Gene Summary

Gene:LDHA; lactate dehydrogenase A
Aliases: LDHM, GSD11, PIG19, HEL-S-133P
Summary:The protein encoded by this gene catalyzes the conversion of L-lactate and NAD to pyruvate and NADH in the final step of anaerobic glycolysis. The protein is found predominantly in muscle tissue and belongs to the lactate dehydrogenase family. Mutations in this gene have been linked to exertional myoglobinuria. Multiple transcript variants encoding different isoforms have been found for this gene. The human genome contains several non-transcribed pseudogenes of this gene. [provided by RefSeq, Sep 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:L-lactate dehydrogenase A chain
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (12)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Most cancers exhibit a high expression of lactate dehydrogenase A (LDH-A) to ensure a high energy supply.

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: LDHA (cancer-related)

Chen HF, Wu LX, Li XF, et al.
Ginsenoside compound K inhibits growth of lung cancer cells via HIF-1α-mediated glucose metabolism.
Cell Mol Biol (Noisy-le-grand). 2019; 65(4):48-52 [PubMed] Related Publications
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths. Compound K, an active metabolite of ginsenosides, is reported to exhibit anti-cancer property in various types of human malignancies. The present study investigated the role of compound K on glucose metabolism in NSCLC cells and its underlying mechanism. Our study found that compound K dose-dependently inhibited the cell viability of NSCLC cells. Moreover, administration with compound K decreased glucose uptake and lactate secretion under normoxic and hypoxic conditions. Consistently, the expression of key enzymes (HK II, PDK1 and LDHA) involved in glucose metabolism were inhibited in compound K-treated tumor cells. In addition, compound K inhibited the expression of HIF-1α and its downstream gene GLUT1. On the contrary, overexpression of HIF-1α elevated metabolic reactions and partly attenuated the inhibitory role of compound K on NSCLC cell growth. These results demonstrate that compound K suppresses NSCLC cell growth via HIF-1α mediated metabolic alteration, contributing to novel anticancer therapy by targeting glucose metabolism.

Zhang M, Pan Y, Tang D, et al.
Low levels of pyruvate induced by a positive feedback loop protects cholangiocarcinoma cells from apoptosis.
Cell Commun Signal. 2019; 17(1):23 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer cells avidly consume glucose and convert it to lactate, resulting in a low pyruvate level. This phenomenon is known as the Warburg effect, and is important for cell proliferation. Although cMyc has often been described as an oncoprotein that preferentially contributes to the Warburg effect and tumor proliferation, mechanisms of action remain unclear. Histone deacetylase 3 (HDAC3) regulates gene expression by removing acetyl groups from lysine residues, as well as has an oncogenic role in apoptosis and contributes to the proliferation of many cancer cells including cholangiocarcinoma (CCA). HDAC inhibitors display antitumor activity in many cancer cell lines. Cancer cells maintain low levels of pyruvate to prevent inhibition of HDAC but the mechanisms remain elusive. The purpose of our study was to explore the role of cMyc in regulating pyruvate metabolism, as well as to investigate whether the inhibitory effect of pyruvate on HDAC3 could hold promise in the treatment of cancer cells.
METHODS: We studied pyruvate levels in CCA cell lines using metabolite analysis, and analyzed the relationship of pyruvate levels and cell proliferation with cell viability analysis. We cultivated CCA cell lines with high or low levels of pyruvate, and then analyzed the protein levels of HDAC3 and apoptotic markers via Western Blotting. We then explored the reasons of low levels of pyruvate by using seahorse analysis and
RESULTS: We confirmed downregulated pyruvate levels in CCA, and defined that high pyruvate levels correlated with reduced cell proliferation levels. Downregulated pyruvate levels decreased the inhibition to HDAC3 and consequently protected CCA cells from apoptosis. Synergistically upregulated LDHA, PKM2 levels resulted in low levels of pyruvate, as well as poor patient survival. We also found that low levels of pyruvate contributed to proliferation of CCA cells and confirmed that the upstream target is cMyc. Conversely, high activity of HDAC3 stabilized cMyc protein by preferential deacetylating cMyc at K323 site, which further contributed to the low pyruvate levels. Finally, this creates a positive feedback loop that maintained the low levels of pyruvate and promoted CCA proliferation.
CONCLUSIONS: Collectively, our findings identify a role for promoting the low pyruvate levels regulated by c-Myc, and its dynamic acetylation in cancer cell proliferation. These targets, as markers for predicting tumor proliferation in patients undergoing clinical treatments, could pave the way towards personalized therapies.

Cheng H, Hao Y, Gao Y, et al.
PLCε promotes urinary bladder cancer cells proliferation through STAT3/LDHA pathway‑mediated glycolysis.
Oncol Rep. 2019; 41(5):2844-2854 [PubMed] Free Access to Full Article Related Publications
Phospholipase Cε (PLCε) and anaerobic glycolysis were determined to be involved in the development of human urinary bladder cancer (UBC), but the mechanisms remain unclear. In the present study, 64 bladder cancer specimens and 42 adjacent tissue specimens were obtained from 64 patients, and immunochemistry indicated that PLCε and lactate dehydrogenase (LDHA) are overexpressed in UBC. PLCε and LDHA were demonstrated to be positively correlated at transcription levels, indicating that one of these two genes may be regulated by another. To elucidate the mechanisms, PLCε was knocked down in T24 cells by short hairpin RNA, and then signal transducer and activator of transcription 3 (STAT3) phosphorylation and LDHA were determined to be downregulated, which indicated that PLCε may serve roles upstream of LDHA through STAT3 to regulate glycolysis in UBC. Furthermore, chromatin immunoprecipitation and luciferase reporter assays were performed to confirm that STAT3 could bind to the promoter of the LDHA gene to enhance its expression. A xenograft tumor mouse model also demonstrated similar results as the in vitro experiments, further confirming the role of PLCε in regulating bladder cell growth in vivo. Collectively, the present study demonstrated that PLCε may regulate glycolysis through the STAT3/LDHA pathway to take part in the development of human UBC.

Flores A, Sandoval-Gonzalez S, Takahashi R, et al.
Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin.
Nat Commun. 2019; 10(1):91 [PubMed] Free Access to Full Article Related Publications
Although numerous therapeutic strategies have attempted to target aerobic glycolysis to inhibit tumor progression, these approaches have not resulted in effective clinical outcomes. Murine squamous cell carcinoma (SCC) can be initiated by hair follicle stem cells (HFSCs). HFSCs utilize aerobic glycolysis, and the activity of lactate dehydrogenase (Ldh) is essential for HFSC activation. We sought to determine whether Ldh activity in SCC is critical for tumorigenesis or simply a marker of the cell type of origin. Genetic abrogation or induction of Ldh activity in HFSC-mediated tumorigenesis shows no effect on tumorigenesis as measured by number, time to formation, proliferation, volume, epithelial to mesenchymal transition, gene expression, or immune response. Ldha-null tumors show dramatically reduced levels of glycolytic metabolites by metabolomics, and significantly reduced glucose uptake by FDG-PET live animal imaging. These results suggest that squamous cancer cells of origin do not require increased glycolytic activity to generate cancers.

Zhou Y, Niu W, Luo Y, et al.
p53/Lactate dehydrogenase A axis negatively regulates aerobic glycolysis and tumor progression in breast cancer expressing wild-type p53.
Cancer Sci. 2019; 110(3):939-949 [PubMed] Free Access to Full Article Related Publications
Tumor suppressor p53 is a master regulator of apoptosis and plays key roles in cell cycle checkpoints. p53 responds to metabolic changes and alters metabolism through several mechanisms in cancer. Lactate dehydrogenase A (LDHA), a key enzyme in glycolysis, is highly expressed in a variety of tumors and catalyzes pyruvate to lactate. In the present study, we first analyzed the association and clinical significance of p53 and LDHA in breast cancer expressing wild-type p53 (wt-p53) and found that LDHA mRNA levels are negatively correlated with wt-p53 but not with mutation p53 mRNA levels, and low p53 and high LDHA expression are significantly associated with poor overall survival rates. Furthermore, p53 negatively regulates LDHA expression by directly binding its promoter region. Moreover, a series of LDHA gain-of-function and rescore experiments were carried out in breast cancer MCF7 cells expressing endogenous wt-p53, showing that ectopic expression of p53 decreases aerobic glycolysis, cell proliferation, migration, invasion and tumor formation of breast cancer cells and that restoration of the expression of LDHA in p53-overexpressing cells could abolish the suppressive effect of p53 on aerobic glycolysis and other malignant phenotypes. In conclusion, our findings showed that repression of LDHA induced by wt-p53 blocks tumor growth and invasion through downregulation of aerobic glycolysis in breast cancer, providing new insights into the mechanism by which p53 contributes to the development and progression of breast cancer.

Fan Y, Ou L, Fan J, et al.
HepaCAM Regulates Warburg Effect of Renal Cell Carcinoma via HIF-1α/NF-κB Signaling Pathway.
Urology. 2019; 127:61-67 [PubMed] Related Publications
OBJECTIVE: To investigate how hepatocyte cell adhesion molecule (hepaCAM) regulates cancer energy metabolism through hypoxia-inducible factor (HIF-1α) in renal cell carcinoma (RCC).
MATERIALS AND METHODS: The expression of hepaCAM and HIF-1α in RCC tissue samples was examined by immunohistochemistry. Glucose consumption and lactate production assays were used to detect metabolic activity in RCC cell lines. P65 and IκB kinase (IKKβ) mRNA and protein expression were detected using quantitative real-time polymerase chain reaction and western blotting, respectively. Nuclear translocation of P65 was observed by immunofluorescence staining after re-expressing hepaCAM. The luciferase reporter assay was applied to validate the transcriptional activity of HIF-1α.
RESULTS: HIF-1α expression was elevated and hepaCAM suppressed in RCC compared with adjacent normal tissues. Furthermore, hepaCAM re-expression significantly decreased glycolytic metabolism in RCC cell lines, and reduced HIF-1α, IKKβ, and P65 expression. The expression of HIF-1α, GLUT1, LDHA, and PKM2 were further reduced with combined hepaCAM overexpression and treatment with the NF-κB inhibitor BAY11-7082, compared to hepaCAM overexpression alone. Additionally, hepaCAM decreased the transcriptional activity of HIF-1α and blocked P65 nuclear translocation by the NF-κB pathway.
CONCLUSION: Our data suggest that hepaCAM suppresses the Warburg effect via the HIF-1α/NF-κB pathway in RCC, which is a facilitating factor in hepaCAM-reduced tumorigenesis.

Hou XM, Yuan SQ, Zhao D, et al.
LDH-A promotes malignant behavior via activation of epithelial-to-mesenchymal transition in lung adenocarcinoma.
Biosci Rep. 2019; 39(1) [PubMed] Free Access to Full Article Related Publications
Lactate dehydrogenase A (LDH-A) is a key enzyme during glycolysis, which increases the synthesis of related proteins and has elevated activity in cancer cells. The role of LDH-A in lung adenocarcinoma (LUAD) progression was investigated in the present study. Expression levels of LDH-A were assessed in LUAD samples, and the relationship between LDH-A expression status and the prognosis of LUAD patients was confirmed. The effect of LDH-A on proliferation, invasion, migration, and colony formation of cancer cells was assessed. We further determined the role of LDH-A in tumor growth

Gao L, He RQ, Wu HY, et al.
Expression Signature and Role of miR-30d-5p in Non-Small Cell Lung Cancer: a Comprehensive Study Based on in Silico Analysis of Public Databases and in Vitro Experiments.
Cell Physiol Biochem. 2018; 50(5):1964-1987 [PubMed] Related Publications
BACKGROUND/AIMS: The purpose of this study was to probe the clinico-pathological significance and the underlying mechanism of miR-30d-5p expression in non-small cell lung cancer (NSCLC).
METHODS: We initially examined the level of miR-30d-5p expression in NSCLC and non-cancer tissues using RT-qPCR. Then, a series of validation analyses including a meta-analysis of data from microarray chips in Gene Expression Omnibus (GEO), data mining of the cancer genome atlas (TCGA) and an integrated meta-analysis incorporating GEO microarray chips, TCGA data, in-house RT-qPCR and literature studies were performed to examine the clinico-pathological value of miR-30d-5p expression in NSCLC. In vitro experiments were further conducted to investigate the impact of miR-30d-5p on NSCLC cell growth. The molecular mechanism by which miR-30d-5p regulates the pathogenesis of NSCLC was probed through a bioinformatics analysis of its target genes. Moreover, dual luciferase reporter assay was conducted to verify the targeting regulatory relationship between miR-30d-5p and CCNE2.
RESULTS: Based on results from RT-qPCR, GEO meta-analysis, TCGA data mining and the integrated meta-analysis incorporating GEO microarray chips, TCGA data, in-house RT-qPCR and literature studies, miR-30d-5p expression was decreased in NSCLC tissues, and patients with NSCLC who presented with lower miR-30d-5p expression tended to display an advanced clinical progression. Significant pathways including the Mucin type O-glycan biosynthesis pathway, cell cycle pathway and cysteine and methionine metabolism pathway (all P< 0.05) revealed potential roles of the target genes of miR-30d-5p in the oncogenesis of NSCLC. Results from in vitro experiments indicated that miR-30d-5p could attenuate proliferation and viability of NSCLC cells. Among the 12 identified hub genes, nine genes including E2F3, CCNE2, SKP2, CDK6, TFDP1, LDHA, GOT2, DNMT3B and ST6GALNAC1 were validated by Pearson's correlation test and the human protein atlas (HPA) database as targets of miR-30d-5p with higher probability. Specifically, dual luciferase reporter assay confirmed that CCNE2 was directly targeted by miR-30d-5p.
CONCLUSION: In summary, miR-30d-5p expression is decreased in NSCLC, and it might play the role as tumor suppressor in NSCLC by regulating target genes.

Wu DH, Liang H, Lu SN, et al.
miR-124 Suppresses Pancreatic Ductal Adenocarcinoma Growth by Regulating Monocarboxylate Transporter 1-Mediated Cancer Lactate Metabolism.
Cell Physiol Biochem. 2018; 50(3):924-935 [PubMed] Related Publications
BACKGROUND/AIMS: Increasing evidence shows that reprogramming of energy metabolism is a hallmark of cancer. Considering the emergence of microRNAs as crucial modulators of cancer, this study aimed to better understand the molecular mechanisms of miR-124 in regulating glycolysis in human pancreatic cancer.
METHODS: RT-PCR was used to investigate the expression of monocarboxylate transporters (MCTs) in pancreatic ductal adenocarcinoma (PDAC) patient samples and the PANC-1 cell line. A public database and immunochemistry were used for comprehensive analysis of MCT1 expression. The targeting of MCT1 by miR-124 was predicted by software and validated for the MCT1 3'-UTR by dual-luciferase reporter analysis. Cell proliferation, apoptosis, migration, xenografting, and the intracellular pH and L-lactate levels were assessed. Hypoxia-inducible factor-α (HIF-1α) and lactate dehydrogenase A (LDH-A) expression levels were determined by RT-PCR and western blotting.
RESULTS: MCT1 expression was higher in PDAC tissue than in normal tissue. Inhibition of MCT1 affected lactate metabolism, resulting in a higher intracellular pH and less proliferation of PANC-1 cells. MCT1 was the target gene of miR-124. In in vitro experiments, miR-124 inhibited the glycolytic activity of PANC-1 cells by targeting MCT1, further decreasing the tumor phenotype by increasing the intracellular pH through LDH-A and HIF-1α. In in vivo experiments, overexpression of miR-124 and silencing of MCT1 significantly inhibited tumor growth.
CONCLUSION: miR-124 inhibits the progression of PANC-1 by targeting MCT1 in the lactate metabolic pathway. Our findings provide novel evidence for further functional studies of miR-124, which might be useful for future therapeutic approaches to PDAC.

Serganova I, Cohen IJ, Vemuri K, et al.
LDH-A regulates the tumor microenvironment via HIF-signaling and modulates the immune response.
PLoS One. 2018; 13(9):e0203965 [PubMed] Free Access to Full Article Related Publications
Previous studies show that LDH-A knockdown reduces orthotopic 4T1 breast tumor lactate and delays tumor growth and the development of metastases in nude mice. Here, we report significant changes in the tumor microenvironment (TME) and a more robust anti-tumor response in immune competent BALB/c mice. 4T1 murine breast cancer cells were transfected with shRNA plasmids directed against LDH-A (KD) or a scrambled control plasmid (NC). Cells were also transduced with dual luciferase-based reporter systems to monitor HIF-1 activity and the development of metastases by bioluminescence imaging, using HRE-sensitive and constitutive promoters, respectively. The growth and metastatic profile of orthotopic 4T1 tumors developed from these cell lines were compared and a primary tumor resection model was studied to simulate the clinical management of breast cancer. Primary tumor growth, metastasis formation and TME phenotype were significantly different in LDH-A KD tumors compared with controls. In LDH-A KD cells, HIF-1 activity, hexokinase 1 and 2 expression and VEGF secretion were reduced. Differences in the TME included lower HIF-1α expression that correlated with lower vascularity and pimonidazole staining, higher infiltration of CD3+ and CD4+ T cells and less infiltration of TAMs. These changes resulted in a greater delay in metastases formation and 40% long-term survivors (>20 weeks) in the LDH-A KD cohort following surgical resection of the primary tumor. We show for the first time that LDH-depletion inhibits the formation of metastases and prolongs survival of mice through changes in tumor microenvironment that modulate the immune response. We attribute these effects to diminished HIF-1 activity, vascularization, necrosis formation and immune suppression in immune competent animals. Gene-expression analyses from four human breast cancer datasets are consistent with these results, and further demonstrate the link between glycolysis and immune suppression in breast cancer.

Zheng XM, Xu CW, Wang F
MiR-33b inhibits osteosarcoma cell proliferation through suppression of glycolysis by targeting Lactate Dehydrogenase A (LDHA).
Cell Mol Biol (Noisy-le-grand). 2018; 64(11):31-35 [PubMed] Related Publications
Osteosarcoma (OS) is one of the most common types of malignant bone tumor in adolescent. MicroRNAs (miRNAs) are widely studied regulatory molecules which play important roles in tumor development, differentiation, growth, invasion, chemosensitivity and cellular metabolism. Recently, miR-33b has been reported to act as a tumor suppressor in osteosarcoma. However, the detailed mechanism of miR-33b in regulating osteosarcoma cell proliferation remains unclear. In this study, we detected miR-33b was significantly downregulated in osteosarcoma tissues compared to their matched adjacent nontumor tissues. The decreased expressions of miR-33b were also found in multiple osteosarcoma cell lines, including MG63, Saos-2, U2OS and SOSP-9607 when compared to normal osteoblast cell line hFOB. Overexpression of miR-33b suppressed U2OS cell proliferation and anaerobic glycolysis. We identified Lactate dehydrogenase-A (LDHA) as a direct target of miR-33b in osteosarcoma tumors and cells by Western blot and luciferase assay. Moreover, inhibition of LDHA significantly suppressed glycolysis and cell proliferation of osteosarcoma cells. Restoration of LDHA in miR-33b-overexpressing osteosarcoma cells reversed the suppressive effect of miR-33b on cell proliferation. In addition, we report a significantly negative correlation between LDHA mRNA and miR-33b expression in osteosarcoma tumors: miR-33b is downregulated in OS tumors with high levels of LDHA (92.9%). Meanwhile, high miR-33b expressions were found majorly in OS tumors with low LDHA mRNA levels (82.4%). This study reveals that miR-33b plays a suppressive role in the regulation of osteosarcoma cell proliferation through direct targeting LDHA. The miR-33b/glycolysis/LDHA axis may contribute to development of therapeutic anti-tumor agents for osteosarcoma.

Ping W, Senyan H, Li G, et al.
Increased Lactate in Gastric Cancer Tumor-Infiltrating Lymphocytes Is Related to Impaired T Cell Function Due to miR-34a Deregulated Lactate Dehydrogenase A.
Cell Physiol Biochem. 2018; 49(2):828-836 [PubMed] Related Publications
BACKGROUND/AIMS: Lactate is one of the products of glycolysis and is a hallmark of the Warburg effect. Glycolysis is found in tumor as well as immune cells. However, the effects of lactate on the function of tumor-infiltrating T cells (TILs) are rarely reported.
METHODS: In the present study, we investigated lactate and other glycolysis-related metabolites within TILs of human gastric cancer (GC). Lactate concentration was determined by liquid chromatography-mass spectrometry. The functional effects and clinical relevance of excessive lactate on T cells were investigated in clinical samples, and the mechanism of increased lactate was explored.
RESULTS: Lactate was significantly increased in GC TILs and related to decreased T helper (Th)1 cells and cytotoxic T lymphocytes (CTLs). Increased lactate within GC TILs was positively correlated with increased lactate dehydrogenase A (LDH)A. Expression of LDHA in GC TILs was also negatively correlated with percentages of Th1 cells and CTLs. Decreased miR-34a expression in GC TILs was responsible for increased expression of LDHA. A hypoxic tumor environment was responsible for decreased miR-34a and lactate-induced impaired immune function.
CONCLUSION: We found that hypoxia decreases miR-34a expression and lose miR-34a regulation on LDHA, thus increasing lactate level within GC TILs and impairing immune function in GC.

Ždralević M, Brand A, Di Ianni L, et al.
Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism.
J Biol Chem. 2018; 293(41):15947-15961 [PubMed] Article available free on PMC after 12/10/2019 Related Publications
Increased glucose consumption distinguishes cancer cells from normal cells and is known as the "Warburg effect" because of increased glycolysis. Lactate dehydrogenase A (LDHA) is a key glycolytic enzyme, a hallmark of aggressive cancers, and believed to be the major enzyme responsible for pyruvate-to-lactate conversion. To elucidate its role in tumor growth, we disrupted both the

Manerba M, Di Ianni L, Govoni M, et al.
The activation of lactate dehydrogenase induced by mTOR drives neoplastic change in breast epithelial cells.
PLoS One. 2018; 13(8):e0202588 [PubMed] Article available free on PMC after 12/10/2019 Related Publications
mTOR kinase and the A isoform of lactate dehydrogenase (LDH-A) are key players controlling the metabolic characteristics of cancer cells. By using cultured human breast cells as a "metabolic tumor" model, we attempted to explore the correlation between these two factors. "Metabolic tumors" are defined as neoplastic conditions frequently associated with features of the metabolic syndrome, such as hyper-insulinemia and hyper-glycemia. MCF-7 cells (a well differentiated carcinoma) and MCF-10A cells (a widely used model for studying normal breast cell transformation) were used in this study. These cells were exposed to known factors triggering mTOR activation. In both treated cultures, we evaluated the link between mTOR kinase activity and the level of LDH expression / function. Furthermore, we elaborated the metabolic changes produced in cells by the mTOR-directed LDH-A up-regulation. Interestingly, we observed that in the non-neoplastic MCF-10A culture, mTOR-directed up-regulation of LDH-A was followed by a reprogramming of cell metabolism, which showed an increased dependence on glycolysis rather than on oxidative reactions. As a consequence, lactate production appeared to be enhanced and cells began to display increased self-renewal and clonogenic power: signals suggestive of neoplastic change. Enhanced clonogenicity of cells was abolished by rapamycin treatment, and furthermore heavily reduced by LDH enzymatic inhibition. These results highlighted a mechanistic link between metabolic alterations and tumorigenesis, whereby suggesting LDH inhibition as a possible chemo-preventive measure to target the metabolic alterations driving neoplastic change.

Chen H, Gao S, Cheng C
MiR-323a-3p suppressed the glycolysis of osteosarcoma via targeting LDHA.
Hum Cell. 2018; 31(4):300-309 [PubMed] Related Publications
Accumulating evidence has demonstrated that there is critical involvement of miRNAs in the initiation and progression of cancers. Here, we showed that miR-323a-3p was significantly down-regulated in osteosarcoma (OS) tissues and cell lines. Overexpression of miR-323a-3p decreased the cell viability, colon formation and induced the apoptosis of OS cells. Using bioinformatics analysis, lactate dehydrogenase A (LDHA) was predicted as one of the down-steam targets of miR-323a-3p. Highly expressed miR-323a-3p significantly decreased both the mRNA and protein levels of LDHA. Inverse correlation between the expression of LDHA and miR-323a-3p was observed in OS tissues. Consistent with the function of LDHA in glycolysis of cancer cells, overexpression of miR-323a-3p attenuated the lactate production of OS cells. These results demonstrated that miR-323a-3p suppressed the growth of OS cells via targeting LDHA and inhibited the glycolysis of OS. This study provides insight into the molecular mechanism of miR-323a-3p in regulating OS.

Zhang H, Li L, Chen Q, et al.
PGC1β regulates multiple myeloma tumor growth through LDHA-mediated glycolytic metabolism.
Mol Oncol. 2018; 12(9):1579-1595 [PubMed] Article available free on PMC after 12/10/2019 Related Publications
Multiple myeloma (MM) is an incurable hematologic malignancy due to inevitable relapse and chemoresistance development. Our preliminary data show that MM cells express high levels of PGC1β and LDHA. In this study, we investigated the mechanism behind PGC1β-mediated LDHA expression and its contribution to tumorigenesis, to aid in the development of novel therapeutic approaches for MM. Real-time PCR and western blotting were first used to evaluate gene expression of PGC1β and LDHA in different MM cells, and then, luciferase reporter assay, chromatin immunoprecipitation, LDHA deletion report vectors, and siRNA techniques were used to investigate the mechanism underlying PGC1β-induced LDHA expression. Furthermore, knockdown cell lines and lines stably overexpressing PGC1β or LDHA lentivirus were established to evaluate in vitro glycolysis metabolism, mitochondrial function, reactive oxygen species (ROS) formation, and cell proliferation. In addition, in vivo xenograft tumor development studies were performed to investigate the effect of PGC1β or LDHA expression on tumor growth and mouse survival. We found that PGC1β and LDHA are highly expressed in different MM cells and LDHA is upregulated by PGC1β through the PGC1β/RXRβ axis acting on the LDHA promoter. Overexpression of PGC1β or LDHA significantly potentiated glycolysis metabolism with increased cell proliferation and tumor growth. On the other hand, knockdown of PGC1β or LDHA largely suppressed glycolysis metabolism with increased ROS formation and apoptosis rate, in addition to suppressing tumor growth and enhancing mouse survival. This is the first time the mechanism underlying PGC1β-mediated LDHA expression in multiple myeloma has been identified. We conclude that PGC1β regulates multiple myeloma tumor growth through LDHA-mediated glycolytic metabolism. Targeting the PGC1β/LDHA pathway may be a novel therapeutic strategy for multiple myeloma treatment.

Zhou S, Min Z, Sun K, et al.
miR‑199a‑3p/Sp1/LDHA axis controls aerobic glycolysis in testicular tumor cells.
Int J Mol Med. 2018; 42(4):2163-2174 [PubMed] Related Publications
Aerobic glycolysis is one of the characteristics of tumor metabolism and contributes to the development of tumors. Studies have identified that microRNA (miRNA/miR) serves an important role in glucose metabolism of tumors. miR‑199a‑3p is a member of the miR‑199a family that controls the outcomes of cell survival and death processes, and previous studies have indicated that the expression of miR‑199a‑3p is low and may be an inhibitor in several cancer types, including testicular tumors. The present study discussed the role and underlying mechanism of miR‑199a‑3p in aerobic glycolysis of Ntera‑2 cells and identified its downstream factors. Firstly, miR‑199a‑3p exhibited an inhibitory effect on lactic acid production, glucose intake, and reactive oxygen species (ROS) and adenosine 5'‑triphosphate (ATP) levels in Ntera‑2 cells. Then, using bioinformatics, recombinant construction and a dual luciferase reporter gene system, transcription factor Specificity protein 1 (Sp1) was determined as the direct target of miR‑199a‑3p. Also, downregulation of Sp1 by RNA interference decreased lactic acid production, glucose intake, and ROS and ATP levels in Ntera‑2 cells. Subsequently, through a functional rescue experiment, it was identified that the overexpression of Sp1 may abate the inhibition of miR‑199a‑3p on glucose metabolism, with the exception of ATP level, suggesting a reciprocal association between Sp1 and miR‑199a‑3p. Finally, it was determined that miR‑199a‑3p overexpression and Sp1 knockdown decreased lactate dehydrogenase A (LDHA) protein expression, which indicated that LDHA is a downstream target of the miR‑199a‑3p/Sp1 signaling pathway. To additionally verify the regulation of LDHA expression by 199a‑3p/Sp1, a LDHA promoter reporter plasmid was generated and the high activity of the promoter, which contained 3 potential Sp1 binding elements, was confirmed. In addition, the overexpression of Sp1 led to the increased activity of the LDHA promoter, whereas knockdown of Sp1 exhibited the opposite effect. Therefore, the results of the present study demonstrated that miR‑199a‑3p can inhibit LDHA expression by downregulating Sp1, and provided mechanistic evidence supporting the existence of a novel miR‑199a‑3p/Sp1/LDHA axis and its critical contribution to aerobic glycolysis in testicular cancer cells.

Chen J, Cui B, Fan Y, et al.
Protein kinase D1 regulates hypoxic metabolism through HIF-1α and glycolytic enzymes incancer cells.
Oncol Rep. 2018; 40(2):1073-1082 [PubMed] Related Publications
Protein kinase D1 (PKD1), one of the protein kinase D (PKD) family members, plays a prominent role in multiple bio-behaviors of cancer cells. Low pH and hypoxia are unique characteristics of the tumor microenvironment. The aim of this study was to investigate the role and mechanism of PKD1 in regulating metabolism in the human tongue squamous cell carcinoma (TSCC) cell line SCC25 under a hypoxic condition, as well as growth and apoptosis. Here, we found that hypoxia not only induced the expression of HIF-1α, but also induced the expression and activation of PKD1. Moreover, we inhibited the expression of PKD1 by shRNA interference, and the growth of SCC25 cells under hypoxia was significantly decreased, as well as the expression of HIF-1α, while the percentage of apoptotic SCC25 cells was increased. Furthermore, stable silencing of PKD1 in SCC25 cells under a hypoxic condition decreased glucose uptake, lactate production and glycolytic enzyme (GLUT-1 and LDHA) expression, as well as reduced the phosphorylation of p38 MAPK. The results revealed that following inhibition of the expression of PKD1 under a hypoxic condition, the growth and metabolism of the SCC25 cells were significantly suppressed. In contrast, when PKD1 was overexpressed in SCC25 cells, the results were completely reversed, except for growth and apoptosis. Taken together, our results demonstrated that PKD1 not only regulates the hypoxic glycolytic metabolism of cancer cells via regulation of the expression of HIF-1α and glycolytic enzymes, but is also involved in the remodeling of the acidic tumor microenvironment. This study suggests that PKD1 may be a potential target for microenvironment-directed tumor biotherapy.

Wang M, Wang W, Wang J, Zhang J
MiR-182 promotes glucose metabolism by upregulating hypoxia-inducible factor 1α in NSCLC cells.
Biochem Biophys Res Commun. 2018; 504(2):400-405 [PubMed] Related Publications
OBJECTIVE: This study aims to demonstrate the role of miR-182 in the glucose metabolism of NSCLC cells and the potential mechanism.
METHODS: MTT Cytotoxicity Assay was used to measure the function of differentially expressed miR-182 on two NSCLC cell lines proliferation. Metabolite analysis was introduced to monitor the glucose consumption, lactate release and glycolytic intermediate metabolites. The mRNA level of critical genes involved in glycolysis was detected by qRT-PCR. The 3'UTRs of predicted gene with a miR-182 binding site and their seed-sequence-mutated version were cloned downstream to the ORF of a Renilla luciferase reporter gene and the ability of miR-182 to downregulate luciferase expression was assessed.
RESULTS: MiR-182 had significantly improved proliferation of NSCLC cell lines. Metabolite analysis of the cells with strengthened miR-182 revealed significantly increased glucose consumption and lactate release, as well as glycolytic intermediate metabolites, or conversely. Among a panel of genes controlling glucose metabolism, miR-182 exhibited significantly influence on ENO1, GLUT1, HIF-1α, HK1, HK2, LDHA and PDK1, especially HIF-1α. For the predicted target gene HIF1AN, the wild-type but not mutated 3'UTR, responded to miR-182  b y directing ∼45% reduction of reporter gene expression.
CONCLUSION: MiR-182 promotes glucose metabolism by upregulating HIF-1α in NSCLC cells.

Das L, Vinayak M
Curcumin Modulates Glycolytic Metabolism and Inflammatory Cytokines via Nrf 2 in Dalton's Lymphoma Ascites Cells In Vivo.
Anticancer Agents Med Chem. 2018; 18(12):1779-1791 [PubMed] Related Publications
BACKGROUND: Warburg effect is characterized by the upregulation of HIF-1 and c-Myc regulated LDH-A, even aerobically owing to hypoxic environment and alterations in oncogenes or tumor suppressor genes in cancer. Reduced antioxidant defence system in transformed cells favors higher ROS production, which plays a significant role in carcinogenesis and acts as an important regulator of NF-κB. In addition, various proinflammatory cytokines play active roles in maintenance and progression of cancer.
OBJECTIVE: In continuation with our previous studies illustrating the long-term effect of curcumin using a liver tissue, present study was aimed to elucidate the anti-cancer effect of curcumin due to its long-term effect in the regulation of glycolytic metabolism, NF-κB activation, expression of proinflammatory cytokines in Dalton's lymphoma ascites cells in vivo.
METHOD: Spectrophotometric assays, RT-PCR and EMSA were performed to address the problems.
RESULTS: Results revealed that curcumin-induced activation of antioxidant enzymes, Nrf2 and downstream signaling gene NQO1. Reduction of oxidative stress, down-regulation of NADPH: Oxidase, decline in ROS and H2O2 levels were also observed. Activation of NF-κB, expression of COX2, HIF-1α and cMyc, as well as expression and activity of LDH-A were significantly reduced by curcumin. Besides, expression of proinflammatory cytokines was significantly down-regulated via reducing binding of nuclear protein with AP-1, NF-IL6, ETS and NF-κB binding elements of IL-1α, IL-1β, TNF-α and IL-6 promoters, respectively.
CONCLUSION: Curcumin downregulates glycolytic metabolism via modulation of stress-activated genes and reduces oxidative stress by enhancing antioxidant defence system, which inhibits activation of NF-κB signaling and expression of proinflammatory cytokines in Dalton's lymphoma ascites cells in vivo.

Kleszcz R, Paluszczak J, Krajka-Kuźniak V, Baer-Dubowska W
The inhibition of c-MYC transcription factor modulates the expression of glycolytic and glutaminolytic enzymes in FaDu hypopharyngeal carcinoma cells.
Adv Clin Exp Med. 2018; 27(6):735-742 [PubMed] Related Publications
BACKGROUND: Cancer cells are dependent on aerobic glycolysis for energy production and increased glutamine consumption. HIF-1α and c-MYC transcription factors regulate the expression of glycolytic and glutaminolytic genes. Their activity may be repressed by SIRT6. Head and neck carcinomas show frequent activation of c-MYC function and SIRT6 down-regulation, which contributes to a strong dependence on glucose and glutamine availability.
OBJECTIVES: The aim of this study was to compare the influence of HIF-1α and c-MYC inhibitors (KG-548 and 10058-F4, respectively) and potential SIRT6 inducers - resveratrol and its synthetic derivative DMU-212 with the effect of glycolysis and glutaminolysis inhibitors (2-deoxyglucose and aminooxyacetic acid, respectively) on the metabolism and expression of metabolic enzymes in FaDu hypopharyngeal carcinoma cells.
MATERIAL AND METHODS: Cell viability was assessed by means of an MTT assay. Quantitative PCR was performed to evaluate the expression of SIRT6, HIF-1α, c-MYC, GLUT1, SLC1A5, HK2, PFKM, PKM2, LDHA, GLS, and GDH. The release of glycolysis and glutaminolysis end-products into the culture medium - lactate and ammonia, respectively - was assessed using standard colorimetric assays.
RESULTS: Lactate production was significantly inhibited by 10058-F4, KG-548, and 2-deoxyglucose. Moreover, 10058-F4 strongly reduced the amount of ammonia release. The effects of 10058-F4 activity can be attributed to a reduction in the expression of PKM2 and LDHA. On the other hand, the induction of SIRT6 expression by resveratrol and DMU-212 was not associated with significant modulation of the expression of metabolic enzymes.
CONCLUSIONS: Overall, the results of this study indicate that the inhibition of c-MYC may be considered to be a promising strategy of the modulation of cancer-related metabolic changes in head and neck carcinomas.

Ishikawa H, Xu L, Sone K, et al.
Hypoxia Induces Hypoxia-Inducible Factor 1α and Potential HIF-Responsive Gene Expression in Uterine Leiomyoma.
Reprod Sci. 2019; 26(3):428-435 [PubMed] Related Publications
Uterine leiomyoma is characterized by abundant extracellular matrix and broad avascular areas, both constantly resulting in hypoxia, suggesting some hypoxia-induced response function. Here, we examined whether hypoxia-inducible factor 1α (HIF-1α)- mediated hypoxic response function in uterine leiomyoma. Immunoblotting detected higher basal HIF-1α protein expression in nuclear extracts from uterine leiomyoma tissues than in those from the adjacent myometrium ( P = .0011). Immunohistochemical analysis revealed the presence of HIF-1α-positive cellular components in both leiomyoma and surrounding myometrial tissues. Hypoxia decreased HIF-1α messenger RNA (mRNA), but increased HIF-1α protein in primary culture leiomyoma smooth muscle cells, and caused translocation of HIF-1α from the cytoplasm to the nucleus. Hypoxia upregulated mRNAs of 6 potential HIF-responsive genes ( ALDOA, ENO1, LDHA, VEGFA, PFKFB3, and SLC2A1). Chromatin immunoprecipitation quantitative polymerase chain reaction revealed that hypoxia significantly increased recruitment of HIF-1α binding to putative HIF-responsive elements in the HIF-responsive genes, suggesting that the HIF transcriptional complex initiates hypoxia-induced transcription of HIF-responsive genes. These results demonstrated a HIF-1α-mediated hypoxic response in uterine leiomyoma.

Zhang C, Cai T, Zeng X, et al.
Astragaloside IV reverses MNNG-induced precancerous lesions of gastric carcinoma in rats: Regulation on glycolysis through miRNA-34a/LDHA pathway.
Phytother Res. 2018; 32(7):1364-1372 [PubMed] Related Publications
This study was designed to investigate the precancerous lesions of gastric carcinoma (PLGC)-reversing mechanisms of astragaloside IV (ASIV) in N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PLGC rats. All rats were sacrificed after 10-week treatment. Gastric tissue was analyzed by using histopathology and electron microscope. To be fully evidenced, LDHA, p53, TIGAR, MCT1, MCT4, HIF-1α, CD147, and miRNA-34a were detected by Western blotting and Real-time Quantitative polymerase chain reaction (RT-qPCR). As histopathology and electron microscope showed, it can be clearly observed that the area of dysplasia was reduced in ASIV groups, indicating that MNNG-induced PLGC was markedly reversed by ASIV. Moreover, compared with model group, a significant decrease in gene expressions of LDHA, MCT1, MCT4, HIF-1α, CD147, and TIGAR was observed whereas miRNA-34a level was increased in ASIV groups. A significant up-regulation induced by MNNG in protein levels of LDHA, MCT1, MCT4, HIF-1α, and CD147 was attenuated in rats treated with ASIV. In contrast, the decreased expression of TIGAR was restored by ASIV. Interestingly, up-regulation of p53 expression induced by MNNG was further increased in ASIV groups. In brief, these results implied that abnormal glycolysis was relieved by ASIV via regulation of the expressions of LDHA, p53, TIGAR, MCT1, MCT4, HIF-1α, CD147, and miRNA-34a.

He Y, Chen X, Yu Y, et al.
LDHA is a direct target of miR-30d-5p and contributes to aggressive progression of gallbladder carcinoma.
Mol Carcinog. 2018; 57(6):772-783 [PubMed] Related Publications
Gallbladder cancer (GBC) is the most general biliary tract malignancy, with poor prognosis due to rapid tumor progression and lack of specific symptoms. Lactate dehydrogenase-A (LDHA) can promote Warburg effect to produce lactate and Adenosine Triphosphate (ATP) in aerobic condition, which contributes to oncogenesis metastasis and drug resistance in various cancers. However, the expression and functional role of LDHA in GBC are largely unknown. We determined that LDHA was over-expressed in GBC tumor tissues compared with normal tissues, which was also an independent prognostic factor for the overall survival of GBC patients by tissue microarrays analysis. In addition, RNAi-mediated LDHA silencing could suppress the GBC cell proliferation, invasion, colony formation and glycolysis while promoting cell apoptosis in vitro. Similar results were observed in GBC cells treated with LDHA specific inhibitor FX11. Moreover, we confirmed that knockdown of LDHA could inhibit tumor growth in vivo. Additionally, we found that the 3'-untranslated region (3'-UTR) of LDHA mRNA was the direct target of microRNA-30d-5p (miR-30d-5p), which was low expressed in GBC tissues and associated with poor prognosis of GBC patients. Our findings disclose a novel role for miR-30d-5p/LDHA axis contribute to aggressive progression by reprogramming the metabolic process in GBC cells, and suggest a potential application of miR-30d-5p/LDHA axis in prognosis prediction and GBC treatment.

Mao L, Chen Q, Gong K, et al.
Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells.
Oncol Rep. 2018; 39(5):2436-2442 [PubMed] Related Publications
Hyperactivated glucose uptake and glycolytic metabolism are considered as a hallmark of cancer. Berberine, a natural alkaloid with tumor‑selective anticancer effects, has been shown to promote glucose uptake in metabolic tissues and cells. However, whether and how berberine regulates the glucose metabolism of cancer cells are still poorly understood. In the present study, we revealed that berberine, which suppressed the growth of colon cancer cell lines HCT116 and KM12C, greatly inhibited the glucose uptake and the transcription of glucose metabolic genes, GLUT1, LDHA and HK2 in these two cell lines as assessed by RT‑qPCR. A mechanistic study further indicated that the protein expression but not mRNA transcription of HIF‑1α, a well‑known transcription factor critical for dysregulated cancer cell glucose metabolism, was dramatically inhibited in berberine‑treated colon cancer cell lines. Using western blot analysis, this regulation appears to occur via protein synthesis but not protein stability as blockade of HIF‑1α protein degradation by hypoxia mimic desferrioxamine (DFX) or proteasome inhibitor MG132 did not affect berberine's effect. In addition, mTOR signaling previously reported to regulate HIF‑1α protein synthesis was further found to be suppressed by berberine. Taken together, our results indicated that berberine inhibits overactive glucose metabolism of colon cancer cells via suppressing mTOR‑depended HIF‑1α protein synthesis, which provided not only a novel mechanism involved in berberine's tumor‑specific toxicity but also a theoretical basis for the development of berberine for colon cancer treatment.

Fang B, Zhang M, Ge KS, et al.
α-Lactalbumin-oleic acid complex kills tumor cells by inducing excess energy metabolism but inhibiting mRNA expression of the related enzymes.
J Dairy Sci. 2018; 101(6):4853-4863 [PubMed] Related Publications
Previous studies have demonstrated that the anti-tumor α-lactalbumin-oleic acid complex (α-LA-OA) may target the glycolysis of tumor cells. However, few data are available regarding the effects of α-LA-OA on energy metabolism. In this study, we measured glycolysis and mitochondrial functions in HeLa cells in response to α-LA-OA using the XF flux analyzer (Seahorse Bioscience, North Billerica, MA). The gene expression of enzymes involved in glycolysis, tricarboxylic acid cycle, electron transfer chain, and ATP synthesis were also evaluated. Our results show that α-LA-OA significantly enhanced the basal glycolysis and glycolytic capacity. Mitochondrial oxidative phosphorylation, including the basal respiration, maximal respiration, spare respiratory capacity and ATP production were also improved in response to α-LA-OA. The enhanced mitochondrial functions maybe partly due to the increased capacity of utilizing fatty acids and glutamine as the substrate. However, the gene expressions of pyruvate kinase M2, lactate dehydrogenase A, aconitate hydratase, and isocitrate dehydrogenase 1 were inhibited, suggesting an insufficient ability for the glycolysis process and the tricarboxylic acid cycle. The increased expression of acetyl-coenzyme A acyltransferase 2, a central enzyme involved in the β-oxidation of fatty acids, would enhance the unbalance due to the decreased expression of electron transfer flavoprotein β subunit, which acts as the electron acceptor. These results indicated that α-LA-OA may induce oxidative stress due to conditions in which the ATP production is exceeding the energy demand. Our results may help clarify the mechanism of apoptosis induced by reactive oxygen species and mitochondrial destruction.

Kim S, Lee E, Jung J, et al.
microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer.
Oncogene. 2018; 37(22):2982-2991 [PubMed] Article available free on PMC after 12/10/2019 Related Publications
MicroRNA is an endogenous, small RNA controlling multiple target genes and playing roles in various biological processes including tumorigenesis. Here, we addressed the function of miR-155 using LC-MS/MS-based metabolic profiling of miR-155 deficient breast cancer cells. Our results revealed the loss of miR-155 hampers glucose uptake and glycolysis, via the down-regulation of glucose transporters and metabolic enzymes including HK2, PKM2, and LDHA. We showed this is due to the down-regulation of cMYC, controlled through phosphoinositide-3-kinase regulatory subunit alpha (PIK3R1)-PDK1/AKT-FOXO3a pathway. UTR analysis of the PIK3R1 and FOXO3a indicated miR-155 directly represses these genes. A stable expression of miR-155 in patient-derived cells (PDCs) showed activated glucose metabolism whereas a stable inhibition of miR-155 reduced in vivo tumor growth with retarded glucose metabolism. Furthermore, analysis of 50 triple-negative breast cancer (TNBC) specimens and specific uptake value (SUV) of PET images revealed a positive correlation between miR-155 level and glucose usage in human breast tumors via PIK3R1-PDK/AKT-FOXO3a-cMYC axis. Collectively, these data demonstrate the miR-155 is a key regulator of glucose metabolism in breast cancer.

Zhang M, Liu T, Sun H, et al.
Pim1 supports human colorectal cancer growth during glucose deprivation by enhancing the Warburg effect.
Cancer Sci. 2018; 109(5):1468-1479 [PubMed] Article available free on PMC after 12/10/2019 Related Publications
Cancer cells metabolize glucose mainly by glycolysis and are well adapted to metabolic stress. Pim1 is an oncogene that promotes colorectal cancer (CRC) growth and metastasis, and its expression is positively correlated with CRC progression. However, the mechanism underlying Pim1 overexpression during CRC progression and the role of Pim1 in CRC metabolism remains unclear. In the present study, we discovered that Pim1 expression was significantly upregulated in response to glucose deprivation-induced metabolic stress by AMP-activated protein kinase signaling. Pim1 promoted CRC cell proliferation in vitro and tumorigenicity in vivo. Clinical observations showed that Pim1 expression was higher in CRC tissues than in adjacent normal tissues. Pim1 overexpression in CRC tissues not only predicted CRC prognosis in patients but also showed a positive relationship with

Tang D, Xu L, Zhang M, et al.
Metformin facilitates BG45‑induced apoptosis via an anti‑Warburg effect in cholangiocarcinoma cells.
Oncol Rep. 2018; 39(4):1957-1965 [PubMed] Related Publications
Cholangiocarcinoma (CCA) is a highly lethal malignancy with an often late diagnosis and consequent poor prognosis. Chemotherapy is the only therapeutic strategy for most patients. Compared to normal cells, tumor cells preferentially metabolize glucose to lactate, even in aerobic conditions. Such metabolic alterations not only support the growth and invasion of tumor cells, but also promote their chemoresistance. The purpose of our study was to explore the role of metformin in regulating the metabolism of CCA, as well as to investigate whether metformin could act as a chemosensitizer of the HDAC3 inhibitor BG45, and therefore have potential for the treatment of CCA. Through bioinformatic analysis, we found that aberrant metabolism contributed to the proliferation of CCA cells. Seahorse XF96 Extracellular Flux Analyzer analysis and lactate production analysis showed that metformin could act as a suppressor of the Warburg effect in CCA cells. Western blotting showed that metformin decreased the expression of LDHA, which plays a key role in the Warburg effect. However, suppression of the Warburg effect was not sufficient to induce CCA cellular apoptosis. According to our previous research, which showed that an HDAC3 inhibitor (MI192) was involved in CCA apoptosis, we observed that metformin combined with BG45 (a novel specific HDAC3 inhibitor) effectively induced the apoptosis of CCA cells in vitro. Furthermore, in vivo experiments revealed that the combined treatment with metformin and BG45 markedly reduced CCA growth in a CCA xenograft model. Our data revealed that reversing the Warburg effect with metformin sensitizes cells to the antitumor effects of HDAC3 inhibitors. This provides a rationale for using the combination of metformin and BG45 as a new therapeutic strategy in the treatment of CCA.

Chen S, Chen X, Shan T, et al.
MiR-21-mediated Metabolic Alteration of Cancer-associated Fibroblasts and Its Effect on Pancreatic Cancer Cell Behavior.
Int J Biol Sci. 2018; 14(1):100-110 [PubMed] Article available free on PMC after 12/10/2019 Related Publications
In this study, we investigated whether the metabolic alteration of

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LDHA, Cancer Genetics Web: http://www.cancer-genetics.org/LDHA.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999