PDGFB

Gene Summary

Gene:PDGFB; platelet derived growth factor subunit B
Aliases: SIS, SSV, IBGC5, PDGF2, c-sis, PDGF-2
Location:22q13.1
Summary:This gene encodes a member of the protein family comprised of both platelet-derived growth factors (PDGF) and vascular endothelial growth factors (VEGF). The encoded preproprotein is proteolytically processed to generate platelet-derived growth factor subunit B, which can homodimerize, or alternatively, heterodimerize with the related platelet-derived growth factor subunit A. These proteins bind and activate PDGF receptor tyrosine kinases, which play a role in a wide range of developmental processes. Mutations in this gene are associated with meningioma. Reciprocal translocations between chromosomes 22 and 17, at sites where this gene and that for collagen type 1, alpha 1 are located, are associated with dermatofibrosarcoma protuberans, a rare skin tumor. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:platelet-derived growth factor subunit B
Source:NCBIAccessed: 29 August, 2019

Ontology:

What does this gene/protein do?
Show (88)
Pathways:What pathways are this gene/protein implicaed in?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PDGFB (cancer-related)

Syafruddin SE, Rodrigues P, Vojtasova E, et al.
A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma.
Nat Commun. 2019; 10(1):1152 [PubMed] Free Access to Full Article Related Publications
Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.

Kalimutho M, Sinha D, Mittal D, et al.
Blockade of PDGFRβ circumvents resistance to MEK-JAK inhibition via intratumoral CD8
J Exp Clin Cancer Res. 2019; 38(1):85 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Despite the increasing progress in targeted and immune based-directed therapies for other solid organ malignancies, currently there is no targeted therapy available for TNBCs. A number of mechanisms have been reported both in pre-clinical and clinical settings that involve inherent, acquired and adaptive resistance to small molecule inhibitors. Here, we demonstrated a novel resistance mechanism in TNBC cells mediated by PDGFRβ in response to JAK2 inhibition.
METHODS: Multiple in vitro (subG1, western blotting, immunofluorescence, RT-PCR, Immunoprecipitation), in vivo and publically available datasets were used.
RESULTS: We showed that TNBC cells exposed to MEK1/2-JAK2 inhibitors exhibit resistant colonies in anchorage-independent growth assays. Moreover, cells treated with various small molecule inhibitors including JAK2 promote PDGFRβ upregulation. Using publically available databases, we showed that patients expressing high PDGFRβ or its ligand PDGFB exhibit poor relapse-free survival upon chemotherapeutic treatment. Mechanistically we found that JAK2 expression controls steady state levels of PDGFRβ. Thus, co-blockade of PDGFRβ with JAK2 and MEK1/2 inhibitors completely eradicated resistant colonies in vitro. We found that triple-combined treatment had a significant impact on CD44
CONCLUSION: These findings reveal a novel regulatory role of JAK2-mediated PDGFRβ proteolysis and provide an example of a PDGFRβ-mediated resistance mechanism upon specific target inhibition in TNBC.

Llombart B, Serra C, Requena C, et al.
Guidelines for Diagnosis and Treatment of Cutaneous Sarcomas: Dermatofibrosarcoma Protuberans.
Actas Dermosifiliogr. 2018; 109(10):868-877 [PubMed] Related Publications
Sarcomas comprise a broad group of tumors, many of whose biological behavior and aggressiveness differ from one type to another. The therapeutic approach is generally multidisciplinary and often complex. Developments in surgical and oncological dermatology during the last few decades have positioned dermatologists as specialists in the diagnosis and treatment of skin cancer. The aim of this article is to review the main soft tissue sarcomas that typically affect the skin. Dermatofibrosarcoma protuberans is a low-grade malignant sarcoma. It exhibits slow-growth, is locally invasive, and has low metastatic potential (<3%). Mohs micrographic surgery is the treatment of choice. The COL1A1-PDGFB translocation should be analyzed in cases of unclear diagnosis and when it is necessary to identify candidates for tyrosine kinase inhibitors. Imatinib is indicated for the treatment of locally advanced and metastatic dermatofibrosarcoma protuberans.

Oyama R, Kito F, Qiao Z, et al.
Establishment of novel patient-derived models of dermatofibrosarcoma protuberans: two cell lines, NCC-DFSP1-C1 and NCC-DFSP2-C1.
In Vitro Cell Dev Biol Anim. 2019; 55(1):62-73 [PubMed] Related Publications
Dermatofibrosarcoma protuberans (DFSP) is a common type of dermal sarcoma, characterized by the presence of the unique collagen type I alpha 1 chain (COL1A1)-PDGFB translocation, which causes constitutive activation of the platelet-derived growth factor β (PDGFB) signaling pathway. Patients with DFSP exhibit frequent local recurrence, and novel therapeutic approaches are required to achieve better clinical outcomes. Patient-derived cancer cell lines are essential in the preclinical research. Here, we established novel patient-derived DFSP cell lines from two patients with DFSP and designated these cell lines NCC-DFSP1-C1 and NCC-DFSP2-C1. Tumors of the two patients with DFSP had COL1A1-PDGFB translocations with distinct COL1A1 breakpoints, e.g., in exons 33 and 15, and the translocations were preserved in the established cell lines. NCC-DFSP1-C1 and NCC-DFSP2-C1 cells exhibited similar morphology and limited capability of proliferation in vitro, forming spheroids when seeded on low-attachment tissue culture plates. In contrast, NCC-DFSP1-C1 cells had considerably higher invasive capability than NCC-DFSP2-C1 cells. Overall proteome contents were similar between NCC-DFSP1-C1 and NCC-DFSP2-C1 cells. Notably, in vitro screening studies identified anticancer drugs that showed antiproliferative effects at considerably low concentrations in the DFSP cell lines. Bortezomib, mitoxantrone, ponatinib, and romidepsin were more cytotoxic to NCC-DFSP1-C1 cells than to NCC-DFSP2-C1 cells. These cell lines will be useful tools for developing novel therapeutic strategies to treat DFSP.

Jitariu AA, Raica M, Cîmpean AM, Suciu SC
The role of PDGF-B/PDGFR-BETA axis in the normal development and carcinogenesis of the breast.
Crit Rev Oncol Hematol. 2018; 131:46-52 [PubMed] Related Publications
PDGFs/PDGFRs axis is documented as an important tumor-promoting agent and potential therapeutic target for several human carcinomas, including breast cancer. However, little is known about the role played by the PDGF family members in the normal development of the breast tissue, breast carcinogenesis and tumor-microenvironment dynamics Despite its potent pro-lymphangiogenic effects, PDGF-B/PDGFR-beta axis remains controversial and incompletely elucidated in the field of breast cancer, with emphasis to its differential implications in breast cancer molecular subtypes. Although some data are available concerning this aspect, little or no information is found regarding the role of the PDGF-B/PDGFR-beta axis in rare and aggressive types of breast cancers, such as triple negative breast cancers (TNBCs) and its associated subtypes This review attempted to gather as many data as possible concerning PDGFs family members in the normal breast tissue and in breast carcinogenesis with special focus on their role in diagnosis and therapeutic approach.

Suurmeijer AJH, Kao YC, Antonescu CR
New advances in the molecular classification of pediatric mesenchymal tumors.
Genes Chromosomes Cancer. 2019; 58(2):100-110 [PubMed] Related Publications
Pediatric soft tissue tumors are relatively rare and show significant overlap in morphology and immunoprofile, often posing diagnostic and management challenges. Thus, their classification remains often subjective or lumped under "unclassified categories," as a number of lesions lack objective and reproducible criteria in diagnosis. Although in a subset of cases immunohistochemistry has been proved useful to identify a specific line of differentiation, most tumors lack a readily defined histogenesis, being characterized by a rather non-specific immunoprofile. Furthermore, tumors with an ambiguous diagnosis are difficult to grade and their risk of malignancy or clinical management remains uncertain. Advances in molecular genetics, including the more wide application of next generation sequencing in routine clinical practice, have improved diagnosis and refined classification based on objective molecular markers. Importantly, some soft tissue tumors in children are characterized by recurrent gene fusions involving either growth factors (eg, PDGFB) or protein kinases (eg, ALK, ROS, NTRK, BRAF), which have paved the way for new targeted treatments that block the respective upregulated downstream pathways. However, the majority of gene fusions or mutations detected in soft tissue tumors result in an abnormal function of transcription factors or chromatin remodeling. The present review focuses on the latest genetic discoveries in the spectrum of both benign and malignant pediatric soft tissue neoplasia. These genetic abnormalities promise to provide relevant insight for their proper classification, prognosis, and treatment. The entities discussed herein are grouped either based on their shared genetic mechanism or based on their presumed line of differentiation.

Tallegas M, Fraitag S, Binet A, et al.
Novel KHDRBS1-NTRK3 rearrangement in a congenital pediatric CD34-positive skin tumor: a case report.
Virchows Arch. 2019; 474(1):111-115 [PubMed] Related Publications
Cutaneous spindle-cell neoplasms in adults as well as children represent a frequent dilemma for pathologists. Along this neoplasm spectrum, the differential diagnosis with CD34-positive proliferations can be challenging, particularly concerning neoplasms of fibrohistiocytic and fibroblastic lineages. In children, cutaneous and superficial soft-tissue neoplasms with CD34-positive spindle cells are associated with benign to intermediate malignancy potential and include lipofibromatosis, plaque-like CD34-positive dermal fibroma, fibroblastic connective tissue nevus, and congenital dermatofibrosarcoma protuberans. Molecular biology has been valuable in showing dermatofibrosarcoma protuberans and infantile fibrosarcoma that are characterized by COL1A1-PDGFB and ETV6-NTRK3 rearrangements respectively. We report a case of congenital CD34-positive dermohypodermal spindle-cell neoplasm occurring in a female infant and harboring a novel KHDRBS1-NTRK3 fusion. This tumor could belong to a new subgroup of pediatric cutaneous spindle-cell neoplasms, be an atypical presentation of a plaque-like CD34-positive dermal fibroma, of a fibroblastic connective tissue nevus, or represent a dermatofibrosarcoma protuberans with an alternative gene rearrangement.

Olson N, Rouhi O, Zhang L, et al.
A novel case of an aggressive superficial spindle cell sarcoma in an adult resembling fibrosarcomatous dermatofibrosarcoma protuberans and harboring an EML4-NTRK3 fusion.
J Cutan Pathol. 2018; 45(12):933-939 [PubMed] Related Publications
A subset of soft tissue sarcomas often harbors recurrent fusions involving protein kinases. While some of these fusion events have shown utility in arriving at a precise diagnosis, novel fusions in otherwise difficult to classify sarcomas continue to be identified. We present a case of a 40-year-old female who noted a lower back nodule in 2010 that was initially labeled as a dermatofibrosarcoma protuberans with fibrosarcomatous transformation. The lesion recurred the following year and metastasized to the groin 6 years later. Because of some morphologic peculiarities, molecular characterization was pursued in the metastatic focus, which revealed the neoplasm was negative for the COL1A1-PDGFB fusion. However, anchored multiplex polymerase chain reaction for targeted next-generation sequencing (Archer Dx) detected an EML4-NTRK3 fusion, which was confirmed by reverse transcription-PCR, Sanger sequencing and RNA sequencing analysis of the recurrent and metastatic specimens. Although various soft tissue neoplasms involving fusions with NTRK genes are well-reported, the current case could not be easily classified in any of the established entities. Nevertheless, it raises interesting questions regarding the importance of classification, prognosis, and treatment for some of these tyrosine kinase fusion-driven sarcomas.

Linos K, Kozel JA, Hurley MY, Andea AA
Review of the medical literature and assessment of current utilization patterns regarding the use of two common fluorescence in situ hybridization assays in the diagnosis of dermatofibrosarcoma protuberans and clear cell sarcoma.
J Cutan Pathol. 2018; 45(12):905-913 [PubMed] Related Publications
BACKGROUND: Dermatofibrosarcoma protuberans (DFSP) is a tumor of intermediate malignancy, which in selected circumstances can pose difficulty in diagnosis. Clear cell sarcoma (CCS) is a very rare aggressive soft tissue sarcoma that can be difficult to distinguish histologically from melanoma.
METHODS: The current literature on t(17;22) COL1A1-PDGFB fluorescence in situ hybridization (FISH) assay in DFSP was reviewed. Also reviewed was the current literature on dual color break-apart EWSR1 FISH assay in CCS. Finally, the current utilization patterns of these tests was assessed in attendees of the American Society of Dermatopathology annual meeting (Chicago, 2016).
RESULTS: The literature indicates that (17;22) COL1A1-PDGFB FISH assay has limited value for classic DFSP, where the diagnosis can be established by routine morphology and immunohistochemistry. Given the high specificity of the EWSR1 FISH assay and significant complexity in the diagnosis of CCS, this ancillary study is helpful in distinguishing CCS from melanoma.
CONCLUSIONS: In attendees, t(17;22) COL1A1-PDGFB FISH testing for classic cases of DFSP is appropriately not being used by respondents. However, the literature sustains that it is useful in selected circumstances in which a definitive diagnosis is challenging. The majority of respondents are utilizing the EWSR1 FISH assay to distinguish CSS from melanoma as is supported by the literature.

Dickson BC, Hornick JL, Fletcher CDM, et al.
Dermatofibrosarcoma protuberans with a novel COL6A3-PDGFD fusion gene and apparent predilection for breast.
Genes Chromosomes Cancer. 2018; 57(9):437-445 [PubMed] Related Publications
Dermatofibrosarcoma protuberans is a locally aggressive superficial mesenchymal neoplasm. It typically occurs in adulthood, and has been reported to have a slight male predilection. Tumors have a characteristic histopathologic appearance, including: storiform architecture, infiltrative "honeycomb" growth within subcutaneous adipose tissue, and immunoreactivity for CD34. Virtually all molecularly characterized cases to date have been found to harbor a COL1A1-PDGFB fusion product. Following identification of an index patient with a novel COL6A3-PDGFD fusion gene, we undertook a molecular investigation, using a combination of RNA sequencing and fluorescence in situ hybridization (FISH), to assess the prevalence of PDGFD rearrangement in dermatofibrosarcoma protuberans (N = 63). Three additional patients were found to have balanced PDGFD rearrangements. Interestingly, all 4 tumors arose on the breast of females. As a result, we subsequently examined 16 additional cases of primary breast dermatofibrosarcoma protuberans, identifying 2 additional tumors with PDGFD rearrangement. The morphology and immunophenotype of all 6 cases was analogous to those with the canonical COL1A1-PDGFB fusion; none of the cases showed fibrosarcomatous transformation. This study illustrates that the COL6A3-PDGFD fusion product is rare in dermatofibrosarcoma protuberans, and associated with an apparent predilection for breast. An awareness of this variant is important for pathologists, as it will not be detected using conventional reverse transcription polymerase chain reaction or FISH-based diagnostic assays for dermatofibrosarcoma protuberans.

Cavallin LE, Ma Q, Naipauer J, et al.
KSHV-induced ligand mediated activation of PDGF receptor-alpha drives Kaposi's sarcomagenesis.
PLoS Pathog. 2018; 14(7):e1007175 [PubMed] Free Access to Full Article Related Publications
Kaposi's sarcoma (KS) herpesvirus (KSHV) causes KS, an angiogenic AIDS-associated spindle-cell neoplasm, by activating host oncogenic signaling cascades through autocrine and paracrine mechanisms. Tyrosine kinase receptor (RTK) proteomic arrays, identified PDGF receptor-alpha (PDGFRA) as the predominantly-activated RTK in KSHV-induced mouse KS-tumors. We show that: 1) KSHV lytic replication and the vGPCR can activate PDGFRA through upregulation of its ligands PDGFA/B, which increase c-myc, VEGF and KSHV gene expression in infected cells 2) KSHV infected spindle cells of most AIDS-KS lesions display robust phospho-PDGFRA staining 3) blocking PDGFRA-signaling with N-acetyl-cysteine, RTK-inhibitors Imatinib and Sunitinib, or dominant-negative PDGFRA inhibits tumorigenesis 4) PDGFRA D842V activating-mutation confers resistance to Imatinib in mouse-KS tumorigenesis. Our data show that KSHV usurps sarcomagenic PDGFRA signaling to drive KS. This and the fact that PDGFRA drives non-viral sarcomas highlights the importance for KSHV-induced ligand-mediated activation of PDGFRA in KS sarcomagenesis and shows that this oncogenic axis could be successfully blocked to impede KS tumor growth.

Dadone-Montaudié B, Alberti L, Duc A, et al.
Alternative PDGFD rearrangements in dermatofibrosarcomas protuberans without PDGFB fusions.
Mod Pathol. 2018; 31(11):1683-1693 [PubMed] Related Publications
Dermatofibrosarcoma protuberans is underlined by recurrent collagen type I alpha 1 chain-platelet-derived growth factor B chain (COL1A1-PDGFB) fusions but ~ 4% of typical dermatofibrosarcoma protuberans remain negative for this translocation in routine molecular screening. We investigated a series of 21 cases not associated with the pathognomonic COL1A1-PDGFB fusion on routine fluorescence in situ hybridization (FISH) testing. All cases displayed morphological and clinical features consistent with the diagnosis of dermatofibrosarcoma protuberans. RNA-sequencing analysis was successful in 20 cases. The classical COL1A1-PDGFB fusion was present in 40% of cases (n = 8/20), and subsequently confirmed with a COL1A1 break-apart FISH probe in all but one case (n = 7/8). 55% of cases (n = 11/20) displayed novel PDGFD rearrangements; PDGFD being fused either to the 5' part of COL6A3 (2q37.3) (n = 9/11) or EMILIN2 (18p11) (n = 2/11). All rearrangements led to in-frame fusion transcripts and were confirmed at genomic level by FISH and/or array-comparative genomic hybridization. PDGFD-rearranged dermatofibrosarcoma protuberans presented clinical outcomes similar to typical dermatofibrosarcoma protuberans. Notably, the two EMILIN2-PDGFD cases displayed fibrosarcomatous transformation and homozygous deletions of CDKN2A at genomic level. We report the first recurrent molecular variant of dermatofibrosarcoma protuberans involving PDGFD, which functionally mimic bona fide COL1A1-PDGFB fusions, leading presumably to a similar autocrine loop-stimulating PDGFRB. This study also emphasizes that COL1A1-PDGFB fusions can be cytogenetically cryptic on FISH testing in a subset of cases, thereby representing a diagnostic pitfall that pathologists should be aware of.

Wang Y, Appiah-Kubi K, Lan T, et al.
PKG II inhibits PDGF-BB triggered biological activities by phosphorylating PDGFRβ in gastric cancer cells.
Cell Biol Int. 2018; 42(10):1358-1369 [PubMed] Related Publications
Previous studies revealed that type II cGMP-dependent protein kinase G (PKG II) could inhibit the activation of epidermal growth factor receptor (EGFR) which is a widely investigated RTK. PDGFR belongs to family of receptor tyrosine kinases (RTKs) too. However, the effect of PKG II on PDGFR activation is not clear yet. This study investigated potential regulatory effect of PKG II on activation of PDGFRβ and the downstream signaling transductions in gastric cancer. The results from CCK8 assay and Transwell assay indicated that PDGF-BB induced cell proliferation and migration. Activated PKG II reversed the above variations caused by PDGF-BB. Immunoprecipitation and Western blotting results showed that PKG II combined with PDGFRβ and phosphorylated this receptor, and thereby inhibited PDGF-BB induced activation of PDGFRβ, and MAPK/ERK and PI3K/Akt mediated signal transduction pathways. Based on the prediction by phosphorylation site software, Ser643 and Ser712 were mutated to alanine respectively which prevented phosphorylation at these sites. Mutation at Ser712 abolished the inhibitory function of PKG II on PDGFRβ activation but mutation of Ser643 had no such an effect, indicating that Ser712 was PKG II-specific phosphorylating site of PDGFRβ. In conclusion, PKG II inhibited PDGFRβ activation in gastric cancer via phosphorylating Ser712 of this RTK.

Bartoschek M, Pietras K
PDGF family function and prognostic value in tumor biology.
Biochem Biophys Res Commun. 2018; 503(2):984-990 [PubMed] Related Publications
The development and progression of a tumor depends on the close interaction of malignant cells and the supportive and suppressive tumor microenvironment. Paracrine signaling enables tumor cells to shape the surrounding tissue in order to decrease recognition by the immune system, attract blood vessels to fuel growth, change metabolic programs, and induce wound healing programs. In this study, we investigate the role of the platelet-derived growth factor (PDGF) family members PDGFA, PDGFB, PDGFC and PDGFD and their cognate tyrosine kinase receptors PDGFRA and PDGFRB, using publicly available data from The Cancer Genome Atlas and the Human Protein Atlas. Large scale analysis of expression correlation in RNA sequencing data from 7616 samples derived from 16 tumor types, revealed conserved functional programs in PDGF signaling in the majority of solid tumor types. Besides the well-known effects of PDGF signaling in mesenchymal cells, our analyses revealed a potential role of PDGF signaling in the composition of the immune microenvironment. We furthermore derived gene signatures with increased prognostic value for each PDGF family member. This study emphasizes the potential to impinge on specific paracrine signaling events to interfere with the crosstalk between malignant cells and their microenvironment.

Pan L, Yang H, Xu C, et al.
ZNF750 inhibited the malignant progression of oral squamous cell carcinoma by regulating tumor vascular microenvironment.
Biomed Pharmacother. 2018; 105:566-572 [PubMed] Related Publications
OBJECTIVE: Squamous cell carcinoma is often associated with the deletion or mutation of zinc finger protein 750 (ZNF750), its deletion or mutation is associated with squamous epithelial malignant biological characteristics. The present study is to explore the mechanism of ZNF750 to suppress the tumor malignant process by regulation tumor microenvironment.
METHODS: To evaluate the changes of tumor microenvironment in oral squamous cells carcinoma cell line CAL-27 cell, the expression of angiogenin, vascular endothelial growth factor (VEGF), prolyl hydroxylase 2 (PHD2), G protein signal regulated protein 5 (RGS5), integrin A5 (ITGA5), integrin B1 (ITGB1) and CD44 were detected by Western-blot. The changes of platelet derived growth factor (PDGFB) and tumor vascular marker CD105 (Endoglin) mRNA were estimated by qPCR. The effect of over-expressed ZNF750 on cell viability and lateral migration capacity was investigated by CCK-8 and cell scratch assay in three oral squamous cells carcinoma.
RESULTS: ZNF750 could effectively inhibit the protein or mRNA expression of angiogenin, VEGF, RGS5 and CD105, repressed the cell adhesion molecules ITGA5, ITGB1 and CD44, but up-regulate the protein or mRNA expression of PHD2 and PDGFB. The cell viability and lateral migration ability of three oral squamous cells carcinoma were reduced by over-expression of ZNF750.
CONCLUSION: ZNF750 could modulate the tumor vascular microenvironment to inhibit the oral squamous cells carcinoma malignant progression.

Vargas AC, Selinger C, Satgunaseelan L, et al.
FISH analysis of selected soft tissue tumors: Diagnostic experience in a tertiary center.
Asia Pac J Clin Oncol. 2019; 15(1):38-47 [PubMed] Related Publications
AIM: Fluorescence in situ hybridization (FISH) is an important ancillary tool for the classification of bone/soft tissue (BST) tumors. The aim of this study was to evaluate the contribution of FISH to the final classification of common BST entities in the molecular pathology department of the Royal Prince Alfred Hospital (RPAH), which is one of the most important referral centers for the management of sarcomas in Australia.
METHODS: All routine diagnostic FISH tests performed on BST formalin-fixed paraffin embedded (FFPE) tissue specimens at the RPAH in a 5-year period (February, 2010-November, 2015) were reviewed. FISH analyses presented in this study include commercial break-apart probes (SS18, FUS, DDIT3, FUS, USP6, PDGFB, TFE3 and ALK) and a single enumeration (MDM2) probe.
RESULTS: There were 434 interpretable FISH assays on BST samples including MDM2 (n=180), SS18 (n=97), FUS (n=64), DDIT3 (n=37), USP6 (n=30), PDGFB (n=13), TFE3 (n=8) and ALK (n=5). Discrepancies between the histopathological diagnosis and the FISH results were seen in 12% of the cases. In this subset of discordant cases, FISH contributed to the re-classification of 7% of cases originally diagnosed as synovial sarcoma (SS18) and 6% of adipocytic neoplasms (MDM2) based on the presence or absence of the expected gene alteration.
CONCLUSION: Our study confirms that paraffin FISH is a sensitive and specific ancillary tool in the diagnosis of BST neoplasms when used in the appropriate clinicopathological context. These findings highlight the need for further ancillary molecular tools in the diagnosis and characterization of challenging cases.

Eiro N, González L, Martínez-Ordoñez A, et al.
Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis.
Cell Oncol (Dordr). 2018; 41(4):369-378 [PubMed] Related Publications
PURPOSE: It has been reported that stromal cell features may affect the clinical outcome of breast cancer patients. Cancer associated fibroblasts (CAFs) represent one of the most abundant cell types within the breast cancer stroma. Here, we aimed to explore the influence of CAFs on breast cancer gene expression, as well as on invasion and angiogenesis.
METHODS: qRT-PCR was used to evaluate the expression of several cancer progression related genes (S100A4, TGFβ, FGF2, FGF7, PDGFA, PDGFB, VEGFA, IL-6, IL-8, uPA, MMP2, MMP9, MMP11 and TIMP1) in the human breast cancer-derived cell lines MCF-7 and MDA-MB-231, before and after co-culture with CAFs. Stromal mononuclear inflammatory cell (MIC) MMP11 expression was used to stratify primary tumors. In addition, we assessed the in vitro effects of CAFs on both MDA-MB-231 breast cancer cell invasion and endothelial cell (HUVEC) tube formation.
RESULTS: We found that the expression levels of most of the genes tested were significantly increased in both breast cancer-derived cell lines after co-culture with CAFs from either MMP11+ or MMP11- MIC tumors. IL-6 and IL-8 showed an increased expression in both cancer-derived cell lines after co-culture with CAFs from MMP11+ MIC tumors. We also found that the invasive and angiogenic capacities of, respectively, MDA-MB-231 and HUVEC cells were increased after co-culture with CAFs, especially those from MMP11+ MIC tumors.
CONCLUSIONS: Our data indicate that tumor-derived CAFs can induce up-regulation of genes involved in breast cancer progression. Our data additionally indicate that CAFs, especially those derived from MMP11+ MIC tumors, can promote breast cancer cell invasion and angiogenesis.

Juliano J, Gil O, Hawkins-Daarud A, et al.
Comparative dynamics of microglial and glioma cell motility at the infiltrative margin of brain tumours.
J R Soc Interface. 2018; 15(139) [PubMed] Free Access to Full Article Related Publications
Microglia are a major cellular component of gliomas, and abundant in the centre of the tumour and at the infiltrative margins. While glioma is a notoriously infiltrative disease, the dynamics of microglia and glioma migratory patterns have not been well characterized. To investigate the migratory behaviour of microglia and glioma cells at the infiltrative edge, we performed two-colour time-lapse fluorescence microscopy of brain slices generated from a platelet-derived growth factor-B (PDGFB)-driven rat model of glioma, in which glioma cells and microglia were each labelled with one of two different fluorescent markers. We used mathematical techniques to analyse glioma cells and microglia motility with both single cell tracking and particle image velocimetry (PIV). Our results show microglia motility is strongly correlated with the presence of glioma, while the correlation of the speeds of glioma cells and microglia was variable and weak. Additionally, we showed that microglia and glioma cells exhibit different types of diffusive migratory behaviour. Microglia movement fit a simple random walk, while glioma cell movement fits a super diffusion pattern. These results show that glioma cells stimulate microglia motility at the infiltrative margins, creating a correlation between the spatial distribution of glioma cells and the pattern of microglia motility.

Maj E, Filip-Psurska B, Milczarek M, et al.
Vitamin D derivatives potentiate the anticancer and anti-angiogenic activity of tyrosine kinase inhibitors in combination with cytostatic drugs in an A549 non-small cell lung cancer model.
Int J Oncol. 2018; 52(2):337-366 [PubMed] Free Access to Full Article Related Publications
Numerous in vitro and in vivo studies have demonstrated that calcitriol [1,25(OH)2D3] and different vitamin D analogs possess antineoplastic activity, regulating proliferation, differentiation and apoptosis, as well as angiogenesis. Vitamin D compounds have been shown to exert synergistic effects when used in combination with different agents used in anticancer therapies in different cancer models. The aim of this study was to evaluate the mechanisms of the cooperation of the vitamin D compounds [1,24(OH)2D3 (PRI‑2191) and 1,25(OH)2D3] with tyrosine kinase inhibitors (imatinib and sunitinib) together with cytostatics (cisplatin and docetaxel) in an A549 non-small cell lung cancer model. The cytotoxic effects of the test compounds used in different combinations were evaluated on A549 lung cancer cells, as well as on human lung microvascular endothelial cells (HLMECs). The effects of such combinations on the cell cycle and cell death were also determined. In addition, changes in the expression of proteins involved in cell cycle regulation, angiogenesis and the action of vitamin D were analyzed. Moreover, the effects of 1,24(OH)2D3 on the anticancer activity of sunitinib and sunitinib in combination with docetaxel were examined in an A549 lung cancer model in vivo. Experiments aiming at evaluating the cytotoxicity of the combinations of the test agents revealed that imatinib and sunitinib together with cisplatin or docetaxel exerted potent anti-proliferative effects in vitro on A549 lung cancer cells and in HLMECs; however, 1,24(OH)2D3 and 1,25(OH)2D3 enhanced the cytotoxic effects only in the endothelial cells. Among the test agents, sunitinib and cisplatin decreased the secretion of vascular endothelial growth factor (VEGF)‑A from the A549 lung cancer cells. The decrease in the VEGF‑A level following incubation with cisplatin correlated with a higher p53 protein expression, while no such correlation was observed following treatment of the A549 cells with sunitinib. Sunitinib together with docetaxel and 1,24(OH)2D3 exhibited a more potent anticancer activity in the A549 lung cancer model compared to double combinations and to treatment with the compounds alone. The observed anticancer activity may be the result of the influence of the test agents on the process of tumor angiogenesis, for example, through the downregulation of VEGF‑A expression in tumor and also on the induction of cell death inside the tumor.

Liu Y, Sun W, Ma X, et al.
Logistic regression analysis for the identification of the metastasis-associated signaling pathways of osteosarcoma.
Int J Mol Med. 2018; 41(3):1233-1244 [PubMed] Free Access to Full Article Related Publications
Osteosarcoma (OS) is the most common histological type of primary bone cancer. The present study was designed to identify the key genes and signaling pathways involved in the metastasis of OS. Microarray data of GSE39055 were downloaded from the Gene Expression Omnibus database, which included 19 OS biopsy specimens before metastasis (control group) and 18 OS biopsy specimens after metastasis (case group). After the differentially expressed genes (DEGs) were identified using the Linear Models for Microarray Analysis package, hierarchical clustering analysis and unsupervised clustering analysis were performed separately, using orange software and the self-organization map method. Based upon the Database for Annotation, Visualization and Integrated Discovery tool and Cytoscape software, enrichment analysis and protein-protein interaction (PPI) network analysis were conducted, respectively. After function deviation scores were calculated for the significantly enriched terms, hierarchical clustering analysis was performed using Cluster 3.0 software. Furthermore, logistic regression analysis was used to identify the terms that were significantly different. Those terms that were significantly different were validated using other independent datasets. There were 840 DEGs in the case group. There were various interactions in the PPI network [including intercellular adhesion molecule-1 (ICAM1), transforming growth factor β1 (TGFB1), TGFB1-platelet-derived growth factor subunit B (PDGFB) and PDGFB-platelet‑derived growth factor receptor-β (PDGFRB)]. Regulation of cell migration, nucleotide excision repair, the Wnt signaling pathway and cell migration were identified as the terms that were significantly different. ICAM1, PDGFB, PDGFRB and TGFB1 were identified to be enriched in cell migration and regulation of cell migration. Nucleotide excision repair and the Wnt signaling pathway were the metastasis-associated pathways of OS. In addition, ICAM1, PDGFB, PDGFRB and TGFB1, which were involved in cell migration and regulation of cell migration may affect the metastasis of OS.

Chen B, Liu J, Wang X, et al.
Co-expression of PDGF-B and VEGFR-3 strongly correlates with poor prognosis in hepatocellular carcinoma patients after hepatectomy.
Clin Res Hepatol Gastroenterol. 2018; 42(2):126-133 [PubMed] Related Publications
BACKGROUND: The ability to evaluate the prognosis of hepatocellular carcinoma (HCC) patients following hepatectomy with biological markers is of great importance.
METHODS: In this study, we collected samples from 90 patients with HCC after hepatectomy. Immunohistochemistry was used to detect the expression of PDGF-B and VEGFR-3 in these HCC samples.
RESULTS: According to the immunohistochemical results, PDGF-B and VEGFR-3 staining were significantly associated with clinical features. Additionally, a significant association between high PDGF-B and VEGFR-3 levels and shorter overall survival was noted, when PDGF-B and VEGFR-3 co-expression been analyzed.
CONCLUSION: These results suggest that the correlative expression level of PDGF-B and VEGFR-3 has strong value in the prognosis of HCC patients following hepatectomy.

Shah KK, McHugh JB, Folpe AL, Patel RM
Dermatofibrosarcoma Protuberans of Distal Extremities and Acral Sites: A Clinicopathologic Analysis of 27 Cases.
Am J Surg Pathol. 2018; 42(3):413-419 [PubMed] Related Publications
Dermatofibrosarcoma protuberans (DFSP) of the distal extremities and acral sites are extremely rare and incompletely characterized. Twenty-seven DFSP occurring in these sites were retrieved from our collective archives and reevaluated. Tumors occurred in 16 males and 11 females. Median age at presentation was 42.5 years (range, 7 to 78 y). Lesions involved the foot (18 with 6 in the toes and 2 on the plantar foot), distal ankle (4), hand (4 with 2 in the thumbs), and wrist (1). All cases showed predominantly classic DFSP morphology and were diffusely CD34 positive. Myxoid change, melanin pigmented, and giant cell fibroblastoma foci were each present in 1 case, respectively. Fibrosarcomatous change was present in 3 cases. Fluorescent in situ hybridization demonstrated PDGFB gene rearrangement in 9 of 10 tested cases. Clinical follow-up was available in 21 cases (median, 36.1 mo; range, 1 to 152 mo) and revealed 4 local recurrences. Four patients underwent digital amputation for unresectable recurrent disease. An additional patient underwent multiple resections with positive margins and elected to receive imatinib mesylate therapy. After a 2-year course, the patient has no evidence of residual disease (40 mo). No metastases were documented in any of the cases studied. The natural history of DFSP of distal extremities and acral sites is similar to that of its counterparts elsewhere. A high index of suspicion, careful morphologic examination for key histologic features of DFSP, and in selected cases, molecular studies to identify the pathognomonic COL1A1-PDGFB gene fusion should facilitate the distinction of these rare, locally aggressive neoplasms from morphologic mimics that may arise in distal extremities and acral sites.

Duan B, Hu J, Liu H, et al.
Genetic variants in the platelet-derived growth factor subunit B gene associated with pancreatic cancer risk.
Int J Cancer. 2018; 142(7):1322-1331 [PubMed] Free Access to Full Article Related Publications
The platelet-derived growth factor (PDGF) signaling pathway plays important roles in development and progression of human cancers. In our study, we aimed to identify genetic variants of the PDGF pathway genes associated with pancreatic cancer (PC) risk in European populations using three published genome-wide association study datasets, which consisted of 9,381 cases and 7,719 controls. The expression quantitative trait loci (eQTL) analysis was also performed using data from the 1000 Genomes, TCGA and GTEx projects. As a result, we identified two potential susceptibility loci (rs5757573 and rs6001516) of PDGFB associated with PC risk [odds ratio (OR) = 1.10, 95% confidence interval (CI) = 1.05-1.16, and p = 4.70 × 10

Jahanseir K, Xing D, Greipp PT, et al.
PDGFB Rearrangements in Dermatofibrosarcoma Protuberans of the Vulva: A Study of 11 Cases Including Myxoid and Fibrosarcomatous Variants.
Int J Gynecol Pathol. 2018; 37(6):537-546 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Dermatofibrosarcoma protuberans (DFSP) is a low-grade fibroblastic sarcoma that tends to arise in young to middle age adults and involve the trunk and proximal extremities. Rare examples of vulvar DFSP have been reported, including myxoid, myoid, and fibrosarcomatous variants, but detection of the characteristic t(17;22)(q22;q13) that produces COL1A1-PDGFB gene fusion has not been evaluated in a large series of primary vulvar tumors. The clinical, morphologic, immunohistochemical, and molecular cytogenetic features of 11 cases were examined. Patient age ranged from 29 to 75 yr (mean, 46 yr; median, 43 yr). Seven tumors were purely classic DFSP, 1 was purely myxoid DFSP and the remaining 3 had varying quantities of fibrosarcomatous DFSP. All cases of classic DFSP had diffuse expression of CD34 and low-level p53 immunoreactivity. Myxoid variants had strong, but reduced expression of CD34. Fibrosarcomatous DFSP showed focal CD34 expression and increased p53 reactivity. Nine of 11 tumors (82%) had rearrangement of PDGFB by fluorescence in situ hybridization. The 2 nonrearranged tumors were a classic DFSP and a myxoid DFSP with fibrosarcomatous transformation. Follow-up was available for 9 patients (82%) and ranged from 1 to 108 mo (mean, 30 mo; median, 21 mo). Eight patients had tumors with positive margins, one of which developed local recurrence after no further therapy. No patient developed metastasis. The high frequency of PDGFB rearrangement in vulvar DFSP provides a useful exploit in diagnostically challenging cases and genetic evidence of probable clinical response to targeted therapeutics in cases of locally advanced or metastatic tumors.

Chang KTE, Goytain A, Tucker T, et al.
Development and Evaluation of a Pan-Sarcoma Fusion Gene Detection Assay Using the NanoString nCounter Platform.
J Mol Diagn. 2018; 20(1):63-77 [PubMed] Related Publications
The NanoString nCounter assay is a high-throughput hybridization technique using target-specific probes that can be customized to test for numerous fusion transcripts in a single assay using RNA from formalin-fixed, paraffin-embedded material. We designed a NanoString assay targeting 174 unique fusion junctions in 25 sarcoma types. The study cohort comprised 212 cases, 96 of which showed fusion gene expression by the NanoString assay, including all 20 Ewing sarcomas, 11 synovial sarcomas, and 5 myxoid liposarcomas tested. Among these 96 cases, 15 showed fusion expression not identified by standard clinical assay, including EWSR1-FLI1, EWSR1-ERG, BCOR-CCNB3, ZC3H7B-BCOR, HEY1-NCOA2, CIC-DUX4, COL1A1-PDGFB, MYH9-USP6, YAP1-TFE3, and IRF2BP2-CDX1 fusions. There were no false-positive results; however, four cases were false negative when compared with clinically available fluorescence in situ hybridization or RT-PCR testing. When batched as six cases, the per-sample reagent cost was less than conventional techniques, such as fluorescence in situ hybridization, with technologist hands-on time of 1.2 hours per case and assay time of 36 hours. In summary, the NanoString nCounter Sarcoma Fusion CodeSet reliably and cost-effectively identifies fusion genes in sarcomas using formalin-fixed, paraffin-embedded material, including many fusions missed by standard clinical assays, and can serve as a first-line clinical diagnostic test for sarcoma fusion gene identification, replacing multiple individual clinical assays.

Mathivet T, Bouleti C, Van Woensel M, et al.
Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth.
EMBO Mol Med. 2017; 9(12):1629-1645 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by

Rahme GJ, Luikart BW, Cheng C, Israel MA
A recombinant lentiviral PDGF-driven mouse model of proneural glioblastoma.
Neuro Oncol. 2018; 20(3):332-342 [PubMed] Free Access to Full Article Related Publications
Background: Mouse models of glioblastoma (GBM), the most aggressive primary brain tumor, are critical for understanding GBM pathology and can contribute to the preclinical evaluation of therapeutic agents. Platelet-derived growth factor (PDGF) signaling has been implicated in the development and pathogenesis of GBM, specifically the proneural subtype. Although multiple mouse models of PDGF-driven glioma have been described, they require transgenic mice engineered to activate PDGF signaling and/or impair tumor suppressor genes and typically represent lower-grade glioma.
Methods: We designed recombinant lentiviruses expressing both PDGFB and a short hairpin RNA targeting Cdkn2a to induce gliomagenesis following stereotactic injection into the dentate gyrus of adult immunocompetent mice. We engineered these viruses to coexpress CreERT2 with PDGFB, allowing for deletion of floxed genes specifically in transduced cells, and designed another version of this recombinant lentivirus in which enhanced green fluorescent protein was coexpressed with PDGFB and CreERT2 to visualize transduced cells.
Results: The dentate gyrus of injected mice showed hypercellularity one week post-injection and subsequently developed bona fide tumors with the pathologic hallmarks of GBM leading to a median survival of 77 days post-injection. Transcriptomic analysis of these tumors revealed a proneural gene expression signature.
Conclusion: Informed by the genetic alterations observed in human GBM, we engineered a novel mouse model of proneural GBM. While reflecting many of the advantages of transgenic mice, this model allows for the facile in vivo testing of gene function in tumor cells and makes possible the rapid production of large numbers of immunocompetent tumor-bearing mice for preclinical testing of therapeutics.

Koseła-Paterczyk H, Rutkowski P
Dermatofibrosarcoma protuberans and gastrointestinal stromal tumor as models for targeted therapy in soft tissue sarcomas.
Expert Rev Anticancer Ther. 2017; 17(12):1107-1116 [PubMed] Related Publications
INTRODUCTION: The development of novel targeted treatment in soft tissue sarcomas (STS) is important since many sarcoma subtypes are resistant to chemotherapy and effective therapeutic options are limited. Areas covered: This review discusses the molecular background and treatment in two STS types which became a model for targeted therapy - gastrointestinal stromal tumor (GIST) and dermatofibrosarcoma protuberans (DFSP). DFSP is characterized, by chromosomal translocation which results in the formation of COL1A1-PDGFB fusion gene causing platelet-derived growth factor receptor beta(PDGFRB) signaling activation in tumor cells. The majority of GIST malignancies are associated with activating, constitutive, mutually exclusive mutations of two genes: KIT and PDGFRA (PDGF receptor-alpha). Molecular diagnostics are an essential part of GIST and DFSP management. The first effective systemic therapy in clinical practice in GIST and DFSP was imatinib - tyrosine kinase inhibitor acting on KIT and PDGFR alpha/beta. Use of the drug revolutionized treatment of inoperable and/or metastatic cases and demonstrated activity in locally advanced cases. This review summarizes the analogies of therapy and perspectives of GIST and DFSP management. Expert commentary: The next generation of kinase inhibitors are approved for use after the progression of GIST during imatinib treatment. However, little is known about treatment beyond progression in DFSP.

Oh E, Jeong HM, Kwon MJ, et al.
Unforeseen clonal evolution of tumor cell population in recurrent and metastatic dermatofibrosarcoma protuberans.
PLoS One. 2017; 12(10):e0185826 [PubMed] Free Access to Full Article Related Publications
Dermatofibrosarcoma protuberans (DFSP) is a very rare soft tissue sarcoma, generally of low-grade malignancy. DFSP is locally aggressive with a high recurrence rate, but metastasis occurs rarely. To investigate the mechanism of metastasis in DFSP, we analyzed the whole exome sequencing data of serial tumor samples obtained from a patient who had a 10-year history of recurrent and metastatic DFSP. Tracking various genomic alterations, namely somatic mutations, copy number variations, and chromosomal rearrangements, we observed a dramatic change in tumor cell population during the occurrence of metastasis in this DFSP case. The new subclone that emerged in metastatic DFSP harbored a completely different set of somatic mutations and new focal amplifications, which had not been observed in the primary clone before metastasis. The COL1A1-PDGFB fusion, characteristic of DFSP, was found in all of the serial samples. Moreover, the break position on the fusion gene was identical in all samples. Based on these observations, we suggest a clonal evolution model to explain the mechanism underlying metastasis in DFSP and identified several candidate target genes responsible for metastatic DFSP by utilizing The Cancer Genome Atlas database. This is the first study to observe clonal evolution in metastatic DFSP and provide insight for a possible therapeutic strategy for imatinib-resistant or metastatic DFSP.

Sharafeldin N, Slattery ML, Liu Q, et al.
Multiple Gene-Environment Interactions on the Angiogenesis Gene-Pathway Impact Rectal Cancer Risk and Survival.
Int J Environ Res Public Health. 2017; 14(10) [PubMed] Free Access to Full Article Related Publications
Characterization of gene-environment interactions (GEIs) in cancer is limited. We aimed at identifying GEIs in rectal cancer focusing on a relevant biologic process involving the angiogenesis pathway and relevant environmental exposures: cigarette smoking, alcohol consumption, and animal protein intake. We analyzed data from 747 rectal cancer cases and 956 controls from the Diet, Activity and Lifestyle as a Risk Factor for Rectal Cancer study. We applied a 3-step analysis approach: first, we searched for interactions among single nucleotide polymorphisms on the pathway genes; second, we searched for interactions among the genes, both steps using Logic regression; third, we examined the GEIs significant at the 5% level using logistic regression for cancer risk and Cox proportional hazards models for survival. Permutation-based test was used for multiple testing adjustment. We identified 8 significant GEIs associated with risk among 6 genes adjusting for multiple testing:

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PDGFB, Cancer Genetics Web: http://www.cancer-genetics.org/PDGFB.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999