 overexpressing cells. Cells with PIM3 overexpression yielded larger tumors than those with empty vector. Seventy-four percent of samples expressed PIM3. There was no statistical difference in patient characteristics between subjects with strong versus weak PIM3 staining, but patients with strong PIM3 staining had decreased survival.
CONCLUSIONS: PIM3 expression plays a role in hepatoblastoma tumorigenesis. PIM3 was present in the majority of hepatoblastomas and higher PIM3 expression correlated with decreased survival. PIM3 warrants investigation as a therapeutic target and prognostic marker for hepatoblastoma.

Yadav AK, Kumar V, Bailey DB, Jang BC
AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK.
Int J Mol Sci. 2019; 20(2) [PubMed] Article available free on PMC after 01/06/2020 Related Publications
Overexpression of Pim kinases has an oncogenic/pro-survival role in many hematological and solid cancers. AZD1208 is a pan-Pim kinase inhibitor that has anti-cancer and anti-adipogenic actions. Here, we investigated the effects of AZD1208 on the growth of 93T449 cells, a differentiated human liposarcoma cell line. At 20 µM, AZD1208 was cytotoxic (cytostatic) but not apoptotic, reducing cell survival without DNA fragmentation, caspase activation or increasing cells in the sub G1 phase; known apoptotic parameters. Notably, AZD1208 reduced phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in 93T449 cells. STAT-3 inhibition by AG490, a JAK2/STAT-3 inhibitor similarly reduced cell survival. AZD1208 down-regulated phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal S6 while up-regulated eukaryotic initiation factor-2α (eIF-2α). In addition, AZD1208 induced a LKB-1-independent AMPK activation, which was crucial for its cytostatic effect, as knock-down of AMPK greatly blocked AZD1208s ability to reduce cell survival. AZD1208 had no effect on expression of two members of Pim kinase family (Pim-1 and Pim-3) but inhibited phosphorylation of 4EBP-1, a downstream effector of Pim kinases. Importantly, a central role for Pim-3 in the actions of AZD1208 was confirmed by knock-down, which not only reduced 93T449 cell survival but also led to the inhibition of 4EBP-1, mTOR, eIF-2α and STAT-3, along with the activation of AMPK. In summary, this is the first report demonstrating that AZD1208 inhibits growth of liposarcoma cells and that this activity is mediated through Pim-3 kinase, STAT-3, mTOR, S6 and AMPK expression and phosphorylation pathways.

Kapelko-Słowik K, Dybko J, Grzymajło K, et al.
Expression of the PIM2 gene is associated with more aggressive clinical course in patients with chronic lymphocytic leukemia.
Adv Clin Exp Med. 2019; 28(3):391-396 [PubMed] Related Publications
BACKGROUND: The PIM2 gene belongs to the PIM family, which encodes serine/threonine kinases involved in cell survival and apoptosis. The relation between the expression of the PIM2 gene and the course of chronic lymphocytic leukemia (CLL) has not been fully determined.
OBJECTIVES: The aim of the study was to evaluate the role of the PIM2 gene as a marker of CLL malignancy and its importance as a predictive and prognostic factor.
MATERIAL AND METHODS: Sixty-seven patients, 35 females and 32 males, aged 49-90 years, with de novo CLL, and 14 healthy individuals were enrolled in the study. Expression of the PIM2 gene was analyzed using TaqMan RQ-PCR assay and western blot test.
RESULTS: Median PIM2 gene expression in CLL patients was higher than in controls. Patients with high expression of the PIM2 gene had shorter progression-free survival and time to first treatment than patients with low PIM2 expression. It was found that patients with CR had lower expression of the PIM2 gene than patients without complete remission (CR). Notably, associations between high PIM2 expression and rapid lymphocyte doubling time, the percentage of malignant lymphocytes with ZAP70 expression and the Rai stage were revealed.
CONCLUSIONS: We found that the PIM2 gene is associated with a more aggressive clinical course of CLL.

Zhou Y, Liu W, Xu Z, et al.
Analysis of Genomic Alteration in Primary Central Nervous System Lymphoma and the Expression of Some Related Genes.
Neoplasia. 2018; 20(10):1059-1069 [PubMed] Article available free on PMC after 01/06/2020 Related Publications
Primary central nervous system lymphoma (PCNSL) is a rare and special type of non-Hodgkin lymphoma. The treatment of PCNSL is comprehensive, combining surgery, radiotherapy, and chemotherapy. However, the outcome is poor because of its high invasiveness and rate of recurrence. We analyzed 22 cases of PCNSL using next-generation sequencing (NGS) to detect 64 candidate genes. We used immunohistochemical methods to analyze gene expression in 57 PCNSL samples. NGS showed that recurrent mutations in KMT2D and CD79B, components of the NF-κB pathway, accounted for 65% of total mutations in PCNSL samples. The most frequent mutated gene was PIM1 (77.27%, 17/22), followed by MYD88 (63.64%, 14/22), CD79B (69.09%, 13/22), and KMT2D (50.00%, 11/22). Mutations of the CD79B gene were associated with an inferior progression-free survival (PFS), and GNA13 gene mutations were associated with a shorter PFS and overall survival (OS) in PCNSL patients (P < .05). PIM1 and MYD88 were highly expressed in PCNSL patients and were related to their OS time. MYD88 overexpression might be an independent and poor prognostic predictor of OS time. In summary, we identified highly recurrent genetic lesions in CD79B and KMT2D, components of the NF-κB pathway, in PCNSL and validated the expression of PIM1 and MYD88 related to poor survival, thereby providing novel insights into the pathogenesis and precision medicine of PCNSL.

Ribeiro D, Melão A, van Boxtel R, et al.
STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells.
Blood Adv. 2018; 2(17):2199-2213 [PubMed] Article available free on PMC after 01/06/2020 Related Publications
T-cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset of ALL, the most frequent childhood malignancy. Whereas interleukin-7 (IL-7) is essential for normal T-cell development, it can also accelerate T-ALL development in vivo and leukemia cell survival and proliferation by activating phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling. Here, we investigated whether STAT5 could also mediate IL-7 T-ALL-promoting effects. We show that IL-7 induces STAT pathway activation in T-ALL cells and that STAT5 inactivation prevents IL-7-mediated T-ALL cell viability, growth, and proliferation. At the molecular level, STAT5 is required for IL-7-induced downregulation of p27

Aravind Kumar M, Naushad SM, Narasimgu N, et al.
Whole exome sequencing of breast cancer (TNBC) cases from India: association of MSH6 and BRIP1 variants with TNBC risk and oxidative DNA damage.
Mol Biol Rep. 2018; 45(5):1413-1419 [PubMed] Related Publications
Whole exome sequencing in triple negative breast cancer cases (n = 8) and targeted sequencing in healthy controls (n = 48) revealed BRIP1 rs552752779 (MAF: 75% vs. 6.25%, OR 45.00, 95% CI 9.43-243.32), ERBB2 rs527779103 (MAF: 62.5% vs. 7.29%, OR 21.19, 95% CI 5.11-94.32), ERCC2 rs121913016 (MAF: 56.25% vs. 7.29%, OR 16.34, 95% CI 4.02-70.41), MSH6 rs2020912 (MAF: 56.25% vs. 1.04%, OR 122.13, 95% CI 12.29-2985.48) as risk factors for triple negative breast cancer. Construction of classification and regression tree followed by smart pruning identified MSH6 and BRIP1 variants as the major determinants of TNBC (Triple Negative Breast Cancer) risk. Except for ERBB2, all other genes regulate DNA repair and chromosomal integrity. In TNBC cases, two likely pathogenic variations i.e. NCOR1 rs562300336 and PIM1 rs746748226 were observed at frequencies of 18.75% and 12.5%, respectively. Among the 24 variants of unknown significance, MMP9 rs199676062, SYNE1 rs368709678, AURKA rs373550419, ABCC4 rs11568694 have variant allele frequency ≥ 62.5%. These genes regulate metastasis, nuclear modeling, cell cycle and cellular detoxification, respectively. To conclude, aberrations in DNA mismatch repair, nucleotide excision repair or BRCA1 associated genome surveillance mechanism contribute towards triple negative breast cancer.

Liu Y, Zhang J, Xing C, et al.
miR-486 inhibited osteosarcoma cells invasion and epithelial-mesenchymal transition by targeting PIM1.
Cancer Biomark. 2018; 23(2):269-277 [PubMed] Related Publications
OBJECTIVE: Osteosarcoma is the most common malignant tumor of bone with high recurrent rate. miR-486 was downregulated and acted as a tumor suppressor in plenty of tumors. The purpose of this study was to explore how miR-486 worked in osteosarcoma on cell invasion and EMT.
RESULTS: miR-486 was low expressed in osteosarcoma while PIM1 was overexpressed, and it had negative correlation between miR-486 and PIM1. miR-486 upregulation or PIM1 downregulation could inhibit osteosarcoma cell invasion and EMT. Meanwhile, miR-486 mediated PIM1 expression through binding to PIM1 mRNA 3'-UTR. PIM1 could reveal partial function of miR-486 on osteosarcoma invasion. In addition, miR-486 low expression or PIM1 overexpression predicted poor prognosis of osteosarcoma patients.
CONCLUSION: miR-486 regulated osteosarcoma cell invasion and EMT through targeting to PIM1. miR-486 low expression or PIM1 overexpression predicted poor prognosis of osteosarcoma patients. The newly identified miR-486/PIM1 axis provides novel insight into the pathogenesis of osteosarcoma.

Lawrence MG, Obinata D, Sandhu S, et al.
Patient-derived Models of Abiraterone- and Enzalutamide-resistant Prostate Cancer Reveal Sensitivity to Ribosome-directed Therapy.
Eur Urol. 2018; 74(5):562-572 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
BACKGROUND: The intractability of castration-resistant prostate cancer (CRPC) is exacerbated by tumour heterogeneity, including diverse alterations to the androgen receptor (AR) axis and AR-independent phenotypes. The availability of additional models encompassing this heterogeneity would facilitate the identification of more effective therapies for CRPC.
OBJECTIVE: To discover therapeutic strategies by exploiting patient-derived models that exemplify the heterogeneity of CRPC.
DESIGN, SETTING, AND PARTICIPANTS: Four new patient-derived xenografts (PDXs) were established from independent metastases of two patients and characterised using integrative genomics. A panel of rationally selected drugs was tested using an innovative ex vivo PDX culture system.
INTERVENTION: The following drugs were evaluated: AR signalling inhibitors (enzalutamide and galeterone), a PARP inhibitor (talazoparib), a chemotherapeutic (cisplatin), a CDK4/6 inhibitor (ribociclib), bromodomain and extraterminal (BET) protein inhibitors (iBET151 and JQ1), and inhibitors of ribosome biogenesis/function (RNA polymerase I inhibitor CX-5461 and pan-PIM kinase inhibitor CX-6258).
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Drug efficacy in ex vivo cultures of PDX tissues was evaluated using immunohistochemistry for Ki67 and cleaved caspase-3 levels. Candidate drugs were also tested for antitumour efficacy in vivo, with tumour volume being the primary endpoint. Two-tailed t tests were used to compare drug and control treatments.
RESULTS AND LIMITATIONS: Integrative genomics revealed that the new PDXs exhibited heterogeneous mechanisms of resistance, including known and novel AR mutations, genomic structural rearrangements of the AR gene, and a neuroendocrine-like AR-null phenotype. Despite their heterogeneity, all models were sensitive to the combination of ribosome-targeting agents CX-5461 and CX-6258.
CONCLUSIONS: This study demonstrates that ribosome-targeting drugs may be effective against diverse CRPC subtypes including AR-null disease, and highlights the potential of contemporary patient-derived models to prioritise treatment strategies for clinical translation.
PATIENT SUMMARY: Diverse types of therapy-resistant prostate cancers are sensitive to a new combination of drugs that inhibit protein synthesis pathways in cancer cells.

Xiang X, Yuan D, Liu Y, et al.
PIM1 overexpression in T-cell lymphomas protects tumor cells from apoptosis and confers doxorubicin resistance by upregulating c-myc expression.
Acta Biochim Biophys Sin (Shanghai). 2018; 50(8):800-806 [PubMed] Related Publications
T-cell lymphomas (TCLs) are a malignancy characterized by tumor aggression and resistance to traditional chemotherapy. Disruption of the extrinsic cell death pathway is essential for resistance to chemotherapy. PIM1 serves as a crucial modulator in cancers. However, the role of PIM1 in TCLs remains unclear. In this study, we studied the roles of PIM1 in established T-lymphoma cell lines Jurkat and HUT-78. CCK-8 assay was conducted to evaluate cell survival and flow cytometry was performed to evaluate cell death of TCL cells. siRNAs were used to knockdown the expression of PIM1 and c-myc. qRT-PCR was used to evaluate the mRNA expression levels of c-myc and PIM1. Western blot analysis was used to evaluate the protein expression levels of PIM1, c-myc, STAT3, and phospho-STAT3. Doxorubicin was used to determine the effect of PIM1 on apoptosis. Our results showed that PIM1 expression was markedly enhanced and induced c-myc expression in TCL cells. Doxorubicin inhibited the expressions of c-myc and PIM1, and triggered the extrinsic cell death of TCLs by suppressing the JAK-STAT3 signaling pathway. Moreover, PIM1 silencing via siRNA suppressed c-myc expression, promoted the cell death of TCLs, and increased doxorubicin sensitivity. Conversely, PIM1 overexpression in TCL cells induced c-myc expression, suppressed TCL cell death, and promoted doxorubicin resistance. Collectively, our results demonstrate that PIM1 overexpression in TCLs participates in cancer cell protection from apoptosis and leads to doxorubicin resistance by inducing c-myc expression, indicating that PIM1 may be a promising target in TCL treatment.

Hiemcke-Jiwa LS, Leguit RJ, Snijders TJ, et al.
Molecular analysis in liquid biopsies for diagnostics of primary central nervous system lymphoma: Review of literature and future opportunities.
Crit Rev Oncol Hematol. 2018; 127:56-65 [PubMed] Related Publications
Primary central nervous system lymphoma (PCNSL) is an aggressive lymphoma with a poor prognosis, for which accurate and timely diagnosis is of utmost importance. Unfortunately, diagnosis of PCNSL can be challenging and a brain biopsy (gold standard for diagnosis) is an invasive procedure with the risk of major complications. Thus, there is an urgent need for an alternative strategy to diagnose and monitor these lymphomas. Currently, liquid biopsies from cerebrospinal fluid (CSF) are used for cytomorphologic and flow cytometric analysis. Recently, new biomarkers such as genetic mutations and interleukins have been identified in these liquid biopsies, further expanding the diagnostic armamentarium. In this review we present an overview of genetic aberrations (>70) reported in this unique lymphoma. Of these genes, we have selected those that are reported in ≥3 studies. Half of the selected genes are implicated in the NFκB pathway (CARD11, CD79B, MYD88, TBL1XR1 and TNFAIP3), while the other half are not related to this pathway (CDKN2A, ETV6, PIM1, PRDM1 and TOX). Although this underlines the crucial role of the NFκB pathway in PCNSL, CD79B and MYD88 are at present the only genes mentioned in liquid biopsy analysis. Finally, a stepwise approach is proposed for minimally invasive liquid biopsy analysis and work-up of PCNSL, incorporating molecular analysis. Prioritization and refinements of this approach can be constructed based upon multidisciplinary collaboration as well as novel scientific insights.

Cortes J, Tamura K, DeAngelo DJ, et al.
Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers.
Br J Cancer. 2018; 118(11):1425-1433 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
BACKGROUND: Proviral integration Moloney virus (PIM) kinases (PIM1, 2 and 3) are overexpressed in several tumour types and contribute to oncogenesis. AZD1208 is a potent ATP-competitive PIM kinase inhibitor investigated in patients with recurrent or refractory acute myeloid leukaemia (AML) or advanced solid tumours.
METHODS: Two dose-escalation studies were performed to evaluate the safety and tolerability, and to define the maximum tolerated dose (MTD), of AZD1208 in AML and solid tumours. Secondary objectives were to evaluate the pharmacokinetics, pharmacodynamics (PD) and preliminary efficacy of AZD1208.
RESULTS: Sixty-seven patients received treatment: 32 in the AML study over a 120-900 mg dose range, and 25 in the solid tumour study over a 120-800 mg dose range. Nearly all patients (98.5%) in both studies experienced adverse events, mostly gastrointestinal (92.5%). Dose-limiting toxicities included rash, fatigue and vomiting. AZD1208 was not tolerated at 900 mg, and the protocol-defined MTD was not confirmed. AZD1208 increased CYP3A4 activity after multiple dosing, resulting in increased drug clearance. There were no clinical responses; PD analysis showed biological activity of AZD1208.
CONCLUSIONS: Despite the lack of single-agent clinical efficacy with AZD1208, PIM kinase inhibition may hold potential as an anticancer treatment, perhaps in combination with other agents.

Liu K, Gao H, Wang Q, et al.
Hispidulin suppresses cell growth and metastasis by targeting PIM1 through JAK2/STAT3 signaling in colorectal cancer.
Cancer Sci. 2018; 109(5):1369-1381 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Colorectal cancer (CRC) accounts for over 600 000 deaths annually worldwide. The current study aims to evaluate the value of proto-oncogene PIM1 as a therapeutic target in CRC and investigate the anticancer activity of hispidulin, a naturally occurring phenolic flavonoid compound, against CRC. Immunohistochemistry analysis showed that PIM1 was upregulated in CRC tissue. The role of PIM1 as an oncogene was evidenced by the fact that PIM1 knockdown inhibits cell growth, induces apoptosis, and suppresses invasion. Our results showed that hispidulin exerts antitumor activity in CRC through inhibiting the expression of PIM1. Moreover, our findings revealed that hispidulin downregulated the expression of PIM1 by inhibiting JAK2/STAT3 signaling by generating reactive oxygen species. Furthermore, our in vivo studies showed that hispidulin can significantly inhibit tumor growth and metastasis in CRC. Collectively, our results provide an experimental basis for trialing hispidulin in CRC treatment. PIM1 can be considered a potential therapeutic target in CRC.

Zhang M, Liu T, Sun H, et al.
Pim1 supports human colorectal cancer growth during glucose deprivation by enhancing the Warburg effect.
Cancer Sci. 2018; 109(5):1468-1479 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Cancer cells metabolize glucose mainly by glycolysis and are well adapted to metabolic stress. Pim1 is an oncogene that promotes colorectal cancer (CRC) growth and metastasis, and its expression is positively correlated with CRC progression. However, the mechanism underlying Pim1 overexpression during CRC progression and the role of Pim1 in CRC metabolism remains unclear. In the present study, we discovered that Pim1 expression was significantly upregulated in response to glucose deprivation-induced metabolic stress by AMP-activated protein kinase signaling. Pim1 promoted CRC cell proliferation in vitro and tumorigenicity in vivo. Clinical observations showed that Pim1 expression was higher in CRC tissues than in adjacent normal tissues. Pim1 overexpression in CRC tissues not only predicted CRC prognosis in patients but also showed a positive relationship with

Liu J, Qu X, Shao L, et al.
Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation.
Cancer Biol Ther. 2018; 19(3):160-168 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Melanoma is the deadliest form of commonly encountered skin cancer, and has fast propagating and highly invasive characteristics. Pim-3, a highly expressed oncogene in melanoma, is a highly conserved serine/threonine kinase with various biological activities, such as proliferation-accelerating and anti-apoptosis effects on cancer progression. However, whether Pim-3 regulates melanoma metastasis has not been determined. Here, we constructed a Pim-3-silencing short hairpin RNA (sh-Pim-3), a TLR7-stimulating ssRNA and a dual-function vector containing a sh-Pim-3 and a ssRNA, and transfected them into the B16F10 melanoma cell line to investigate the effects of Pim-3 on migration and invasion in melanoma. We found that sh-Pim-3 inhibited B16F10 cell migration and invasion in vitro. In a tumor-bearing mouse model, sh-Pim-3 significantly downregulated pulmonary metastasis of B16F10 melanoma cell in vivo. Mechanistically, sh-Pim-3 inhibited metastasis by regulating the expression of genes related to epithelial-mesenchymal transition (EMT). Further study revealed that by promoting the phosphorylation of STAT3 (signal transducer and activator of transcription 3), Pim-3 induced the expression of Slug, Snail, and ZEB1, which enhanced EMT-related changes and induced melanoma migration and invasion. Our study suggests that Pim-3 is a potential effective target for melanoma therapy.

Puente-Moncada N, Costales P, Antolín I, et al.
Inhibition of FLT3 and PIM Kinases by EC-70124 Exerts Potent Activity in Preclinical Models of Acute Myeloid Leukemia.
Mol Cancer Ther. 2018; 17(3):614-624 [PubMed] Related Publications
Internal tandem duplication (ITD) or tyrosine kinase domain mutations of FLT3 is the most frequent genetic alteration in acute myelogenous leukemia (AML) and are associated with poor disease outcome. Despite considerable efforts to develop single-target FLT3 drugs, so far, the most promising clinical response has been achieved using the multikinase inhibitor midostaurin. Here, we explore the activity of the indolocarbazole EC-70124, from the same chemical space as midostaurin, in preclinical models of AML, focusing on those bearing FLT3-ITD mutations. EC-70124 potently inhibits wild-type and mutant FLT3, and also other important kinases such as PIM kinases. EC-70124 inhibits proliferation of AML cell lines, inducing cell-cycle arrest and apoptosis. EC-70124 is orally bioavailable and displays higher metabolic stability and lower human protein plasma binding compared with midostaurin. Both

Guo S, Fan J, Wang B, et al.
Highly Selective Red-Emitting Fluorescent Probe for Imaging Cancer Cells in Situ by Targeting Pim-1 Kinase.
ACS Appl Mater Interfaces. 2018; 10(2):1499-1507 [PubMed] Related Publications
Based on the fact that enzyme-targeting probes are highly sensitive and selective, a novel red-emitting probe (NB-BF) for Pim-1 kinase including three parts, fluorophore (NB), linker, and inhibitor (BF), has been designed for cancer optical imaging. In its free state, NB-BF is folded and the fluorescence quenched by PET between fluorophore and inhibitor both in PBS buffer and in normal cells. Significantly, it emitted strong red fluorescence in Pim-1 overexpressed cancer cells. The specificity of NB-BF for Pim-1 kinase was directly demonstrated by gene silencing analysis. Furthermore, it is the first time to know where Pim-1 kinase mainly distributes at mitochondria with Pearson's correlation factor (R

Zhang H, Li P, Li J, et al.
Icariin induces apoptosis in acute promyelocytic leukemia by targeting PIM1.
Pharmacol Rep. 2017; 69(6):1270-1281 [PubMed] Related Publications
BACKGROUND: Acute promyelocytic leukemia (APL) is one type of acute myeloid leukemia (AML) featured by abnormal, heavily granulated promyelocytes. This study aimed to investigate the antitumor activity of icariin in APL cells.
METHODS: APL cell lines (HL-60 and NB4) were used to investigate the effect of icariin in vitro. Cell viability was determined by WST-8 proliferation assay, while cell apoptosis was assessed by flow cytometry. The mRNA and protein expression was determined by quantitative real-time polymerase chain reaction and Western blot, respectively. Moreover, small interfering RNA (siRNA) and overexpressing plasmid were used to manipulate the expression of PIM family kinase 1 (PIM1) to examine the role of PIM1 in icariin-induced apoptosis in APL cells.
RESULTS: Icariin could significantly suppress cell growth and induce apoptosis in both model APL cell lines (HL-60 and NB4). It repressed the expression of PIM1 at the molecular level, which was responsible for the antitumor effect of icariin in APL cells. The ectopic overexpression of PIM1 significantly abrogated the inducing effect of icariin on apoptosis. In contrast, the knockdown of PIM1 by siRNA enhanced the antitumor effect of icariin in APL cells. Moreover, the findings indicated that icariin repressed the expression of PIM1 through generating reactive oxygen species and hence modulating the Janus kinase 2(JAK2)/Signal transducer and activator of transcription 3/5 (STAT3/5) signaling pathway.
CONCLUSIONS: Icariin potently inhibits the cell growth of APL in vitro through inducing caspase-dependent apoptosis. Hence, it can be considered as a promising candidate therapeutic agent for treating APL, although further studies including clinical trials are warranted.

Huang PS, Lin YH, Chi HC, et al.
Thyroid hormone inhibits growth of hepatoma cells through induction of miR-214.
Sci Rep. 2017; 7(1):14868 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Thyroid hormone (TH) plays a role in regulating the metabolic rate, heart functions, muscle control and maintenance of bones. 3,3'5-tri-iodo-L-thyronine (T

Casillas AL, Toth RK, Sainz AG, et al.
Hypoxia-Inducible PIM Kinase Expression Promotes Resistance to Antiangiogenic Agents.
Clin Cancer Res. 2018; 24(1):169-180 [PubMed] Article available free on PMC after 01/11/2019 Related Publications

Kapoor S, Natarajan K, Baldwin PR, et al.
Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation.
Clin Cancer Res. 2018; 24(1):234-247 [PubMed] Article available free on PMC after 01/11/2019 Related Publications

Hospital MA, Jacquel A, Mazed F, et al.
RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia.
Leukemia. 2018; 32(3):597-605 [PubMed] Related Publications
Acute myeloid leukemia (AML) with the FLT3 internal tandem duplication (FLT3-ITD AML) accounts for 20-30% of AML cases. This subtype usually responds poorly to conventional therapies, and might become resistant to FLT3 tyrosine kinase inhibitors (TKIs) due to molecular bypass mechanisms. New therapeutic strategies focusing on resistance mechanisms are therefore urgently needed. Pim kinases are FLT3-ITD oncogenic targets that have been implicated in FLT3 TKI resistance. However, their precise biological function downstream of FLT3-ITD requires further investigation. We performed high-throughput transcriptomic and proteomic analyses in Pim2-depleted FLT3-ITD AML cells and found that Pim2 predominantly controlled apoptosis through Bax expression and mitochondria disruption. We identified ribosomal protein S6 kinase A3 (RSK2), a 90 kDa serine/threonine kinase involved in the mitogen-activated protein kinase cascade encoded by the RPS6KA3 gene, as a novel Pim2 target. Ectopic expression of an RPS6KA3 allele rescued the viability of Pim2-depleted cells, supporting the involvement of RSK2 in AML cell survival downstream of Pim2. Finally, we showed that RPS6KA3 knockdown reduced the propagation of human AML cells in vivo in mice. Our results point to RSK2 as a novel Pim2 target with translational therapeutic potential in FLT3-ITD AML.

Cheng H, Huang C, Xu X, et al.
PIM-1 mRNA expression is a potential prognostic biomarker in acute myeloid leukemia.
J Transl Med. 2017; 15(1):179 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
BACKGROUND: High expression of proviral integration site for Moloney murine leukemia virus-1 (PIM-1), a serine/threonine kinase, is associated with many cancers. The main purpose of this study were to investigate that the correlation between PIM-1 mRNA levels and clinicopathologic features and its clinical significance in acute myeloid leukemia (AML).
METHODS: qRT-PCR was performed for 118 de novo AML and 20 AML complete remission patients and 15 normal individuals. All statistical analysis were performed using Graphpad Prism5 software.
RESULTS: We observed that expression of PIM-1 mRNA was higher in AML patients than in healthy individuals and in complete remission AML patients (P = 0.0177). Further, high PIM-1 mRNA levels were more associated with high-risk FLT3+ AML patients than the FLT3- group (P = 0.0001) and were also associated with clinical factors such as risk stratification (P = 0.0029) and vital status (P = 0.0322). Kaplan-Meier survival analysis indicated that PIM-1 mRNA expression correlated with overall survival (OS), disease free survival (DFS), and relapse rate (RR) in AML patients. Most importantly, the high PIM-1-expressing patients took longer to achieve complete remission than the low expression group (P = 0.001). In addition, the complete remission rate was significantly lower in the high PIM-1 group (P = 0.0277) after induction therapy.
CONCLUSIONS: Above results suggest that PIM-1 mRNA levels may be an independent prognostic factor in AML.

Fan RF, Lu Y, Fang ZG, et al.
PIM-1 kinase inhibitor SMI-4a exerts antitumor effects in chronic myeloid leukemia cells by enhancing the activity of glycogen synthase kinase 3β.
Mol Med Rep. 2017; 16(4):4603-4612 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
The development of targeted tyrosine kinase inhibitors (TKIs) has succeeded in altering the course of chronic myeloid leukemia (CML). However, a number of patients have failed to respond or experienced disease relapse following TKI treatment. Proviral integration site for moloney murine leukemia virus‑1 (PIM‑1) is a serine/threonine kinase that participates in regulating apoptosis, cell cycle, signal transduction and transcriptional pathways, which are associated with tumor progression, and poor prognosis. SMI‑4a is a selective PIM‑1 kinase inhibitor that inhibits PIM‑1 kinase activity in vivo and in vitro. The present study aimed to explore the mechanism underlying the antitumor effect of SMI‑4a in K562 and imatinib‑resistant K562 (K562/G) cell lines. It was demonstrated that SMI‑4a inhibited the proliferation of K562 and K562/G cells using a WST‑8 assay. The Annexin V‑propidium iodide assay demonstrated that SMI‑4a induced apoptosis of K562 and K562/G cells in a dose‑, and time‑dependent manner. Furthermore, Hoechst 33342 staining was used to verify the apoptosis rate. The clone formation assay revealed that SMI‑4a significantly inhibited the colony formation capacity of K562 and K562/G cells. Western blot analysis demonstrated that SMI‑4a decreased phosphorylated (p)‑Ser9‑glycogen synthase kinase (GSK) 3β/pGSK3β and inhibited the translocation of β‑catenin. In addition, the downstream gene expression of apoptosis regulator Bax and poly(ADP‑ribose) polymerase‑1 was upregulated, and apoptosis regulator Bcl‑2 and Myc proto‑oncogene protein expression levels were downregulated. Immunofluorescence results demonstrated changes in the expression level of β‑catenin in the plasma and nucleus. The results of the present study suggest that SMI‑4a is an effective drug to use in combination with current chemotherapeutics for the treatment of imatinib-resistant CML.

Jiménez C, Alonso-Álvarez S, Alcoceba M, et al.
From Waldenström's macroglobulinemia to aggressive diffuse large B-cell lymphoma: a whole-exome analysis of abnormalities leading to transformation.
Blood Cancer J. 2017; 7(8):e591 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Transformation of Waldenström's macroglobulinemia (WM) to diffuse large B-cell lymphoma (DLBCL) occurs in up to 10% of patients and is associated with an adverse outcome. Here we performed the first whole-exome sequencing study of WM patients who evolved to DLBCL and report the genetic alterations that may drive this process. Our results demonstrate that transformation depends on the frequency and specificity of acquired variants, rather than on the duration of its evolution. We did not find a common pattern of mutations at diagnosis or transformation; however, there were certain abnormalities that were present in a high proportion of clonal tumor cells and conserved during this transition, suggesting that they have a key role as early drivers. In addition, recurrent mutations gained in some genes at transformation (for example, PIM1, FRYL and HNF1B) represent cooperating events in the selection of the clones responsible for disease progression. Detailed comparison reveals the gene abnormalities at diagnosis and transformation to be consistent with a branching model of evolution. Finally, the frequent mutation observed in the CD79B gene in this specific subset of patients implies that it is a potential biomarker predicting transformation in WM.

Ishikawa C, Senba M, Hashimoto T, et al.
Expression and significance of Pim-3 kinase in adult T-cell leukemia.
Eur J Haematol. 2017; 99(6):495-504 [PubMed] Related Publications
BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Viral Tax protein plays a major role in ATL development. Pim family of serine/threonine kinases is composed of Pim-1, -2, and -3. The potential of Pim family as a target in ATL was analyzed.
METHODS: RT-PCR and Western blotting were used to determine the expression of Pim kinases, Tax, and intracellular signal molecules. Knockdown of Pim-3 and RelA was performed using small interfering RNA. The effects on cell proliferation, viability, cell cycle, and apoptosis were analyzed by WST-8, propidium iodide, and APO2.7 assay. NF-κB DNA binding activity was investigated by electrophoretic mobility shift assay.
RESULTS: Pim-3 expression was restricted to HTLV-1-infected T-cell lines. Tax induced Pim-3 expression through NF-κB. Knockdown of Pim-3 showed growth inhibition of HTLV-1-infected T cells. NJC97-NH, a novel inhibitor of the Pim-1/3 kinases, inhibited cell viability. NJC97-NH induced G2/M cell cycle arrest associated with downregulation of cyclin A and cyclin B1 expression, as well as apoptosis accompanied with downregulation of XIAP and Mcl-1 expression through inhibition of NF-κB pathway, mediated through decrease in IκBα and RelA phosphorylation.
CONCLUSION: Pim-3 is a potentially suitable target for the development of novel therapeutic agents against ATL.

Ren K, Liu QQ, An ZF, et al.
MiR-144 functions as tumor suppressor by targeting PIM1 in gastric cancer.
Eur Rev Med Pharmacol Sci. 2017; 21(13):3028-3037 [PubMed] Related Publications
OBJECTIVE: Gastric cancer (GC) is one of the most prevalent types of malignant disease Worldwide. Mounting evidence has demonstrated the involvement of miRNAs in the development of GC. One of these miRNAs, miR-144 has been found aberrantly expressed in a variety of human malignancies.
PATIENTS AND METHODS: GC tissues were collected from patients, and the level of miR-144 was determined by qRT-PCR. GC cell lines SGC7901 and AGS were used as model cell lines and the anti-tumor effect of miR-144 in both cells were examined. The level of miR-144 was restored in GC cells using miR-144 mimic. Moreover, the target gene of miR-144 wad identified.
RESULTS: In this study, our results showed that low miR-144 level significantly correlated with lymph node metastasis stage, TNM stage and differentiation degree. In addition, we found that miR-144 acted as a tumor suppressor in GC. Moreover, our findings showed that miR-144 exerted an anti-tumor effect by directly targeting RLIP76.
CONCLUSIONS:   miR-144 acts as a tumor suppressor in GC and it is a potential therapeutic target for GC treatment.

Zhao W, Qiu R, Li P, Yang J
PIM1: a promising target in patients with triple-negative breast cancer.
Med Oncol. 2017; 34(8):142 [PubMed] Related Publications
Triple-negative breast cancers (TNBCs) have poor prognosis, and chemotherapy remains the mainstay of therapy because of lack of discovered possible target. MYC were found overexpressed in TNBCs compared with other subtypes and especially in those resistant to chemotherapy, but the inhibition has been challenging to achieve. Recently, the cooperation of PIM1 and MYC was identified involved in cell proliferation, migration and apoptosis of TNBCs, which has been reported in hematological malignancy and prostatic cancer. Inhibition of PIM1 can promote the apoptosis of tumor cells and enhance sensitivity to chemotherapy. Notably, PIM1-null mice develop normally and are fertile, suggesting the side effects can be tolerated. Thus, PIM1 may be a promising target in TNBCs and further investigation, both in vivo and in vitro, needs to be carried out.

Szydłowski M, Prochorec-Sobieszek M, Szumera-Ciećkiewicz A, et al.
Expression of PIM kinases in Reed-Sternberg cells fosters immune privilege and tumor cell survival in Hodgkin lymphoma.
Blood. 2017; 130(12):1418-1429 [PubMed] Related Publications
Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% (

Mareschal S, Pham-Ledard A, Viailly PJ, et al.
Identification of Somatic Mutations in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type by Massive Parallel Sequencing.
J Invest Dermatol. 2017; 137(9):1984-1994 [PubMed] Related Publications
To determine whether the mutational profile of primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL-LT) is unique by comparison with other diffuse large B-cell lymphoma subtypes, we analyzed a total cohort of 20 PCLBCL-LT patients by using next-generation sequencing with a lymphoma panel designed for diffuse large B-cell lymphoma. We also analyzed 12 pairs of tumor and control DNA samples by whole-exome sequencing, which led us to perform resequencing of three selected genes not included in the lymphoma panel: TBL1XR1, KLHL6, and IKZF3. Our study clearly identifies an original mutational landscape of PCLBCL-LT with a very restricted set of highly recurrent mutations (>40%) involving MYD88 (p.L265P variant), PIM1, and CD79B. Other genes involved in B-cell signaling, NF-κB activation, or DNA modeling were found altered, notably TBL1XR1 (33%), MYC (26%) CREBBP (26%), and IRF4 (21%) or HIST1H1E (41%). MYD88

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PIM1, Cancer Genetics Web: http://www.cancer-genetics.org/PIM1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999