NEUROD1

Gene Summary

Gene:NEUROD1; neuronal differentiation 1
Aliases: BETA2, BHF-1, MODY6, NEUROD, bHLHa3
Location:2q31.3
Summary:This gene encodes a member of the NeuroD family of basic helix-loop-helix (bHLH) transcription factors. The protein forms heterodimers with other bHLH proteins and activates transcription of genes that contain a specific DNA sequence known as the E-box. It regulates expression of the insulin gene, and mutations in this gene result in type II diabetes mellitus. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:neurogenic differentiation factor 1
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (43)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Intercellular Signaling Peptides and Proteins
  • Pro-Opiomelanocortin
  • Down-Regulation
  • Repressor Proteins
  • Pancreatic Cancer
  • DNA-Binding Proteins
  • Neuroendocrine Tumors
  • Biomarkers, Tumor
  • Cancer RNA
  • Gene Expression Profiling
  • Gene Knockdown Techniques
  • Lung Cancer
  • Messenger RNA
  • Nerve Tissue Proteins
  • Survival Rate
  • Small Cell Lung Cancer
  • Trans-Activators
  • Promoter Regions
  • Cell Differentiation
  • Lung
  • Transcription Factor Pit-1
  • Chromosome 2
  • Cancer Gene Expression Regulation
  • RTPCR
  • Immunohistochemistry
  • Homeodomain Proteins
  • Basic Helix-Loop-Helix Transcription Factors
  • Pituitary Tumors
  • Transcription
  • Vascular Endothelial Growth Factor Receptor-2
  • T-Box Domain Proteins
  • Breast Cancer
  • DNA Methylation
  • Neoplasm Proteins
  • Cell Proliferation
  • Adenoma
  • Helix-Loop-Helix Motifs
  • Pituitary ACTH Hypersecretion
  • Gene Expression
  • Transcription Factors
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NEUROD1 (cancer-related)

Chuo D, Liu F, Chen Y, Yin M
LncRNA MIR503HG is downregulated in Han Chinese with colorectal cancer and inhibits cell migration and invasion mediated by TGF-β2.
Gene. 2019; 713:143960 [PubMed] Related Publications
In this study we investigated the role of lncRNA MIR503HG in colorectal cancer (CRC). We found that MIR503HG was downregulated and TGF-β2 was upregulated in CRC included in this study. Low levels of MIR503HG were associated with poor survival of CRC patients within 5 years after admission. MIR503HG and TGF-β2 were inversely correlated in CRC tissues, and in CRC cells, MIR503HG overexpression was accompanied by TGF-β2 downregulation, while TGF-β2 overexpression did not affect MIR503HG. TGF-β2 overexpression mediated the increased migration and invasion rates of CRC cells. MIR503HG overexpression mediated the decreased migration and invasion rates of CRC cells. Moreover, TGF-β2 overexpression reduced the effects of MIR503HG overexpression. Therefore, MIR503HG overexpression inhibits CRC cell migration and invasion mediated by TGF-β2.

Hori S, Miyake M, Onishi S, et al.
Evaluation of pro‑ and anti‑tumor effects induced by three colony‑stimulating factors, G‑CSF, GM‑CSF and M‑CSF, in bladder cancer cells: Is G‑CSF a friend of bladder cancer cells?
Int J Oncol. 2019; 54(6):2237-2249 [PubMed] Related Publications
Cytotoxic chemotherapy is the standard treatment for patients with advanced bladder cancer. However, this treatment can cause transient and prolonged neutropenia, which can result in fatal infection. Three recombinant human colony‑stimulating factors (CSFs), granulocyte CSF (G‑CSF), granulocyte‑macrophage CSF (GM‑CSF), and macrophage CSF (M‑CSF), are currently available to reduce the duration and degree of neutropenia. The present study investigated the pro‑ and anti‑tumor effects of these three CSFs and the changes in molecular profiles. Xenograft tumors in athymic mice were generated by subcutaneously inoculating the human bladder cancer cell lines MGH‑U3 and UM‑UC‑3. A total of 2 weeks after cell inoculation, mice were randomly divided into four groups (control, G‑CSF, GM‑CSF and M‑CSF) and treated thrice a week for 2 weeks. Tumor growth during monitoring and tumor weight at the time of euthanization were significantly higher in mice treated with G‑CSF and lower in mice treated with GM‑CSF compared with the control mice. Tumors were examined by immunostaining with antibodies against proteins associated tumor proliferation (Ki‑67), angiogenesis [CD31 and vascular endothelial growth factor (VEGF)], anti‑immunity (CD204) and epithelial‑mesenchymal transition (EMT; E‑cadherin). Immunohistochemical staining revealed that tumor proliferation, angiogenesis, recruitment of M2 macrophages and EMT were promoted by G‑CSF, whereas lymphangiogenesis and recruitment of M2 macrophages were inhibited by GM‑CSF. Treatment‑associated changes in serum pro‑ and anti‑tumoral cytokines and chemokines were evaluated by enzyme‑linked immunosorbent assay (ELISA)‑based arrays. In the ELISA for serum, the levels of cytokines associated with angiogenesis (interleukin‑6 and VEGF), and EMT (transforming growth factor‑β1 and ‑β2) were elevated in mice treated with G‑CSF. Treatment with GM‑CSF and M‑CSF also affected the level of these cytokines characteristically. The current results indicate that administration of exogenous G‑CSF to patients with bladder cancer promotes tumor growth through promotion of cell proliferation, angiogenesis, recruitment of M2 macrophages and enhancement of EMT through the modulation of the tumor microenvironment.

Wang T, Xing Y, Meng Q, et al.
Mammalian Eps15 homology domain 1 potentiates angiogenesis of non-small cell lung cancer by regulating β2AR signaling.
J Exp Clin Cancer Res. 2019; 38(1):174 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Non-small cell lung cancer (NSCLC) is a devastating disease with a heterogeneous prognosis, and the molecular mechanisms underlying tumor progression remain elusive. Mammalian Eps15 homology domain 1 (EHD1) plays a promotive role in tumor progression, but its role in cancer angiogenesis remains unknown. This study thus explored the role of EHD1 in angiogenesis in NSCLC.
METHODS: The changes in angiogenesis were evaluated through human umbilical vein endothelial cell (HUVEC) proliferation, migration and tube formation assays. The impact of EHD1 on β2-adrenoceptor (β2AR) signaling was evaluated by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and enzyme-linked immunosorbent assay (ELISA). The interaction between EHD1 and β2AR was confirmed by immunofluorescence (IF) and coimmunoprecipitation (Co-IP) experiments, and confocal microscopy immunofluorescence studies revealed that β2AR colocalized with the recycling endosome marker Rab11, which indicated β2AR endocytosis. Xenograft tumor models were used to investigate the role of EHD1 in NSCLC tumor growth.
RESULTS: The microarray analysis revealed that EHD1 was significantly correlated with tumor angiogenesis, and loss- and gain-of-function experiments demonstrated that EHD1 potentiates HUVEC proliferation, migration and tube formation. EHD1 knockdown inhibited β2AR signaling activity, and EHD1 upregulation promoted vascular endothelial growth factor A (VEGFA) and β2AR expression. Interestingly, EHD1 interacted with β2AR and played a novel and critical role in β2AR endocytic recycling to prevent receptor degradation. Aberrant VEGFA or β2AR expression significantly affected EHD1-mediated tumor angiogenesis. The proangiogenic role of EHD1 was confirmed in xenograft tumor models, and immunohistochemistry (IHC) analysis confirmed that EHD1 expression was positively correlated with VEGFA expression, microvessel density (MVD) and β2AR expression in patient specimens.
CONCLUSION: Collectively, the data obtained in this study suggest that EHD1 plays a critical role in NSCLC angiogenesis via β2AR signaling and highlight a potential target for antiangiogenic therapy.

Gao L, Hu Y, Tian Y, et al.
Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition.
Nat Commun. 2019; 10(1):1665 [PubMed] Free Access to Full Article Related Publications
Lung cancer is the leading cause of cancer-related deaths worldwide. Tumor suppressor genes remain to be systemically identified for lung cancer. Through the genome-wide screening of tumor-suppressive transcription factors, we demonstrate here that GATA4 functions as an essential tumor suppressor in lung cancer in vitro and in vivo. Ectopic GATA4 expression results in lung cancer cell senescence. Mechanistically, GATA4 upregulates multiple miRNAs targeting TGFB2 mRNA and causes ensuing WNT7B downregulation and eventually triggers cell senescence. Decreased GATA4 level in clinical specimens negatively correlates with WNT7B or TGF-β2 level and is significantly associated with poor prognosis. TGFBR1 inhibitors show synergy with existing therapeutics in treating GATA4-deficient lung cancers in genetically engineered mouse model as well as patient-derived xenograft (PDX) mouse models. Collectively, our work demonstrates that GATA4 functions as a tumor suppressor in lung cancer and targeting the TGF-β signaling provides a potential way for the treatment of GATA4-deficient lung cancer.

An C, Li H, Zhang X, et al.
Silencing of COPB2 inhibits the proliferation of gastric cancer cells and induces apoptosis via suppression of the RTK signaling pathway.
Int J Oncol. 2019; 54(4):1195-1208 [PubMed] Free Access to Full Article Related Publications
Emerging studies have reported that coatomer protein complex subunit β2 (COPB2) is overexpressed in several types of malignant tumor; however, to the best of our knowledge, no studies regarding COPB2 in gastric cancer have been published thus far. Therefore, the present study aimed to determine the significance and function of COPB2 in gastric cancer. COPB2 expression in gastric cancer cell lines was measured using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. In addition, lentivirus‑short hairpin RNA (shRNA) COPB2 (Lv‑shCOPB2) was generated and used to infect BGC‑823 cells to analyze the effects of COPB2 on the cancerous phenotype. The effects of shRNA‑mediated COPB2 knockdown on cell proliferation were detected using MTT, 5‑bromo‑2‑deoxyuridine and colony formation assays. In addition, the effects of COPB2 knockdown on apoptosis were analyzed by flow cytometry. Nude mice and fluorescence imaging were used to characterize the regulation of tumor growth in vivo, and qPCR and immunohistochemistry were subsequently conducted to analyze COPB2 expression in xenograft tumor tissues. Furthermore, a receptor tyrosine kinase (RTK) signaling pathway antibody array was used to explore the relevant molecular mechanisms underlying the effects of COPB2 knockdown. The results revealed that COPB2 mRNA was abundantly overexpressed in gastric cancer cell lines, whereas knockdown of COPB2 significantly inhibited cell growth and colony formation ability, and led to increased cell apoptosis in vitro. The tumorigenicity assay revealed that knockdown of COPB2 reduced tumor growth in nude mice, and fluorescence imaging indicated that the total radiant efficiency of mice in the Lv‑shCOPB2‑infected group was markedly reduced compared with the mice in the Lv‑shRNA control‑infected group in vivo. The antibody array assay revealed that the levels of phosphorylation in 23 target RTKs were significantly reduced: In conclusion, COPB2 was highly expressed in gastric cancer cell lines, and knockdown suppressed colony formation and promoted cell apoptosis via inhibiting the RTK signaling and its downstream signaling cascade molecules. Therefore, COPB2 may present a valuable target for gene silencing strategy in gastric cancer.

Rudin CM, Poirier JT, Byers LA, et al.
Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data.
Nat Rev Cancer. 2019; 19(5):289-297 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
Small cell lung cancer (SCLC) is an exceptionally lethal malignancy for which more effective therapies are urgently needed. Several lines of evidence, from SCLC primary human tumours, patient-derived xenografts, cancer cell lines and genetically engineered mouse models, appear to be converging on a new model of SCLC subtypes defined by differential expression of four key transcription regulators: achaete-scute homologue 1 (ASCL1; also known as ASH1), neurogenic differentiation factor 1 (NeuroD1), yes-associated protein 1 (YAP1) and POU class 2 homeobox 3 (POU2F3). In this Perspectives article, we review and synthesize these recent lines of evidence and propose a working nomenclature for SCLC subtypes defined by relative expression of these four factors. Defining the unique therapeutic vulnerabilities of these subtypes of SCLC should help to focus and accelerate therapeutic research, leading to rationally targeted approaches that may ultimately improve clinical outcomes for patients with this disease.

Yoon H, Kim M, Jang K, et al.
p27 transcriptionally coregulates cJun to drive programs of tumor progression.
Proc Natl Acad Sci U S A. 2019; 116(14):7005-7014 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
p27 shifts from CDK inhibitor to oncogene when phosphorylated by PI3K effector kinases. Here, we show that p27 is a cJun coregulator, whose assembly and chromatin association is governed by p27 phosphorylation. In breast and bladder cancer cells with high p27pT157pT198 or expressing a CDK-binding defective p27pT157pT198 phosphomimetic (p27CK-DD), cJun is activated and interacts with p27, and p27/cJun complexes localize to the nucleus. p27/cJun up-regulates

Liu B, Huang G, Zhu H, et al.
Analysis of gene co‑expression network reveals prognostic significance of CNFN in patients with head and neck cancer.
Oncol Rep. 2019; 41(4):2168-2180 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
In patients with head and neck cancer (HNC), lymph node (N) metastases are associated with cancer aggressiveness and poor prognosis. Identifying meaningful gene modules and representative biomarkers relevant to the N stage helps predict prognosis and reveal mechanisms underlying tumor progression. The present study used a step‑wise approach for weighted gene co‑expression network analysis (WGCNA). Dataset GSE65858 was subjected to WGCNA. RNA sequencing data of HNC downloaded from the Cancer Genome Atlas (TCGA) and dataset GSE39366 were utilized to validate the results. Following data preprocessing, 4,295 genes were screened, and blue and black modules associated with the N stage of HNC were identified. A total of 16 genes [keratinocyte differentiation associated protein, suprabasin, cornifelin (CNFN), small proline rich protein 1B, desmoglein 1 (DSG1), chromosome 10 open reading frame 99, keratin 16 pseudogene 3, gap junction protein β2, dermokine, LY6/PLAUR domain containing 3, transmembrane protein 79, phospholipase A2 group IVE, transglutaminase 5, potassium two pore domain channel subfamily K member 6, involucrin, kallikrein related peptidase 8] that had a negative association with the N‑stage in the blue module, and two genes (structural maintenance of chromosomes 4 and mutS homolog 6) that had a positive association in the black module, were identified to be candidate hub genes. Following further validation in TCGA and dataset GSE65858, it was identified that CNFN and DSG1 were associated with the clinical stage of HNC. Survival analysis of CNFN and DSG1 was subsequently performed. Patients with increased expression of CNFN displayed better survival probability in dataset GSE65858 and TCGA. Therefore, CNFN was selected as the hub gene for further verification in the Gene Expression Profiling Interactive Analysis database. Finally, functional enrichment and gene set enrichment analyses were performed using datasets GSE65858 and GSE39366. Three gene sets, namely 'P53 pathway', 'estrogen response early' and 'estrogen response late', were enriched in the two datasets. In conclusion, CNFN, identified via the WGCNA algorithm, may contribute to the prediction of lymph node metastases and prognosis, probably by regulating the pathways associated with P53, and the early and late estrogen response.

Kopantzev EP, Kopantseva MR, Grankina EV, et al.
Activation of IGF/IGF-IR signaling pathway fails to induce epithelial-mesenchymal transition in pancreatic cancer cells.
Pancreatology. 2019; 19(2):390-396 [PubMed] Related Publications
BACKGROUND: Pancreatic cancer stromal cells produce various protein factors, which presumably provide cancer cells with drug resistance and may influence their ability to form metastasis via induction of epithelial-mesenchymal transition (ЕМТ). The goal of our project was to study the effects of IGF-I on expression of protein markers of epithelial and mesenchymal differentiation, and on expression of transcriptional regulators of EMT in pancreatic cancer cell lines.
METHODS: We used Western blot analysis to study the expression patterns of epithelial and mesenchymal protein markers in pancreatic cancer cell lines, which have been stimulated with IGF-I for various periods of time. The ELISA technique was employed to determine the concentration of IGF-I in conditioned media. Additionally, the effect of IGF-I on proliferation of pancreatic cancer cells was measured via MTS technique.
RESULTS: We investigated the effect of IGF/IGF-IR signaling pathway activation on expression levels of cell differentiation markers in five pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-2, MiaPaCa-2 and Panc1). The IGF-I stimulation led to phosphorylation of IGF-IR and activation of PI-3K/Akt signaling cascade. At the same time our results reveal that the activation of IGF/IGF-IR signaling pathway in pancreatic cancer cells does not induce a significant shift in cell phenotype towards mesenchymal differentiation and does not induce a decrease in expression levels of epithelial protein markers.
CONCLUSIONS: Our results demonstrate that IGF-I does not function as an effective inductor of EMT in pancreatic cancer cell lines and that stimulation of IGF-I/IGF-IR signaling pathway does not lead to EMT associated changes in cell differentiation.

Nicolas E, Demidova EV, Iqbal W, et al.
Interaction of germline variants in a family with a history of early-onset clear cell renal cell carcinoma.
Mol Genet Genomic Med. 2019; 7(3):e556 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND: Identification of genetic factors causing predisposition to renal cell carcinoma has helped improve screening, early detection, and patient survival.
METHODS: We report the characterization of a proband with renal and thyroid cancers and a family history of renal and other cancers by whole-exome sequencing (WES), coupled with WES analysis of germline DNA from additional affected and unaffected family members.
RESULTS: This work identified multiple predicted protein-damaging variants relevant to the pattern of inherited cancer risk. Among these, the proband and an affected brother each had a heterozygous Ala45Thr variant in SDHA, a component of the succinate dehydrogenase (SDH) complex. SDH defects are associated with mitochondrial disorders and risk for various cancers; immunochemical analysis indicated loss of SDHB protein expression in the patient's tumor, compatible with SDH deficiency. Integrated analysis of public databases and structural predictions indicated that the two affected individuals also had additional variants in genes including TGFB2, TRAP1, PARP1, and EGF, each potentially relevant to cancer risk alone or in conjunction with the SDHA variant. In addition, allelic imbalances of PARP1 and TGFB2 were detected in the tumor of the proband.
CONCLUSION: Together, these data suggest the possibility of risk associated with interaction of two or more variants.

Li Z, Qi DL, Singh HP, et al.
A novel thyroid hormone receptor isoform, TRβ2-46, promotes SKP2 expression and retinoblastoma cell proliferation.
J Biol Chem. 2019; 294(8):2961-2969 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Retinoblastoma is a childhood retinal tumor that develops from cone photoreceptor precursors in response to inactivating

Jiang J, Zheng M, Zhang M, et al.
PRRX1 Regulates Cellular Phenotype Plasticity and Dormancy of Head and Neck Squamous Cell Carcinoma Through miR-642b-3p.
Neoplasia. 2019; 21(2):216-229 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
BACKGROUND: Dormancy is one characteristic of cancer cells to make patients remain asymptomatic before metastasis and relapse, which is closely related to the survival rate of cancer patients, including head and neck squamous cell carcinoma (HNSCC). PRRX1 has previously been implicated in the invasion and metastasis of the epithelial-mesenchymal transition (EMT) process in different types of human carcinoma. However, whether PRRX1 can regulate cancer dormancy and its reactivation, leading to the migration and invasion of HNSCC cells, remains elusive. The aim of this study was to determine the role of PRRX1 in cellular phenotype plasticity and cancer dormancy of HNSCC cells and its association with miRNAs in HNSCC.
METHODS: The expression of PRRX1 was detected by immunohistochemical staining in primary HNSCC samples and the metastatic lymph nodes. Meanwhile, the role of PRRX1 and its relationship with miR-642b-3p and EMT in cellular phenotype plasticity and cancer dormancy of HNSCC were investigated in vitro and in vivo.
RESULTS: PRRX1 was significantly higher at the invasive front of HNSCC samples compared with the metastatic lymph nodes, and such switch process was accompanied by the cellular phenotype plasticity and cell dormancy activation. In HNSCC cell lines, PRRX1 positively promoted the expression of known EMT inducers and cooperated with activated TGF-β1 to contribute to EMT and migration and invasion of HNSCC cells. Then, we found that overexpression of miR-642b-3p, one of the most significantly downregulated miRNAs in PRRX1-overexpressed cells, significantly reduced the migration and invasion, and increased cell proliferation and apoptosis. And miR-642b-3p restoration reversed PRRX1-induced cell dormancy and EMT of HNSCC cells through TGF-β2 and p38. Finally, we demonstrated that overexpressed PRRX1 was closely correlated with miR-642b-3p downregulation and the upregulation of TGF-β2 and p38 in a xenograft model of HNSCC.
CONCLUSIONS: Our findings showed that PRRX1 may be one of the main driving forces for the cellular phenotype plasticity and tumor dormancy of HNSCC. Therefore, we can raise the possibility that EMT may help to keep cancer cell in dormant state and mesenchymal-epithelial transition may resurge dormancy in HNSCC.

Kaira K, Kamiyoshihara M, Kawashima O, et al.
Prognostic Impact of β2 Adrenergic Receptor Expression in Surgically Resected Pulmonary Pleomorphic Carcinoma.
Anticancer Res. 2019; 39(1):395-403 [PubMed] Related Publications
BACKGROUND/AIM: The β2-adrenergic receptor (β2AR) is highly expressed in various human cancers and has been linked to tumor growth and metastases. Although β2AR is considered a novel therapeutic target of human neoplasms, the clinicopathological significance of β2AR expression in patients with pulmonary pleomorphic carcinoma (PPC) remains unclear. The aim of this study was to clarify the prognostic impact of β2AR in PPC.
PATIENTS AND METHODS: One hundred and five Japanese patients with surgically resected PPC were included in the study. The expression levels of β2AR were assessed by immunohistochemistry in specimens from the resected tumors, and their association with patient survival, as well as with tumor characteristics was investigated.
RESULTS: β2AR was highly expressed in 63% of all patients, irrespective of adenocarcinoma components present. The β2AR expression was significantly associated with lymph node metastasis, lymphatic permeation and tumor cell proliferation in PPC patients with early-stage disease (stage I or II). A high β2AR expression was identified as a significant predictor of worse prognosis for PPC patients during early stages of the disease. Multivariate analysis confirmed that β2AR expression was an independent factor for predicting the overall survival of PPC patients.
CONCLUSION: β2AR can serve as a significant predictor of tumor aggressiveness and poor survival for PPC patients, especially those with early-stage disease.

Bae GE, Kim HS, Won KY, et al.
Lower Sympathetic Nervous System Density and β-adrenoreceptor Expression Are Involved in Gastric Cancer Progression.
Anticancer Res. 2019; 39(1):231-236 [PubMed] Related Publications
BACKGROUND/AIM: Identifying the role of the sympathetic nervous system (SNS) in tumor progression is among the most important challenges in cancer research. This study aimed to investigate the role of the SNS and β-adrenoreceptor in gastric cancer progression.
MATERIALS AND METHODS: The density of SNS was quantified by immunohistochemical staining for tyrosine hydroxylase in 115 surgically-resected gastric cancer specimens. Immunostaining for β1- and β2-adrenoreceptor was also performed to examine the β-adrenoreceptor expression status in gastric cancer. Then the association of protein expression status with histological grade, pathological tumor stage (pT), and pathological node stage of gastric cancer was investigated.
RESULTS: The SNS density of pT4 tumors was significantly lower than that of pT1-3 tumors. The SNS density was positively correlated with β1-adrenoreceptor expression status. In addition, lower β1-adrenoreceptor expression was significantly associated with increased lymph node metastasis. Reduced β2-adrenoreceptor staining proportion was significantly associated with worse histological grade. Furthermore, the proportion of β2-adrenoreceptor staining was significantly lower in tumors with diffuse-type histology, than those with intestinal-type histology.
CONCLUSION: A lower SNS density and β-adrenoreceptor expression was associated with an aggressive oncogenic behavior including worse histological grade, advanced pT, and increased lymph node metastasis. SNS and β-adrenergic pathway are involved in the negative regulation of gastric cancer progression.

Bertagnolo V, Grassilli S, Volinia S, et al.
Ectopic expression of PLC-β2 in non-invasive breast tumor cells plays a protective role against malignant progression and is correlated with the deregulation of miR-146a.
Mol Carcinog. 2019; 58(5):708-721 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Cells in non-invasive breast lesions are widely believed to possess molecular alterations that render them either susceptible or refractory to the acquisition of invasive capability. One such alteration could be the ectopic expression of the β2 isoform of phosphoinositide-dependent phospholipase C (PLC-β2), known to counteract the effects of hypoxia in low-invasive breast tumor-derived cells. Here, we studied the correlation between PLC-β2 levels and the propensity of non-invasive breast tumor cells to acquire malignant features. Using archival FFPE samples and DCIS-derived cells, we demonstrate that PLC-β2 is up-regulated in DCIS and that its forced down-modulation induces an epithelial-to-mesenchymal shift, expression of the cancer stem cell marker CD133, and the acquisition of invasive properties. The ectopic expression of PLC-β2 in non-transformed and DCIS-derived cells is, to some extent, dependent on the de-regulation of miR-146a, a tumor suppressor miRNA in invasive breast cancer. Interestingly, an inverse relationship between the two molecules, indicative of a role of miR-146a in targeting PLC-β2, was not detected in primary DCIS from patients who developed a second invasive breast neoplasia. This suggests that alterations of the PLC-β2/miR-146a relationship in DCIS may constitute a molecular risk factor for the appearance of new breast lesions. Since neither traditional classification systems nor molecular characterizations are able to predict the malignant potential of DCIS, as is possible for invasive ductal carcinoma (IDC), we propose that the assessment of the PLC-β2/miR-146a levels at diagnosis could be beneficial for identifying whether DCIS patients may have either a low or high propensity for invasive recurrence.

Yadav P, Shankar BS
Radio resistance in breast cancer cells is mediated through TGF-β signalling, hybrid epithelial-mesenchymal phenotype and cancer stem cells.
Biomed Pharmacother. 2019; 111:119-130 [PubMed] Related Publications
AIMS: A major obstacle for effective cancer treatment by radiation therapy is the development of radio-resistance and identification of underlying mechanisms and activated pathways will lead to better combination therapies.
MAIN METHODS: Irradiated MCF-7 and MDA-MB-231 breast cancer cell lines were characterised following different recovery periods. Proliferation was assessed by MTT, BrdU and clonogenic assays and apoptosis by Annexin V/ propidium iodide staining and flow cytometry. Gene expression was monitored by real time PCR/ELISA/antibody labelling and migration using transwell inserts.
KEY FINDINGS: Breast cancer cell lines exposed to 6 Gy followed by recovery period for 7 days (D7-6 G) had increased ability for proliferation as well as apoptosis. D7-6 G from both cell lines had increased expression of transforming growth factor isoforms (TGF)-β1, β2 and β3, their receptors TGF-βR1 and TGF-βR2 which are known for such dual effects. The expression of downstream transcription factors Snail, Zeb-1 and HMGA2 also showed a differential pattern in D7-6 G cells with upregulation of at least two of these transcription factors. D7-6 G cells from both cell lines displayed hybrid epithelial-mesenchymal (E/M) phenotype with increased expression of E/M markers and migration. D7-6 G cells had increased expression of cancer stem cells markers Oct4, Sox2, and Nanog; aldehyde dehydrogenase expression and activity; proportion of CD44
SIGNIFICANCE: Blocking of TGF-β signalling may therefore be an effective strategy for overcoming radio resistance induced by radiation exposure.

Shettar A, Damineni S, Mukherjee G, Kondaiah P
Gap junction β‑2 expression is negatively associated with the estrogen receptor status in breast cancer tissues and is a regulator of breast tumorigenesis.
Oncol Rep. 2018; 40(6):3645-3653 [PubMed] Related Publications
Gap junction β‑2 gene (GJB2, also known as connexin 26) is a member of the connexin family which forms gap junction channels. Many connexin genes have been considered to be tumor suppressor genes. However, the overexpression of GJB2 has been found to be associated with a poor prognosis in several human cancers. In our previous microarray study, we revealed the overexpression of GJB2 in breast cancer tissues. Hence, in this study, we investigated the expression of GJB2 in human breast cancer and its role in breast cancer cell proliferation and migration. The RT‑qPCR results revealed the upregulation of the GJB2 gene in invasive ductal carcinoma (P<0.001) of the breast. Immunohistochemical analysis revealed an intense cytoplasmic and membrane staining. We observed that the staining for GJB2 was more intense in the majority of the estrogen receptor (ER)‑negative breast cancer tissues compared to the normal breast tissues (P<0.0001). By contrast, the majority of the ER‑positive breast cancer samples exhibited weak to moderate staining; however, this difference was not statistically significant compared to the normal tisues. The knockdown of GJB2 in human breast cancer cell lines using shRNA led to a significant decrease in the proliferative ability and an increase in the migratory ability of breast cancer cells. In addition, the knockdown of GJB‑2 led to a significant reduction in tumor volume and proliferation (as demonstrated by MIB‑1 staining) in orthotopic xenografts in immunocompromised mice. On the whole, the findings of this study indicate that GJB2 may be an important regulator of breast tumorigenesis.

Han Z, Kang D, Joo Y, et al.
TGF-β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade.
Exp Mol Med. 2018; 50(12):162 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Transforming growth factor (TGF)-β signaling is increasingly recognized as a key driver in cancer. In progressive cancer tissues, TGF-β promotes tumor formation, and its increased expression often correlates with cancer malignancy. In this study, we utilized adenoviruses expressing short hairpin RNAs against TGF-β1 and TGF-β2 to investigate the role of TGF-β downregulation in cancer cell death. We found that the downregulation of TGF-β increased the phosphorylation of several SAPKs, such as p38 and JNK. Moreover, reactive oxygen species (ROS) production was also increased by TGF-β downregulation, which triggered Akt inactivation and NOX4 increase-derived ROS in a cancer cell-type-specific manner. We also revealed the possibility of substantial gene fluctuation in response to TGF-β downregulation related to SAPKs. The expression levels of Trx and GSTM1, which encode inhibitory proteins that bind to ASK1, were reduced, likely a result of the altered translocation of Smad complex proteins rather than from ROS production. Instead, both ROS and ROS-mediated ER stress were responsible for the decrease in interactions between ASK1 and Trx or GSTM1. Through these pathways, ASK1 was activated and induced cytotoxic tumor cell death via p38/JNK activation and (or) induction of ER stress.

Yeon Yeon S, Jung SH, Jo YS, et al.
Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma.
Pathol Res Pract. 2019; 215(1):209-214 [PubMed] Related Publications
β2-microglobulin (B2M), a component of major histocompatibility complex class I, plays an important role in host immune reaction to tumor, and inactivation of B2M is known to contribute to resistance to immune checkpoint blockade (ICB) treatment. To further characterize the B2M alterations in tumors, we analyzed B2M hotspot mutations in 2765 benign and malignant tumor tissues by Sanger sequencing and found B2M mutations in 9 (7.5%) microsatellite-unstable (MSU) colorectal cancers (CRCs) and 3 leukemias (0.6-1.3%), but not in other tumors. Targeted sequencing panel analysis for MSU CRCs showed that B2M-mutated MSU CRCs harbored more driver mutations including TP53 than B2M-wild-type MSU CRCs. Of note, bi-allelic B2M alterations, which had been known to be accumulated during ICB treatment, were frequently found (3/9) in ICB treatment-naive CRCs. Clinicopathologic parameters including CD8 + T cell numbers, cancer stages and patients' survival, however, were not significantly different between B2M-mutated and B2M-wild-type MSU CRCs. Our results indicate that B2M mutation abundance is tissue type-specific (e.g., MSU CRCs) and that genetic makeup of B2M mutation might possibly shape the MSU CRC genomes even before the ICB therapies. Our results show that B2M mutation is common in MSU CRCs, which is one of the main targets for ICB treatment, suggesting that frequent B2M mutation status should be reminded for MSU CRCs in patient selection of ICB.

Al-Qassab Y, Grassilli S, Brugnoli F, et al.
Protective role of all-trans retinoic acid (ATRA) against hypoxia-induced malignant potential of non-invasive breast tumor derived cells.
BMC Cancer. 2018; 18(1):1194 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
BACKGROUND: The presence of hypoxic areas is common in all breast lesions but no data clearly correlate low oxygenation with the acquisition of malignant features by non-invasive cells, particularly by cells from ductal carcinoma in situ (DCIS), the most frequently diagnosed tumor in women.
METHODS: By using a DCIS-derived cell line, we evaluated the effects of low oxygen availability on malignant features of non-invasive breast tumor cells and the possible role of all-trans retinoic acid (ATRA), a well-known anti-leukemic drug, in counteracting the effects of hypoxia. The involvement of the β2 isoform of PI-PLC (PLC-β2), an ATRA target in myeloid leukemia cells, was also investigated by specific modulation of the protein expression.
RESULTS: We demonstrated that moderate hypoxia is sufficient to induce, in DCIS-derived cells, motility, epithelial-to-mesenchymal transition (EMT) and expression of the stem cell marker CD133, indicative of their increased malignant potential. Administration of ATRA supports the epithelial-like phenotype of DCIS-derived cells cultured under hypoxia and keeps down the number of CD133 positive cells, abrogating almost completely the effects of poor oxygenation. We also found that the mechanisms triggered by ATRA in non-invasive breast tumor cells cultured under hypoxia is in part mediated by PLC-β2, responsible to counteract the effects of low oxygen availability on CD133 levels.
CONCLUSIONS: Overall, we assigned to hypoxia a role in increasing the malignant potential of DCIS-derived cells and we identified in ATRA, currently used in treatment of acute promyelocytic leukemia (APL), an agonist potentially useful in preventing malignant progression of non-invasive breast lesions showing hypoxic areas.

Akimoto N, Nakamura K, Hijioka H, et al.
Transfection of T-Box Transcription Factor
Int J Mol Sci. 2018; 19(11) [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Recent studies suggest that epithelial⁻mesenchymal transition (EMT) correlates with cancer metastasis. In addition, there is growing evidence of the association of EMT with cancer stem cells (CSCs). Recently, we showed that the T-box transcription factor

Abukiwan A, Nwaeburu CC, Bauer N, et al.
Dexamethasone-induced inhibition of miR-132 via methylation promotes TGF-β-driven progression of pancreatic cancer.
Int J Oncol. 2019; 54(1):53-64 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
Glucocorticoids (GCs) such as dexamethasone (DEX) are administered as cancer co‑treatment for palliative purposes due to their pro‑apoptotic effects in lymphoid cancer and limited side effects associated with cancer growth and chemotherapy. However, there is emerging evidence that GCs induce therapy resistance in most epithelial tumors. Our recent data reveal that DEX promotes the progression of pancreatic ductal adenocarcinoma (PDA). In the present study, we examined 1 primary and 2 established PDA cell lines, and 35 PDA tissues from patients who had received (n=14) or not received (n=21) GCs prior to surgery. Through microRNA microarray analysis, in silico, and RT‑qPCR analyses, we identified 268 microRNAs differentially expressed between DEX‑treated and untreated cells. With a focus on cancer progression, we selected miR‑132 and its target gene, transforming growth factor-β2 (TGF‑β2), as top candidates. miR‑132 mimics directly bound to the 3' untranslated region (3'UTR) of a TGF‑β2 luciferase construct and enhanced expression, as shown by increased luciferase activity. By contrast, DEX inhibited miR‑132 expression via promoter methylation. miR‑132 mimics also reduced DEX‑induced clonogenicity, migration and expression of vimentin and E‑cadherin in vitro and in tumor xenografts. In patients, GC intake prior to surgery enhanced global hypermethylation and expression of TGF‑β2 in tissues; expression of miR‑132 was detected but could not be quantified. Our results demonstrate that DEX‑mediated inhibition of miR‑132 is a key mediator in the progression of pancreatic cancer, and the findings provide a foundation for miRNA‑based therapies.

Tao Y, Tao T, Gross N, et al.
Combined Effect of IL-12Rβ2 and IL-23R Expression on Prognosis of Patients with Laryngeal Cancer.
Cell Physiol Biochem. 2018; 50(3):1041-1054 [PubMed] Related Publications
BACKGROUND/AIMS: This study aimed to pathologically elucidate the roles of interleukin-12 receptor (IL-12R) β2 and interleukin-23 receptor (IL-23R) expression in tumor cells and tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment and to determine their combined effect on prognosis of laryngeal cancer (LC).
METHODS: The tumor-cell expression scores and TIL positivity ratiosof IL-12Rβ2 and IL-23R in matched LC and normal laryngeal tissue samples from 61 LC patients were measured via immunohistochemistry (IHC). We adopted a linear regression model to analyze the correlation between IL-12Rβ2 and IL-23R expression in tumor cells and TIL ratios. TheKaplan-Meier log-rank test and Cox regression hazard ratios were used to analyze survival.
RESULTS: LC tumor cells had a higher IL-12Rβ2 expression and TIL ratio than IL-23R expression and TIL ratio. The significant correlations between IL-12Rβ2 and IL-23R expression and TIL ratios were identified in LC tissues, particularly in well-differentiated LC. Furthermore, either high tumor cell IL-12Rβ2 or low IL-23R expression had better survival than its corresponding low or high expression, respectively. Similar results did for IL-12Rβ2 ratio and IL-23R ratio. Finally, patients with both high IL-12Rβ2 and low IL-23R had the best prognosis among any other combined groups with both gene expression (HR, 0.1; 95% CI, 0.0-0.8). Likewise, patients with positive ratios of high IL-12Rβ2 and low IL-23R TILs had the best survival (HR, 0.1; 95% CI, 0.0-0.4).
CONCLUSION: IL-12Rβ2 and IL-23R create a homeostasis within the tumor cells and TILs, and this homeostasis affects prognosis. While the intrinsic mechanisms of epigenetic immunoediting for IL-12Rβ2 and IL-23R remain unknown, additional larger and functional studies are warranted for validation.

Yuan YY, Zhu HY, Wu JZ, et al.
The percentage of cells with 17p deletion and the size of 17p deletion subclones show prognostic significance in chronic lymphocytic leukemia.
Genes Chromosomes Cancer. 2019; 58(1):43-51 [PubMed] Related Publications
TP53 disruption is considered to be the most important prognostic factor in chronic lymphocytic leukemia (CLL), but not all patients with TP53 disruption have similar dismal outcomes. We evaluated the prognostic value of TP53 disruption in CLL patients without treatment indications. Data of 305 CLL patients were analyzed. 41 of them (13%) had TP53 disruption. Patients with lower percentage of cells with del(17p) had significantly better survival. Patients with mutated IGHV, β2-microglobulin ≤3.5 mg/L, wild-type TP53, age ≤65 years or without complex karyotype (CK) had relatively favorable outcomes in the del(17p) group. Furthermore, patients with del(17p) as a minor clone showed survival advantage compared with those with del(17p) as a major clone. These data suggest that the percentage of cells with del(17p), the size of the del(17p) subclone, CLL International Prognostic Index, and CK should be considered to build refined prognostication models for patients with TP53 disruption.

Rani L, Gogia A, Singh V, et al.
Comparative assessment of prognostic models in chronic lymphocytic leukemia: evaluation in Indian cohort.
Ann Hematol. 2019; 98(2):437-443 [PubMed] Related Publications
Prognostic indices combining several clinical and laboratory parameters have been proposed for prognostication in chronic lymphocytic leukemia (CLL). Recently, international consortium on CLL proposed an international prognostic index (CLL-IPI) integrating clinical, molecular, and genetic parameters. The present study was designed to evaluate the reproducibility of CLL-IPI in Indian CLL cohort. The prognostic ability of CLL-IPI in terms of overall survival (OS) and time to first treatment (TTFT) was investigated in treatment-naive CLL patients and also compared with other existing prognostic scores. For assigning scores, clinical and laboratory details were obtained from medical records, and IGHV gene mutation status, β2-microglobulin levels, and copy number variations were determined using c-DNA, ELISA, and multiplex ligation-dependent probe amplification (MLPA), respectively. The scores were generated as per the weighted grades assigned to each variable involved in score categorization. The predictive value of prognostic models was assessed and compared using Harrell's C-index and Akaike's information criterion (AIC). Stratification of patients according to CLL-IPI yielded significant differences in terms of OS and TTFT (p < 0.001). Comparative assessment of scores for OS suggested better performance of CLL-IPI (C = 0.64, AIC = 740) followed by Barcelona-Brno (C = 0.61, AIC = 754) and MDACC score (C = 0.59, AIC = 759). Comparison of predictive value of prognostic scores for TTFT illustrated better performance of CLL-IPI (C = 0.72, AIC = 726) followed by Barcelona-Brno (C = 0.68, AIC = 743), modified GCLLSG (C = 0.66, AIC = 744), and O-CLL1 index (C = 0.55, AIC = 773). The results suggest better performance of CLL-IPI in terms of both OS and TTFT as compared to other available scores in our cohort.

Xiao MB, Jin DD, Jiao YJ, et al.
β2-AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway.
Mol Biol Rep. 2018; 45(6):1863-1871 [PubMed] Related Publications
Psychological stress has been recognized as a well-documented risk factor associated with β2-adrenergic receptor (β2-AR) in the development of pancreatic cancer. Aldo-keto reductase 1 member B1 (AKR1B1) is a potential interacting partner of β2-AR, but the effect of their interaction on pancreatic cancer cells is not known at present. We found a positive correlation between AKR1B1 and β2-AR expression in pancreatic cancer tissue samples, and co-localization of these proteins in the human pancreatic cancer BXPC-3 cell line. Compared to the controls, the CFPAC-1 and PANC-1 pancreatic cancer cells overexpressing β2-AR and AKR1B1 respectively showed significantly higher proliferation rates, which is attributed to higher proportion of cells in the S phase and decreased percentage of early apoptotic cells. Furthermore, overexpression of β2-AR led to a significant increase in the expression of AKR1B1 and phosphorylated extracellular signal-regulated kinase (p-ERK1/2). Overexpression of AKR1B1 significantly decreased β2-AR levels and increased that of p-ERK1/2. Taken together, β2-AR directly interacted with and up-regulated AKR1B1 in pancreatic cancer cells, and promoted their proliferation and inhibited apoptosis via the ERK1/2 pathway. Our findings also highlight the β2-AR-AKR1B1 axis as a potential therapeutic target for pancreatic cancer.

Dugnani E, Sordi V, Pellegrini S, et al.
Gene expression analysis of embryonic pancreas development master regulators and terminal cell fate markers in resected pancreatic cancer: A correlation with clinical outcome.
Pancreatology. 2018; 18(8):945-953 [PubMed] Related Publications
BACKGROUND: Despite the recent introduction of new drugs and the development of innovative multi-target treatments, the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains very poor. Even when PDAC is resectable, the rate of local or widespread disease recurrence remains particularly high. Currently, reliable prognostic biomarkers of recurrence are lacking. We decided to explore the potential usefulness of pancreatic developmental regulators as biomarkers of PDAC relapse.
METHODS: We analyzed by quantitative real-time PCR the mRNA of selected factors involved either in pancreatic organogenesis (ISL1, NEUROD1, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, PDX1 and PTF1α) or associated with terminally committed pancreatic cells (CHGA, CHGB, GAD2, GCG, HNF6α, INS, KRT19, SYP) in 17 PDAC cell lines and in frozen tumor samples from 41 PDAC patients.
RESULTS: High baseline levels of the ISL1, KRT19, PAX6 and PDX1 mRNAs in PDAC cell lines, were risk factors for time-dependent xenograft appearance after subcutaneous injection in CD1-Nude mice. Consistently, in human PDAC samples, high levels of KRT19 mRNA were associated with reduced overall survival and earlier recurrence. Higher levels of PDX1 or PAX6 mRNAs were instead associated with a higher frequency of local recurrence.
CONCLUSIONS: Our findings suggest that selected factors associated with pancreas development or its terminal differentiation might be implicated in mechanisms of PDAC progression and/or metastatic spread and that the measurement of their mRNA in tumors might be potentially used to improve patient prognostic stratification and prediction of the relapse site.

He JH, Li YG, Han ZP, et al.
The CircRNA-ACAP2/Hsa-miR-21-5p/ Tiam1 Regulatory Feedback Circuit Affects the Proliferation, Migration, and Invasion of Colon Cancer SW480 Cells.
Cell Physiol Biochem. 2018; 49(4):1539-1550 [PubMed] Related Publications
BACKGROUND/AIMS: Circular RNAs (circRNAs), a type of RNA that is widely expressed in human cells, have essential roles in the development and progression of cancer. CircRNAs contain microRNA (miRNA) binding sites and can function as miRNA sponges to regulate gene expression by removing the inhibitory effect of an miRNA on its target gene.
METHODS: We used the bioinformatics software TargetScan and miRanda to predict circRNA-miRNA and miRNAi-Mrna interactions. Rate of inhibiting of proliferation was measured using a WST-8 cell proliferation assay. Clone formation ability was assessed with a clone formation inhibition test. Cell invasion and migration capacity was evaluated by performing a Transwell assay. Relative gene expression was assessed using quantitative real-time polymerase chain reaction and relative protein expression levels were determined with western blotting. circRNA and miRNA interaction was confirmed by dual-luciferase reporter and RNA-pull down assays.
RESULTS: In the present study, the miRNA hsa-miR-21-5p was a target of circRNA-ACAP2, and T lymphoma invasion and metastasis protein 1 (Tiam1) was identified as a target gene of hsa-miR-21-5p. CircRNA-ACAP2 and Tiam1 were shown to be highly expressed in colon cancer tissue and colon cancer SW480 cells, but miR-21-5p was expressed at a low level. SW480 cell proliferation was suppressed when the expression of circRNA-ACAP2 and Tiam1 was decreased and the expression of miR-21-5p was increased in vivo and in vitro. SW480 cell migration and invasion were also inhibited under the same circumstance. The circRNA-ACAP2 interaction regulated the expression of miR-21-5p, and miR-21-5p regulated the expression of Tiam1. Down-regulation of circRNA-ACAP2 promoted miR-21-5p expression, which further suppressed the transcription and translation of Tiam1.
CONCLUSION: The present study shows that the circRNA-ACAP2/hsa-miR-21-5p/Tiam1 regulatory feedback circuit could affect the proliferation, migration, and invasion of colon cancer SW480 cells. This was probably due to the fact that circRNA-ACAP2 could act as a miRNA sponge to regulate Tiam1 expression by removing the inhibitory effect of miR-21-5p on Tiam1 expression. The results from this study have revealed new insights into the pathogenicity of colon cancer and may provide novel therapeutic targets for the treatment of colon cancer.

Xiong T, Luo Z
The Expression of Actin-Related Protein 2/3 Complex Subunit 5 (ARPC5) Expression in Multiple Myeloma and its Prognostic Significance.
Med Sci Monit. 2018; 24:6340-6348 [PubMed] Article available free on PMC after 22/02/2020 Related Publications
BACKGROUND The aim of this study was to analyze the prognostic value of ARPC5 in patients with multiple myeloma (MM). MATERIAL AND METHODS MM gene expression studies GSE6477, GSE31162, GSE24080, and GSE19784 were obtained and analyzed. The expression of ARPC5 was assessed in normal plasma cells, baseline MM cells, and relapsed MM cells. Univariate and multivariable analyses were used to determine the relationship between ARPC5 expression and clinical characteristics and survivals of MM patients. Quantitative PCR was used to detect the expression ARPC5 in bone marrow mononuclear cells of MM patients and normal controls. GSEA was conducted to identify associated mechanisms. RESULTS ARPC5 expression was significantly increased in baseline MM cells compared to normal plasma cells (P=0.0414). Meanwhile, ARPC5 was significantly increased in relapsed MM cells compared to baseline MM cells (P<0.0001). ARPC5 expression was significantly associated with β2-microglobin (P=0.047), serum lactate dehydrogenase (P=0.007), and rates of aspirate plasma cells (P=0.007). Meanwhile, patients in the ARPC5 high expression group were associated with poor overall survival (P=0.0027) and event-free survival (P=0.0102) compared to those in the ARPC5 low expression group. Multivariable analysis indicated that ARPC5 was an independent prognostic factor for MM patients. Quantitative PCR demonstrated that ARPC5 was significantly increased in MM patients. GSEA results indicated that ARPC5 might affect cellular growth of myeloma cells through mammalian target of rapamycin (mTOR)C1 signaling pathway. CONCLUSIONS ARPC5 could be treated as an independent biomarker for patients with MM.

Lin C, Chen PY, Chan HC, et al.
Peroxisome proliferator-activated receptor alpha accelerates neuronal differentiation and this might involve the mitogen-activated protein kinase pathway.
Int J Dev Neurosci. 2018; 71:46-51 [PubMed] Related Publications
Activation of peroxisome proliferator-activated receptor alpha (PPARα) has been reported to modulate cell proliferation, migration, and differentiation in astrocytes. In this study, we used a retinoic acid (RA)-induced differentiation model of NTERA-2/clone D1 (NT2) cells to explore the functional significance of PPARα in neuronal differentiation. We found that activating PPARα by Wy14643 accelerated neuronal differentiation via regulating the expression of neuronal markers. RT-PCR assays showed a significant increase in NeuroD expression and a decrease in nestin expression in cells treated concomitantly with RA and Wy14643 for 2 days compared to the levels in cells treated with RA alone. Expression of MAP2 protein, a mature neuronal marker, was markedly upregulated at day 10 of Wy14643 treatment, which was maintained after 21 days of neuronal formation. Corresponding to the changes in MAP2 expression, the expression of Cdk5 was upregulated with Wy14643 exposure from day 10 to day 21. Moreover, cells treated with Wy14643 displayed higher expression levels of phospho-ERK and phospho-p38 in the differentiation process than cell treated with RA alone. These results indicated that activation of PPARα accelerated neuronal differentiation through upregulating the expression of NeuroD, MAP2, and Cdk5 and downregulating the expression of nestin. MAPK signals, ERK and p38, might contribute to the accelerated differentiation process. These findings suggest that PPARα plays a role in regulating neuronal differentiation and may be beneficial for functional recovery from neurological disorders.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NEUROD1, Cancer Genetics Web: http://www.cancer-genetics.org/NEUROD1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999