HEY1

Gene Summary

Gene:HEY1; hes related family bHLH transcription factor with YRPW motif 1
Aliases: CHF2, OAF1, HERP2, HESR1, HRT-1, NERP2, hHRT1, BHLHb31
Location:8q21.13
Summary:This gene encodes a nuclear protein belonging to the hairy and enhancer of split-related (HESR) family of basic helix-loop-helix (bHLH)-type transcriptional repressors. Expression of this gene is induced by the Notch and c-Jun signal transduction pathways. Two similar and redundant genes in mouse are required for embryonic cardiovascular development, and are also implicated in neurogenesis and somitogenesis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:hairy/enhancer-of-split related with YRPW motif protein 1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (41)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HEY1 (cancer-related)

Low SYY, Kuick CH, Seow WY, et al.
Primary paediatric epidural sarcomas: molecular exploration of three cases.
BMC Cancer. 2019; 19(1):182 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Primary paediatric epidural sarcomas are extremely rare. Overall, there remains a paucity of knowledge in paediatric epidural sarcomas owing to the infrequent number of cases. The Archer FusionPlex Sarcoma Kit (ArcherDX, Inc) is a next-generation sequencing assay that has been reported to be a useful technique to detect recurrent fusion in sarcomas. We report the molecular exploration of 3 primary paediatric epidural sarcomas-one in the cranium (mesenchymal chondrosarcoma) and 2 in the spine (mesenchymal chondrosarcoma and Ewing sarcoma respectively).
CASE PRESENTATION: This is a study approved by the hospital ethics board. Clinico-pathological information from 3 consenting patients with primary epidural sarcomas was collected. These selected tumours are interrogated via Archer FusionPlex Sarcoma Kit (ArcherDX, Inc) for genomic aberrations. Results were validated with RT-PCR and Sanger sequencing. All findings are corroborated and discussed in concordance with current literature. Our findings show 2 variants of the HEY1-NCOA2 gene fusion: HEY1 (exon 4)-NCOA2 (exon 13) and HEY1 (exon 4)-NCOA2 (exon 14), in both mesenchymal chondrosarcoma patients. Next, the Ewing sarcoma tumour is found to have EWSR1 (exon 10)-FLI1 (exon 8) translocation based on NGS. This result is not detected via conventional fluorescence in situ testing.
CONCLUSIONS: This is a molecularly-centered study based on 3 unique primary paediatric epidural sarcomas. Our findings to add to the growing body of literature for these exceptionally rare and malignant neoplasms. The authors advocate global collaborative efforts and in-depth studies for targeted therapy to benefit affected children.

Xiu DH, Liu GF, Yu SN, et al.
Long non-coding RNA LINC00968 attenuates drug resistance of breast cancer cells through inhibiting the Wnt2/β-catenin signaling pathway by regulating WNT2.
J Exp Clin Cancer Res. 2019; 38(1):94 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Breast cancer is one the most common cancers, making it the second leading cause of cancer-related death among women. Long non-coding RNAs (lncRNAs), with tightly regulated expression patterns, also serve as tumor suppressor during tumorigenesis. The present study aimed to elucidate the role of LINC00968 in breast cancer via WNT2-mediated Wnt2/β-catenin signaling pathway.
METHODS: Breast cancer chip GSE26910 was utilized to identify differential expression in LINC00968 and WNT2. The possible relationship among LINC00968, transcriptional repressor HEY and WNT2 was analyzed and then verified. Effects of LINC00968 on activation of the Wnt2/β-catenin signaling pathway was also tested. Drug resistance, colony formation, cell migration, invasion ability and cell apoptosis after transfection were also determined. Furthermore, tumor xenograft in nude mice was performed to test tumor growth and weight in vivo.
RESULTS: WNT2 expression exhibited at a high level, whereas LINC00968 at a low expression in breast cancer which was also associated with poor prognosis in patients. LINC00968 targeted and negatively regulated WNT2 potentially via HEY1. Either overexpressed LINC00968 or silenced inhibited activation of the Wnt2/β-catenin signaling pathway, thereby reducing drug resistance, decreasing colony formation ability, as well as suppressing migration and invasion abilities of breast cancer cells in addition to inducing apoptosis. Lastly, in vivo experiment suggested that LINC00968 overexpression also suppressed transplanted tumor growth in nude mice.
CONCLUSION: Collectively, overexpressed LINC00968 contributes to reduced drug resistance in breast cancer cells by inhibiting the activation of the Wnt2/β-catenin signaling pathway through silencing WNT2. This study offers a new target for the development of breast cancer treatment.

Li H, Wang Y
Long Noncoding RNA (lncRNA) MIR22HG Suppresses Gastric Cancer Progression through Attenuating NOTCH2 Signaling.
Med Sci Monit. 2019; 25:656-665 [PubMed] Free Access to Full Article Related Publications
BACKGROUND Long noncoding RNAs (lncRNAs) are important regulators in human disease, including cancers. LncRNA MIR22HG has been shown to inhibit the progression of endometrial carcinoma, lung cancer, and hepatocellular carcinoma. Its role in gastric cancer is unclear. This study investigated MIR22HG effects on gastric cancer. MATERIAL AND METHODS Gastric cancer tissues (n=43) and adjacent normal tissues (n=21) were collected. Patients' 5-year overall survival rate was analyzed. Human normal gastric mucosal cell line (GES-1) and gastric cancer cell lines (MKN-45, AGS, SGC-7901) were cultured. AGS and MKN-45 cells were transfected by pcDNA3 empty vector, pcDNA3-MIR22HG overexpression vector, MIR22HG siRNA and its negative control, NOTCH2 siRNA and its negative control, respectively. Proliferation was explored by CCK-8 assay. Migration and invasion were explored by Transwell. qRT-PCR and western blot were used to investigate mRNA and proteins expression, respectively. RESULTS MIR22HG expression was decreased in gastric cancer tissues and cells (P<0.05). Low MIR22HG expression indicated lower 5-year overall survival rate (P<0.05). Upregulation of MIR22HG inhibited AGS and MKN-45 cell proliferation, migration and invasion (all P<0.05). Downregulation of MIR22HG elevated AGS and MKN-45 cell proliferation, migration, and invasion (all P<0.05). MIR22HG negatively regulated NOTCH2 signaling. Silencing MIR22HG elevated HEY1 and nucleus NOTCH2 expression. Silencing of NOTCH2 suppressed AGS and MKN-45 cells proliferation, migration and invasion (all P<0.05). CONCLUSIONS LncRNA MIR22HG suppressed gastric cancer progression through attenuating NOTCH2 signaling.

Baumhoer D, Amary F, Flanagan AM
An update of molecular pathology of bone tumors. Lessons learned from investigating samples by next generation sequencing.
Genes Chromosomes Cancer. 2019; 58(2):88-99 [PubMed] Related Publications
The last decade has seen the majority of primary bone tumor subtypes become defined by molecular genetic alteration. Examples include giant cell tumour of bone (H3F3A p.G34W), chondroblastoma (H3F3B p.K36M), mesenchymal chondrosarcoma (HEY1-NCOA2), chondromyxoid fibroma (GRM1 rearrangements), aneurysmal bone cyst (USP6 rearrangements), osteoblastoma/osteoid osteoma (FOS/FOSB rearrangements), and synovial chondromatosis (FN1-ACVR2A and ACVR2A-FN1). All such alterations are mutually exclusive. Many of these have been translated into clinical service using immunohistochemistry or FISH. 60% of central chondrosarcoma is characterised by either isocitrate dehydrogenase (IDH) 1 or IDH2 mutations distinguishing them from other cartilaginous tumours. In contrast, recurrent alterations which are clinically helpful have not been found in high grade osteosarcoma. High throughput next generation sequencing has also proved valuable in identifying germ line alterations in a significant proportion of young patients with primary malignant bone tumors. These findings will play an increasing role in reaching a diagnosis and in patient management.

Saltarella I, Frassanito MA, Lamanuzzi A, et al.
Homotypic and Heterotypic Activation of the Notch Pathway in Multiple Myeloma-Enhanced Angiogenesis: A Novel Therapeutic Target?
Neoplasia. 2019; 21(1):93-105 [PubMed] Free Access to Full Article Related Publications
Interactions of multiple myeloma (MM) cells with endothelial cells (ECs) enhance angiogenesis and MM progression. Here, we investigated the role of Notch signaling in the cross talk between ECs and MM cells enabling angiogenesis. MMECs showed higher expression of Jagged1/2 ligands, of activated Notch1/2 receptors, and of Hes1/Hey1 Notch target genes than ECs from monoclonal gammopathy of undetermined significance patients, suggesting that homotypic activation of Notch pathway occurs in MM. MM cells co-cultured with MMECs triggered Notch activation in these cells through a cell-to-cell contact-dependent way via Jagged1/2, resulting in Hes1/Hey1 overexpression. The angiogenic effect of Notch pathway was analyzed through Notch1/2·siRNAs and the γ-secretase inhibitor MK-0752 by in vitro (adhesion, migration, chemotaxis, angiogenesis) and in vivo (Vk12598/C57B/6 J mouse model) studies. Activated Notch1/2 pathway was associated with the overangiogenic MMEC phenotype: Notch1/2 knockdown or MK-0752 treatment reduced Hes1/Hey1 expression, impairing in vitro angiogenesis of both MMECs alone and co-cultured with MM cells. MM cells were unable to restore angiogenic abilities of treated MMECs, proving that MMEC angiogenic activities closely rely on Notch pathway. Furthermore, Notch1/2 knockdown affected VEGF/VEGFR2 axis, indicating that the Notch pathway interferes with VEGF-mediated control on angiogenesis. MK-0752 reduced secretion of proangiogenic/proinflammatory cytokines in conditioned media, thus inhibiting blood vessel formation in the CAM assay. In the Vk12598/C57B/6 J mouse, MK-0752 treatment restrained angiogenesis by reducing microvessel density. Overall, homotypic and heterotypic Jagged1/2-mediated Notch activation enhances MMECs angiogenesis. Notch axis inhibition blocked angiogenesis in vitro and in vivo, suggesting that the Notch pathway may represent a novel therapeutic target in MM.

Brun M, Jain S, Monckton EA, Godbout R
Nuclear Factor I Represses the Notch Effector HEY1 in Glioblastoma.
Neoplasia. 2018; 20(10):1023-1037 [PubMed] Free Access to Full Article Related Publications
Glioblastomas (GBMs) are highly aggressive brain tumors with a dismal prognosis. Nuclear factor I (NFI) is a family of transcription factors that controls glial cell differentiation in the developing central nervous system. NFIs have previously been shown to regulate the expression of astrocyte markers such as glial fibrillary acidic protein (GFAP) in both normal brain and GBM cells. We used chromatin immunoprecipitation (ChIP)-on-chip to identify additional NFI targets in GBM cells. Analysis of our ChIP data revealed ~400 putative NFI target genes including an effector of the Notch signaling pathway, HEY1, implicated in the maintenance of neural stem cells. All four NFIs (NFIA, NFIB, NFIC, and NFIX) bind to NFI recognition sites located within 1 kb upstream of the HEY1 transcription site. We further showed that NFI negatively regulates HEY1 expression, with knockdown of all four NFIs in GBM cells resulting in increased HEY1 RNA levels. HEY1 knockdown in GBM cells decreased cell proliferation, increased cell migration, and decreased neurosphere formation. Finally, we found a general correlation between elevated levels of HEY1 and expression of the brain neural stem/progenitor cell marker B-FABP in GBM cell lines. Knockdown of HEY1 resulted in an increase in the RNA levels of the GFAP astrocyte differentiation marker. Overall, our data indicate that HEY1 is negatively regulated by NFI family members and is associated with increased proliferation, decreased migration, and increased stem cell properties in GBM cells.

Jarzabek MA, Proctor WR, Vogt J, et al.
Interrogation of transcriptomic changes associated with drug-induced hepatic sinusoidal dilatation in colorectal cancer.
PLoS One. 2018; 13(6):e0198099 [PubMed] Free Access to Full Article Related Publications
Drug-related sinusoidal dilatation (SD) is a common form of hepatotoxicity associated with oxaliplatin-based chemotherapy used prior to resection of colorectal liver metastases (CRLM). Recently, hepatic SD has also been associated with anti-delta like 4 (DLL4) cancer therapies targeting the NOTCH pathway. To investigate the hypothesis that NOTCH signaling plays an important role in drug-induced SD, gene expression changes were examined in livers from anti-DLL4 and oxaliplatin-induced SD in non-human primate (NHP) and patients, respectively. Putative mechanistic biomarkers of bevacizumab (bev)-mediated protection against oxaliplatin-induced SD were also investigated. RNA was extracted from whole liver sections or centrilobular regions by laser-capture microdissection (LCM) obtained from NHP administered anti-DLL4 fragment antigen-binding (F(ab')2 or patients with CRLM receiving oxaliplatin-based chemotherapy with or without bev. mRNA expression was quantified using high-throughput real-time quantitative PCR. Significance analysis was used to identify genes with differential expression patterns (false discovery rate (FDR) < 0.05). Eleven (CCL2, CCND1, EFNB2, ERG, ICAM1, IL16, LFNG, NOTCH1, NOTCH4, PRDX1, and TGFB1) and six (CDH5, EFNB2, HES1, IL16, MIK67, HES1 and VWF) candidate genes were differentially expressed in the liver of anti-DLL4- and oxaliplatin-induced SD, respectively. Addition of bev to oxaliplatin-based chemotherapy resulted in differential changes in hepatic CDH5, HEY1, IL16, JAG1, MMP9, NOTCH4 and TIMP1 expression. This work implicates NOTCH and IL16 pathways in the pathogenesis of drug-induced SD and further explains the hepato-protective effect of bev in oxaliplatin-induced SD observed in CRLM patients.

Ménard M, Costechareyre C, Ichim G, et al.
Hey1- and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth.
PLoS Biol. 2018; 16(5):e2002912 [PubMed] Free Access to Full Article Related Publications
The neurotrophin-3 (NT-3) receptor tropomyosin receptor kinase C (TrkC/NTRK3) has been described as a dependence receptor and, as such, triggers apoptosis in the absence of its ligand NT-3. This proapoptotic activity has been proposed to confer a tumor suppressor activity to this classic tyrosine kinase receptor (RTK). By investigating interacting partners that might facilitate TrkC-induced cell death, we have identified the basic helix-loop-helix (bHLH) transcription factor Hey1 and importin-α3 (karyopherin alpha 4 [KPNA4]) as direct interactors of TrkC intracellular domain, and we show that Hey1 is required for TrkC-induced apoptosis. We propose here that the cleaved proapoptotic portion of TrkC intracellular domain (called TrkC killer-fragment [TrkC-KF]) is translocated to the nucleus by importins and interacts there with Hey1. We also demonstrate that Hey1 and TrkC-KF transcriptionally silence mouse double minute 2 homolog (MDM2), thus contributing to p53 stabilization. p53 transcriptionally regulates the expression of TrkC-KF cytoplasmic and mitochondrial interactors cofactor of breast cancer 1 (COBRA1) and B cell lymphoma 2-associated X (BAX), which will subsequently trigger the intrinsic pathway of apoptosis. Of interest, TrkC was proposed to constrain tumor progression in neuroblastoma (NB), and we demonstrate in an avian model that TrkC tumor suppressor activity requires Hey1 and p53.

Folpe AL, Graham RP, Martinez A, et al.
Mesenchymal chondrosarcomas showing immunohistochemical evidence of rhabdomyoblastic differentiation: a potential diagnostic pitfall.
Hum Pathol. 2018; 77:28-34 [PubMed] Related Publications
The diagnosis of mesenchymal chondrosarcoma, a distinctive biphasic malignant neoplasm harboring the HEY1-NCOA2 gene fusion and consisting of primitive round to spindled cells admixed with foci of relatively mature hyaline cartilage, is usually straightforward by morphologic evaluation alone. However, in the setting of a limited biopsy, specimens lacking cartilage generate a broad differential diagnosis, encompassing a variety of other primitive sarcomas, including spindle cell/sclerosing rhabdomyosarcoma. Although a small number of cases of mesenchymal chondrosarcoma with aberrant skeletal muscle marker expression have been reported, pathologists are largely unaware of this potential diagnostic pitfall. We report 6 additional cases of mesenchymal chondrosarcoma showing expression of multiple skeletal muscle markers, including one case initially misdiagnosed as "spindle cell/sclerosing rhabdomyosarcoma" on needle biopsy. Awareness of this phenomenon and judicious application of molecular diagnostic testing for the HEY1-NCOA2 fusion are critical to avoid misclassification of mesenchymal chondrosarcoma as rhabdomyosarcoma, with potentially adverse patient impact.

Tsuchiya M, Masui T, Otsuki Y, Sakahara H
18F-FDG PET/CT Findings of Mesenchymal Chondrosarcoma of the Orbit.
Clin Nucl Med. 2018; 43(2):e43-e45 [PubMed] Related Publications
Mesenchymal chondrosarcoma of the orbit is an extremely rare and aggressive tumor. We report image findings of F-fluorodeoxyglucose (FDG) positron emission/computed tomography (PET/CT) in 2 cases, one primary case and one recurrent case. The F-FDG PET/CT images revealed high uptake with an SUVmax of 6.7 and 11.7, respectively. In both cases, the HEY1-CoA2 gene fusion was positive. The high uptake of F-FDG in mesenchymal chondrosarcoma of the orbit well suggests the malignancy of this tumor.

Fukusumi T, Guo TW, Sakai A, et al.
The
Clin Cancer Res. 2018; 24(3):619-633 [PubMed] Free Access to Full Article Related Publications

Chang KTE, Goytain A, Tucker T, et al.
Development and Evaluation of a Pan-Sarcoma Fusion Gene Detection Assay Using the NanoString nCounter Platform.
J Mol Diagn. 2018; 20(1):63-77 [PubMed] Related Publications
The NanoString nCounter assay is a high-throughput hybridization technique using target-specific probes that can be customized to test for numerous fusion transcripts in a single assay using RNA from formalin-fixed, paraffin-embedded material. We designed a NanoString assay targeting 174 unique fusion junctions in 25 sarcoma types. The study cohort comprised 212 cases, 96 of which showed fusion gene expression by the NanoString assay, including all 20 Ewing sarcomas, 11 synovial sarcomas, and 5 myxoid liposarcomas tested. Among these 96 cases, 15 showed fusion expression not identified by standard clinical assay, including EWSR1-FLI1, EWSR1-ERG, BCOR-CCNB3, ZC3H7B-BCOR, HEY1-NCOA2, CIC-DUX4, COL1A1-PDGFB, MYH9-USP6, YAP1-TFE3, and IRF2BP2-CDX1 fusions. There were no false-positive results; however, four cases were false negative when compared with clinically available fluorescence in situ hybridization or RT-PCR testing. When batched as six cases, the per-sample reagent cost was less than conventional techniques, such as fluorescence in situ hybridization, with technologist hands-on time of 1.2 hours per case and assay time of 36 hours. In summary, the NanoString nCounter Sarcoma Fusion CodeSet reliably and cost-effectively identifies fusion genes in sarcomas using formalin-fixed, paraffin-embedded material, including many fusions missed by standard clinical assays, and can serve as a first-line clinical diagnostic test for sarcoma fusion gene identification, replacing multiple individual clinical assays.

Uchibori M, Aoyama KI, Ota Y, et al.
A mutation in NOTCH1 ligand binding region detected in patients with oral squamous cell carcinoma reduces NOTCH1 oncogenic effect.
Oncol Rep. 2017; 38(4):2237-2242 [PubMed] Related Publications
NOTCH1 is known as an oncogenic or tumor suppressive gene in solid cancer. NOTCH1 mutations in oral squamous cell carcinoma (OSCC) frequently occur near the ligand-binding region. These mutations change the domain structure of this protein and affect the ligand binding activity. When NOTCH1 is activated by ligand binding, NOTCH1 intracellular domain (NICD) is cleaved from the cell membrane. This study investigated the functional change induced by a NOTCH1 mutation detected in OSCC clinical samples using stable transformant analysis. HEK293 cell lines expressing NOTCH1 wild-type (WT cells) or p.A465T NOTCH1 (A465T cells) were established. NOTCH1 expression was analyzed by flow cytometry, western blotting, and immunofluorescence using an anti-human NOTCH1 antibody. mRNA expression levels in WT and A465T cells were determined by quantitative real-time PCR (qPCR). Cell proliferation was analyzed by using cell growth assays and a xenograft tumor assay. Flow cytometry indicated that NOTCH1 expression on the cell membrane was lower in A465T cells than that in WT cells. NOTCH1 and NICD were both detected by western blot in WT and A465T cells. The immunofluorescence signal for NICD was detected in the nucleus of WT cells, while it was localized mainly in the cytoplasm of A465T cells. HES1 and HEY1 mRNA expression levels were lower in A465T than in WT cells. The cell growth of WT cells was significantly higher than that of HEK293 cells (3-fold, P<0.01), while that of A465T cells was significantly lower than that of HEK293 cells (37%, P<0.01). In a xenograft model, the tumor cell implantation rate of WT cells was 80%, while that of A465T cells was 0%. This study indicates that NOTCH1 acts as an oncogene and that the NOTCH1 mutation (p.A465T) in the ligand-binding region causes the loss of tumorigenicity by downregulating the NOTCH1 pathway.

Wang W, Fu L, Li S, et al.
Histone deacetylase 11 suppresses p53 expression in pituitary tumor cells.
Cell Biol Int. 2017; 41(12):1290-1295 [PubMed] Related Publications
The pathogenesis of pituitary tumors (PT) is unclear. Deregulation of apoptosis is one of the factors involving tumor growth. Histone deacetylases (HDAC) have an active role in multiple cellular activities. This study aims to investigate the role of HDAC in the interference with apoptosis in PT. In this study, PT samples were collected from 20 patients after surgery. The expression of HDAC and p53 was analyzed in the PT samples. PT cell line, AtT-20 cells, was cultured to test the role of HDAC in the regulation of apoptosis in PT cells. The results showed that the high levels of HDAC11 and lower levels of p53 were detected in PT. A negative correlation was detected between the data of HDAC11 and p53. A complex of HDAC11 and HEY1, the gene transcription factor of p53, was detected in the PT cells. Less acetylated HEY1 was found in the PT cells. In addition, lower levels of HEY1 and the gene transcription activities were detected at the PT53 promoter locus. This phenomenon was mimicked by overexpression of HDAC11 in AtT-20 cells. Knockdown of HDAC11 enhanced the p53 expression in AtT-20 cells. In conclusion, HDAC11 interferes with p53 expression in PT cells. The fact suggests that inhibition of HDAC11 has therapeutic potential in the treatment of PT.

Karami Madani G, Rad A, Molavi M, et al.
Predicting the Correlation of EZH2 and Cancer Stem Cell Markers in Esophageal Squamous Cell Carcinoma.
J Gastrointest Cancer. 2018; 49(4):437-441 [PubMed] Related Publications
BACKGROUND: Enhancer of zeste homolog 2 (EZH2), a stemness factor, plays roles in regulation of cell differentiation and embryonic development as well as cancer progression. Deregulation of EZH2 in cancers is correlated with tumor cell invasiveness, metastasis, and the patients' poor outcome. However, the mechanistic role of EZH2 in cancer is ambiguous. In this study, we aimed to inhibit the expression of EZH2 in a cancer cell line, and evaluate consequence changes in gene expression pattern.
MATERIALS AND METHODS: Using specific retroviral shRNA-EZH2, EZH2 gene was silenced in the KYSE30 cell line. Relative comparative real-time PCR was used to confirm silencing of EZH2 and evaluate expression pattern of selected markers.
RESULTS: Inhibition of EZH2 expression in KYSE30 cells caused significant changes in different genes. Indeed, HIWI and HEY1 genes were over- and underexpressed in KYSE30 cells, respectively, following EZH2 silencing. Other selected cancer stem cell markers were not changed significantly.
CONCLUSION: To the best our knowledge, there are variety of small molecule inhibitors to target EZH2 in cancer cells as a treatment candidate; therefore, our data in this study helps the researchers to select EZH2 for cancer therapy based on its mechanism and correlation with other markers.

Busse TM, Roth JJ, Wilmoth D, et al.
Copy number alterations determined by single nucleotide polymorphism array testing in the clinical laboratory are indicative of gene fusions in pediatric cancer patients.
Genes Chromosomes Cancer. 2017; 56(10):730-749 [PubMed] Related Publications
Gene fusions resulting from structural rearrangements are an established mechanism of tumorigenesis in pediatric cancer. In this clinical cohort, 1,350 single nucleotide polymorphism (SNP)-based chromosomal microarrays from 1,211 pediatric cancer patients were evaluated for copy number alterations (CNAs) associated with gene fusions. Karyotype or fluorescence in situ hybridization studies were performed in 42% of the patients. Ten percent of the bone marrow or solid tumor specimens had SNP array-associated CNAs suggestive of a gene fusion. Alterations involving ETV6, ABL1-NUP214, EBF1-PDGFRB, KMT2A(MLL), LMO2-RAG, MYH11-CBFB, NSD1-NUP98, PBX1, STIL-TAL1, ZNF384-TCF3, P2RY8-CRLF2, and RUNX1T1-RUNX1 fusions were detected in the bone marrow samples. The most common alteration among the low-grade gliomas was a 7q34 tandem duplication resulting in a KIAA1549-BRAF fusion. Additional fusions identified in the pediatric brain tumors included FAM131B-BRAF and RAF1-QKI. COL1A1-PDGFB, CRTC1-MAML2, EWSR1, HEY1, PAX3- and PAX7-FOXO1, and PLAG1 fusions were determined in a variety of solid tumors and a novel potential gene fusion, FGFR1-USP6, was detected in an aneurysmal bone cyst. The identification of these gene fusions was instrumental in tumor diagnosis. In contrast to hematologic and solid tumors in adults that are predominantly driven by mutations, the majority of hematologic and solid tumors in children are characterized by CNAs and gene fusions. Chromosomal microarray analysis is therefore a robust platform to identify diagnostic and prognostic markers in the clinical setting.

Tsung AJ, Guda MR, Asuthkar S, et al.
Methylation regulates HEY1 expression in glioblastoma.
Oncotarget. 2017; 8(27):44398-44409 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) remains one of the most lethal and difficult-to-treat cancers of the central nervous system. The poor prognosis in GBM patients is due in part to its resistance to available treatments, which calls for identifying novel molecular therapeutic targets. In this study, we identified a mediator of Notch signaling, HEY1, whose methylation status contributes to the pathogenesis of GBM. Datamining studies, immunohistochemistry and immunoblot analysis showed that HEY1 is highly expressed in GBM patient specimens. Since methylation status of HEY1 may control its expression, we conducted bisulphite sequencing on patient samples and found that the HEY1 promoter region was hypermethylated in normal brain when compared to GBM specimens. Treatment on 4910 and 5310 xenograft cell lines with sodium butyrate (NaB) significantly decreased HEY1 expression with a concomitant increase in DNMT1 expression, confirming that promoter methylation may regulate HEY1 expression in GBM. NaB treatment also induced apoptosis of GBM cells as measured by flow cytometric analysis. Further, silencing of HEY1 reduced invasion, migration and proliferation in 4910 and 5310 cells. Furthermore, immunoblot and q-PCR analysis showed the existence of a potential positive regulatory loop between HEY1 and p53. Additionally, transcription factor interaction array with HEY1 recombinant protein predicted a correlation with p53 and provided various bonafide targets of HEY1. Collectively, these studies suggest HEY1 may be an important predictive marker for GBM and potential target for future GBM therapy.

Liu Z, Sanders AJ, Liang G, et al.
Hey Factors at the Crossroad of Tumorigenesis and Clinical Therapeutic Modulation of Hey for Anticancer Treatment.
Mol Cancer Ther. 2017; 16(5):775-786 [PubMed] Related Publications
Hairy and Enhancer-of-split related with YRPW motif (Hey) transcription factors are important regulators of stem cell embryogenesis. Clinical relevance shows that they are also highly expressed in malignant carcinoma. Recent studies have highlighted functions for the Hey factors in tumor metastasis, the maintenance of cancer cell self-renewal, as well as proliferation and the promotion of tumor angiogenesis. Pathways that regulate

Pazos MC, Abramovich D, Bechis A, et al.
Gamma secretase inhibitor impairs epithelial-to-mesenchymal transition induced by TGF-β in ovarian tumor cell lines.
Mol Cell Endocrinol. 2017; 440:125-137 [PubMed] Related Publications
Ovarian cancer is characterized by being highly metastatic, a feature that represents the main cause of failure of the treatment. This study investigated the effects of γ-secretase inhibition on the TGF-β-induced epithelial-mesenchymal transition (EMT) process in ovarian cancer cell lines. SKOV3 cells incubated in the presence of TGF-β showed morphological and biochemical changes related to EMT, which were blocked by co-stimulation with TGF-β and the γ-secretase inhibitor DAPT. In SKOV3 and IGROV1 cells, the co-stimulation blocked the cadherin switch and the increase in the transcription factors Snail, Slug, Twist and Zeb1 induced by TGF-β. DAPT impaired the translocation of phospho-β-catenin to the inner cell compartment observed in TGF-β-treated cells, but was not able to block the induction at protein level induced by TGF-β. Moreover, the inhibitor blocked the increased cell migration and invasiveness ability of both cell lines induced by TGF-β. Notch target genes (Hes1 and Hey1) were induced by TGF-β, decreased by DAPT treatment and remained low in the presence of both stimuli. However, DAPT alone caused no effects on most of the parameters analyzed. These results demonstrate that the γ-secretase inhibitor used in this study exerted a blockade on TGF-β-induced EMT in ovarian cancer cells.

Buchberger E, Payrhuber D, El Harchi M, et al.
Inhibition of the transcriptional repressor complex Bcl-6/BCoR induces endothelial sprouting but does not promote tumor growth.
Oncotarget. 2017; 8(1):552-564 [PubMed] Free Access to Full Article Related Publications
The oncogenic potential of the transcriptional repressor Bcl-6 (B-cell lymphoma 6) was originally discovered in non-Hodgkin patients and the soluble Bcl-6 inhibitor 79-6 was developed to treat diffuse large B-cell lymphomas with aberrant Bcl-6 expression. Since we found Bcl-6 and its co-repressor BCoR (Bcl-6 interacting co-repressor) to be regulated in human microvascular endothelium by colorectal cancer cells, we investigated their function in sprouting angiogenesis which is central to tumor growth. Based on Bcl-6/BCoR gene silencing we found that the transcriptional repressor complex in fact constitutes an endogenous inhibitor of vascular sprouting by supporting the stalk cell phenotype: control of Notch target genes (HES1, HEY1, DLL4) and cell cycle regulators (cyclin A and B1). Thus, when endothelial cells were transiently transfected with Bcl-6 and/or BCoR siRNA, vascular sprouting was prominently induced. Comparably, when the soluble Bcl-6 inhibitor 79-6 was applied in the mouse retina model of physiological angiogenesis, endothelial sprouting and branching were significantly enhanced. To address the question whether clinical treatment with 79-6 might therefore have detrimental therapeutic effects by promoting tumor angiogenesis, mouse xenograft models of colorectal cancer and diffuse large B-cell lymphoma were tested. Despite a tendency to increased tumor vessel density, 79-6 therapy did not enhance tumor expansion. In contrast, growth of colorectal carcinomas was significantly reduced which is likely due to a combined 79-6 effect on cancer cells and tumor stroma. These findings may provide valuable information regarding the future clinical development of Bcl-6 inhibitors.

Golden S, Yu XM, Odorico S, et al.
The Epstein-Barr virus EBNA2 protein induces a subset of NOTCH target genes in thyroid cancer cell lines but fails to suppress proliferation.
Surgery. 2017; 161(1):195-201 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epstein-Barr virus is associated with lymphoid and epithelial malignancies and has been reported to infect thyroid cells. The Epstein-Barr virus protein, EBNA2, regulates viral and cellular promoters by binding to RBP-jκ. Similarly, NOTCH1, a tumor suppressor protein in thyroid epithelial cells, competes with EBNA2 for binding to overlapping sites on RBP-jκ. EBNA2 activates a subset of NOTCH-responsive genes in lymphocytes and myocytes; however, the effect of EBNA2 expression on NOTCH targets in epithelial cells is unknown. Here we have explored whether EBNA2 activates NOTCH1 targets in thyroid cancer lines and examined its effect on cellular proliferation.
METHODS: Two human thyroid cancer lines, follicular FTC-236 and anaplastic HTh7, were transfected with EBNA2, NOTCH1, or control vectors. Notch targets were measured using quantitative reverse transcriptase polymerase chain reaction. Cellular proliferation was measured by MTT analysis.
RESULTS: EBNA2 activated only a subset of NOTCH1 targets. Expression of HES1 and HEY1 were increased 10-fold in FTC-236 and HTh7 cells, respectively, but the majority of NOTCH1 targets examined were not affected. In contrast to NOTCH1, EBNA2 did not suppress proliferation.
CONCLUSION: EBNA2 does not activate most Notch1-responsive genes or suppress proliferation in human thyroid cancer cells. Instead, EBNA2 may compete with NOTCH1 for limiting amounts of RBP-jκ in epithelial cells and inhibit certain aspects of NOTCH1 signaling.

Karim S, Al-Maghrabi JA, Farsi HM, et al.
Cyclin D1 as a therapeutic target of renal cell carcinoma- a combined transcriptomics, tissue microarray and molecular docking study from the Kingdom of Saudi Arabia.
BMC Cancer. 2016; 16(Suppl 2):741 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Renal cell carcinoma (RCC) is a seventh ranked malignancy with poor prognosis. RCC is lethal at metastatic stage as it does not respond to conventional systemic treatments, and there is an urgent need to find out promising novel biomarkers for effective treatment. The goal of this study was to evaluate the biomarkers that can be potential therapeutic target and predict effective inhibitors to treat the metastatic stage of RCC.
METHODS: We conducted transcriptomic profiling to identify differentially expressed genes associated with RCC. Molecular pathway analysis was done to identify the canonical pathways and their role in RCC. Tissue microarrays (TMA) based immunohistochemical stains were used to validate the protein expression of cyclinD1 (CCND1) and were scored semi-quantitatively from 0 to 3+ on the basis of absence or presence of staining intensity in the tumor cell. Statistical analysis determined the association of CCND1 expression with RCC. Molecular docking analyses were performed to check the potential of two natural inhibitors, rutin and curcumin to bind CCND1.
RESULTS: We detected 1490 significantly expressed genes (1034, upregulated and 456, downregulated) in RCC using cutoff fold change 2 and p value < 0.05. Hes-related family bHLH transcription factor with YRPW motif 1 (HEY1), neuropilin 2 (NRP2), lymphoid enhancer-binding factor 1 (LEF1), and histone cluster 1 H3h (HIST1H3H) were most upregulated while aldolase B, fructose-bisphosphate (ALDOB), solute carrier family 12 (SLC12A1), calbindin 1 (CALB1) were the most down regulated genes in our dataset. Functional analysis revealed Wnt/β-catenin signaling as the significantly activated canonical pathway (z score = 2.53) involving cyclin D1 (CCND1). CCND1 was overexpressed in transcriptomic studies (FC = 2.26, p value = 0.0047) and TMA results also showed the positive expression of CCND1 in 53 % (73/139) of RCC cases. The ligands - rutin and curcumin bounded with CCND1 with good affinity.
CONCLUSION: CCND1 was one of the important upregulated gene identified in microarray and validated by TMA. Docking study showed that CCND1 may act as a potential therapeutic target and its inhibition could focus on the migratory, invasive, and metastatic potential of RCC. Further in vivo and in vitro molecular studies are needed to investigate the therapeutic target potential of CCND1 for RCC treatment.

Kang HG, Kim DH, Kim SJ, et al.
Galectin-3 supports stemness in ovarian cancer stem cells by activation of the Notch1 intracellular domain.
Oncotarget. 2016; 7(42):68229-68241 [PubMed] Free Access to Full Article Related Publications
Ovarian cancer is the most lethal gynecologic disease because usually, it is lately sensed, easily acquires chemoresistance, and has a high recurrence rate. Recent studies suggest that ovarian cancer stem cells (CSCs) are involved in these malignancies. Here, we demonstrated that galectin-3 maintains ovarian CSCs by activating the Notch1 intracellular domain (NICD1). The number and size of ovarian CSCs decreased in the absence of galectin-3, and overexpression of galectin-3 increased them. Overexpression of galectin-3 increased the resistance for cisplatin and paclitaxel-induced cell death. Silencing of galectin-3 decreased the migration and invasion of ovarian cancer cells, and overexpression of galectin-3 reversed these effects. The Notch signaling pathway was strongly activated by galectin-3 overexpression in A2780 cells. Silencing of galectin-3 reduced the levels of cleaved NICD1 and expression of the Notch target genes, Hes1 and Hey1. Overexpression of galectin-3 induced NICD1 cleavage and increased expression of Hes1 and Hey1. Moreover, overexpression of galectin-3 increased the nuclear translocation of NICD1. Interestingly, the carbohydrate recognition domain of galectin-3 interacted with NICD1. Overexpression of galectin-3 increased tumor burden in A2780 ovarian cancer xenografted mice. Increased expression of galectin-3 was detected in advanced stages, compared to stage 1 or 2 in ovarian cancer patients, suggesting that galectin-3 supports stemness of these cells. Based on these results, we suggest that targeting galectin-3 may be a potent approach for improving ovarian cancer therapy.

Cohen JN, Solomon DA, Horvai AE, Kakar S
Pancreatic involvement by mesenchymal chondrosarcoma harboring the HEY1-NCOA2 gene fusion.
Hum Pathol. 2016; 58:35-40 [PubMed] Related Publications
Mesenchymal chondrosarcoma (MC) is an aggressive small, round, blue cell tumor with chondrogenic differentiation that typically arises in bony sites. Approximately, a third of these tumors develop in extraskeletal sites such as the meninges, and somatic soft tissue. The MCs are well-circumscribed, lobulated masses, with focal calcification. Histologically, 2 distinct populations of neoplastic cells characterize MC: sheets of primitive small, round, blue cells surrounding islands of well-developed hyaline cartilage with mature chondrocytes in lacunae. Involvement of the gastrointestinal tract and pancreas by primary or metastatic MC is a relatively rare occurrence. We identified 8 patients with MC in our departmental archives from 1990 to 2015, two of which had pancreatic involvement. The patients were young women who developed masses in the distal pancreas. Molecular testing demonstrated that both tumors harbored the recently described HEY1-NCOA2 gene fusion. These cases illustrate that pancreatic involvement can occur in MC, and the demonstration of HEY1-NCOA2 fusion can be helpful to confirm the diagnosis.

Suliman MA, Zhang Z, Na H, et al.
Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumor suppressor miR-200 family.
Int J Mol Med. 2016; 38(3):776-84 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is among the most frequent causes of cancer-related deaths worldwide. Thus, there is a need for the development of new therapeutic approaches for the treatment of CRC. Accumulating evidence has revealed that niclosamide, an anthelminthic drug, exerts antitumor activity in several types of cancer, including colon cancer. However, the underlying molecular mechanisms responsible for the effects of this drug remain elusive. Previous studies have shown that the aberrant Notch signaling pathway contributes to the carcinogenesis of colon cancer. Herein, we examined the effects of niclosamide on the growth, migration and apoptosis of colon cancer cells, and the role of the Notch signaling pathway. By performing MTT, wound-healing and Transwell migration assays, we observed that niclosamide suppressed the growth and migration of colon cancer cells, and flow cytometry demonstrated that cell apoptosis was induced. This was associated with the decreased protein expression of Notch1, Notch2, Notch3 and Hey1, and the increased expression of the tumor suppressor microRNA (miR or miRNA)‑200 family members (miR‑200a, miR-200b, miR-200c, miR-141 and miR-429) that are typically downregulated in colon cancer. Collectively, these findings demonstrate that niclosamide potentially inhibits the progression of colon cancer by downregulating Notch signaling and by upregulating the miR-200 family members.

Lau EY, Lo J, Cheng BY, et al.
Cancer-Associated Fibroblasts Regulate Tumor-Initiating Cell Plasticity in Hepatocellular Carcinoma through c-Met/FRA1/HEY1 Signaling.
Cell Rep. 2016; 15(6):1175-89 [PubMed] Related Publications
Like normal stem cells, tumor-initiating cells (T-ICs) are regulated extrinsically within the tumor microenvironment. Because HCC develops primarily in the context of cirrhosis, in which there is an enrichment of activated fibroblasts, we hypothesized that cancer-associated fibroblasts (CAFs) would regulate liver T-ICs. We found that the presence of α-SMA(+) CAFs correlates with poor clinical outcome. CAF-derived HGF regulates liver T-ICs via activation of FRA1 in an Erk1,2-dependent manner. Further functional analysis identifies HEY1 as a direct downstream effector of FRA1. Using the STAM NASH-HCC mouse model, we find that HGF-induced FRA1 activation is associated with the fibrosis-dependent development of HCC. Thus, targeting the CAF-derived, HGF-mediated c-Met/FRA1/HEY1 cascade may be a therapeutic strategy for the treatment of HCC.

Zhang X, Wang YN, Zhu JJ, et al.
N-acetylcysteine negatively regulates Notch3 and its malignant signaling.
Oncotarget. 2016; 7(21):30855-66 [PubMed] Free Access to Full Article Related Publications
Notch3 receptor is expressed in a variety of cancers and the excised active intracellular domain (N3ICD) initiates its signaling cascade. N-acetylcysteine (NAC) as an antioxidant has been implicated in cancer prevention and therapy. In this study, we demonstrated a negative regulation of Notch3 by NAC in cancer cells. HeLa cells treated with NAC exhibited a time- and concentration-dependent decrease in Notch3 levels and its downstream effectors Hes1 and HRT1 in a manner independent of f-secretase or glutathione. In contrast, NAC did not affect protein levels of Notch1, the full length Notch3 precursor, or ectopically expressed N3ICD. Although SOD, catalase and NAC suppressed reactive oxygen species in HeLa cells, the first two antioxidants did not impact on Notch3 levels. While the mRNA expression of Notch3 was not altered by NAC, functional inhibition of lysosome, but not proteasome, blocked the NAC-dependent reduction of Notch3 levels. Furthermore, results from Notch3 silencing and N3ICD overexpression demonstrated that NAC prevented malignant phenotypes through down-regulation of Notch3 protein in multiple cancer cells. In summary, NAC reduces Notch3 levels through lysosome-dependent protein degradation, thereby negatively regulates Notch3 malignant signaling in cancer cells. These results implicate a novel NAC treatment in sensitizing Notch3-expressing tumors.

Guan H, Dai Z, Ma Y, et al.
MicroRNA-101 inhibits cell proliferation and induces apoptosis by targeting EYA1 in breast cancer.
Int J Mol Med. 2016; 37(6):1643-51 [PubMed] Related Publications
MicroRNAs (miRNAs or miRs) regulate gene expression by negatively modulating the stability or translational efficiency of their target genes by targeting the 3'-untranslated region (3'-UTR). Aberrant miRNA expression has been reported in various types of cancer; miRNAs can function as either oncogenes or tumor suppressor genes in cancer. In this study, we examined the expression level of miR‑101 in breast cancer tissues and cell lines by RT-qPCR, and found that miR‑101 expression was downregulated in breast cancer tissues and cell lines; indeed, in 6 of the 28 tissue samples, miR‑101 could not be detected. Furthermore, miR‑101, when transfected into SKBR3 cells, inhibited cell proliferation and promoted apoptosis, while miR‑101 inhibitor had the opposite effect. A dual-luciferase reporter assay revealed that miR‑101 targeted the 3'-UTR of eyes absent homolog 1 (Drosophila) (EYA1). Western blot analysis demonstrated a significantly decreased protein level of EYA1 in the SKBR3 cells transfected with miR‑101 mimic, whereas transfection with miR‑101 inhibitor led to an increased level of EYA1. Moreover, an increased expression of EYA1 was also found in breast cancer tissues and cell lines. The silencing of EYA1 using siRNA targeting EYA1 (EYA1‑siRNA) significantly inhibited SKBR3 cell proliferation and promoted apoptosis, and also suppressed the increased proliferation induced by transfection with miR‑101 inhibitor. The protein expression levels of Notch signaling components (jagged1, Hes1 and Hey1) were significantly decreased by transfection with miR‑101 mimic and EYA1-siRNA, and were increased by transfection with miR‑101 inhibitor. Furthermore, the elevated protein expression levels of jagged1, Hes1 and Hey1 induced by transfection with miR‑101 inhibitor in the SKBR3 cells were significantly decreased by transfection with EYA1-siRNA. Taken together, these results suggest that miR‑101 is down-regulated in breast cancer, and can inhibit cell proliferation and promote apoptosis by targeting EYA1 through the Notch signaling pathway.

Chen JY, Li CF, Chu PY, et al.
Lysine demethylase 2A promotes stemness and angiogenesis of breast cancer by upregulating Jagged1.
Oncotarget. 2016; 7(19):27689-710 [PubMed] Free Access to Full Article Related Publications
Alterations of histone methylation dynamically regulated by methyltransferases and demethylases are frequently found in human cancers. Here, we showed that expression of lysine demethylase 2A (KDM2A) is markedly increased in human breast cancer and its overexpression is associated with tumor progression and poor prognosis. Knockdown of KDM2A in breast cancer cells reduced proliferation but not viability. Gene set enrichment analysis revealed that inhibition of KDM2A down-regulates angiogenic genes with concurrent reduction of Jagged1 (JAG1), NOTCH1 and HEY1 in the NOTCH signaling. Chromatin immunoprecipitation- quantitative polymerase chain reaction (ChIP-qPCR) demonstrated the binding of KDM2A to the JAG1 promoter and the increase of methylation of Lys-36 of histone H3 (H3K36) in KDM2A-depleted MDA-MB-231 cells. Tumorsphere formation was significantly reduced in KDM2A-depleted cells which could be reversed by ectopic expression of JAG1. A selective KDM2A inhibitor daminozide also decreased the number of tumorsphere and the number of CD24-/CD44hi cells. In addition, daminozide acted synergistically with cisplatin in cell killing. We identified SOX2 as a direct transcriptional target of KDM2A to promote cancer stemness. Depletion of KDM2A in MDA-MB-231 cells attenuated NOTCH activation and tube formation in co-cultured endothelial cells. Two pro-angiogenic factors JAG1 and PDGFA are key mediators for KDM2A to enhance angiogenesis. Finally, inhibition of KDM2A significantly decreased tumor growth and angiogenesis in orthotopic animal experiments. Collectively, we conclude that KDM2A functions as an oncogene in breast cancer by upregulating JAG1 to promote stemness, chemoresistance and angiogenesis.

Ongaro A, Pellati A, Bagheri L, et al.
Characterization of Notch Signaling During Osteogenic Differentiation in Human Osteosarcoma Cell Line MG63.
J Cell Physiol. 2016; 231(12):2652-63 [PubMed] Related Publications
Osteogenic differentiation is a multi-step process controlled by a complex molecular framework. Notch is an evolutionarily conserved intercellular signaling pathway playing a prominent role in cell fate and differentiation, although the mechanisms by which this pathway regulates osteogenesis remain controversial. This study aimed to investigate, in vitro, the involvement of Notch pathway during all the developmental stages of osteogenic differentiation in human osteosarcoma cell line MG63. Cells were cultured in basal condition (control) and in osteoinductive medium (OM). Notch inhibitors were also added in OM to block Notch pathway. During osteogenic differentiation, early (alkaline phosphatase activity and collagen type I) and late osteogenic markers (osteocalcin levels and matrix mineralization), as well as the gene expression of the main osteogenic transcription factors (Runx2, Osterix, and Dlx5) increased. Time dependent changes in the expression of specific Notch receptors were identified in OM versus control with a significant reduction in the expression of Notch1 and Notch3 receptors in the early phase of differentiation, and an increase of Notch2 and Notch4 receptors in the late phase. Among Notch nuclear target genes, Hey1 expression was significantly higher in OM than control, while Hes5 expression decreased. Osteogenic markers were reduced and Hey1 was significantly inhibited by Notch inhibitors, suggesting a role for Notch through the canonical pathway. In conclusion, Notch pathway might be involved with a dual role in osteogenesis of MG63, through the activation of Notch2, Notch4, and Hey1, inducing osteoblast differentiation and the depression of Notch1, Notch3, and Hes5, maintaining an undifferentiated status. J. Cell. Physiol. 231: 2652-2663, 2016. © 2016 Wiley Periodicals, Inc.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HEY1, Cancer Genetics Web: http://www.cancer-genetics.org/HEY1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999