FGF1

Gene Summary

Gene:FGF1; fibroblast growth factor 1 (acidic)
Aliases: AFGF, ECGF, FGFA, ECGFA, ECGFB, FGF-1, HBGF1, HBGF-1, GLIO703, ECGF-beta, FGF-alpha
Location:5q31
Summary:The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein functions as a modifier of endothelial cell migration and proliferation, as well as an angiogenic factor. It acts as a mitogen for a variety of mesoderm- and neuroectoderm-derived cells in vitro, thus is thought to be involved in organogenesis. Multiple alternatively spliced variants encoding different isoforms have been described. [provided by RefSeq, Jan 2009]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:fibroblast growth factor 1
HPRD
Source:NCBIAccessed: 06 August, 2015

Ontology:

What does this gene/protein do?
Show (35)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FGF1 (cancer-related)

Plönes T, Beckers F, Engel-Riedel W, et al.
Absence of amplification of the FGFR1-gene in human malignant mesothelioma of the pleura: a pilot study.
BMC Res Notes. 2014; 7:549 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mesothelioma (MPM) is a rare malignant disease with a worse outcome. Fibroblast growth factor 1 (FGFR1) may be an interesting target for selective tyrosine kinases inhibitors (TKI) in MPM. The aim of this study was to evaluate the amplification of the FGFR1 gene in patients suffering from MPM.
FINDINGS: We identified nineteen male patients treated in our department between August 2008 and July 2010 matching the inclusion criteria. Mean age was 68 years. Histopathological examination confirmed thirteen patients with epitheloid subtype, five with biphasic and one patient with sarcomatoid. Fluorescence in situ hybridization analysis revealed no polysomy nor an amplification of the FGFR gene copy number in any case.
CONCLUSION: Regarding that also EGFR amplifications in MPM are absolute rarities, our findings may be a hint that TKI's will not satisfy the hope for a new era in the treatment of MPM.

Shi H, Fu C, Wang W, et al.
The FGF-1-specific single-chain antibody scFv1C9 effectively inhibits breast cancer tumour growth and metastasis.
J Cell Mol Med. 2014; 18(10):2061-70 [PubMed] Free Access to Full Article Related Publications
Immunotherapy mediated by recombinant antibodies is an effective therapeutic strategy for a variety of cancers. In a previous study, we demonstrated that the fibroblast growth factor 1 (FGF-1)-specific recombinant antibody scFv1C9 arrests the cell cycle at the G0/G1 transition by blocking the intracrine FGF-1 pathway in breast cancer cells. Here, we further show that the overexpression of scFv1C9 in MCF-7 and MDA-MB-231 breast cancer cells by lentiviral infection resulted in decreased tumourigenicity, tumour growth and lung metastasis through FGF-1 neutralization. We found that scFv1C9 resulted in the up-regulation of p21, which in turn inhibited the expression of CDK2 and blocked cell cycle progression. To explore the potential role of scFv1C9 in vivo, we delivered the gene into solid tumours by electroporation, which resulted in significant inhibition of tumour growth. In tumour tissue sections, immunohistochemical staining of the cellular proliferation marker Ki-67 and the microvessel marker CD31 showed a reduction in the proliferative index and microvessel density, respectively, upon expression of scFv1C9 compared with the appropriate controls. Thus, our data indicate a central role for scFv1C9 in blocking the intracrine pathway of FGF-1, therefore, scFv1C9 could be developed in an effective therapeutic for breast cancer.

Wang X, Cao X
Regulation of metastasis of pediatric multiple myeloma by MMP13.
Tumour Biol. 2014; 35(9):8715-20 [PubMed] Related Publications
The molecular mechanism underlying metastasis of pediatric multiple myeloma (MM) remains elusive. Here, we showed that the levels of MMP13 are significantly higher in MM from young patients than those from adult patients. Moreover, a strong correlation of the MMP13 and phosphorylated fibroblast growth factor receptor 4 (FGFR4) levels was detected in MM from young patients. To prove a causal link between activation of fibroblast growth factor receptors (FGFR) signaling pathway and MMP13 expression, we used a human MM line, RPMI-8226 (8226), to study the underlying molecular basis. We found that FGF1-induced FGFR4 phosphorylation in 8,226 cells resulted in significant activation of MMP13, and consequently, an increase in cancer invasiveness. FGFR4 inhibition in 8,226 cells abolished FGF1-stimulated MMP13 expression, suggesting that activation of FGFR signaling pathway in MM may promote cancer metastasis by inducing MMP13 expression. To define the signaling cascades downstream of FGFR4 activation for MMP13 activation, we applied specific inhibitors for PI3K, Jun N-terminal kinase (JNK), and ERK/MAPK, respectively, to the FGF1-stimulated 8,226 cells. We found that only inhibition of ERK1/2 significantly decreased the activation of MMP13 in response to FGF stimulation, suggesting that activation of FGFR signaling may activate ERK/MAPK, rather than JNK or PI3K pathway to activate MMP13 expression in 8,226 cells. Our study thus highlights FGFR4 signaling pathway and MMP13 as novel therapeutic targets for MM.

Klemke M, Müller MH, Wosniok W, et al.
Correlated expression of HMGA2 and PLAG1 in thyroid tumors, uterine leiomyomas and experimental models.
PLoS One. 2014; 9(2):e88126 [PubMed] Free Access to Full Article Related Publications
In pleomorphic adenomas of the salivary glands (PASG) recurrent chromosomal rearrangements affecting either 8q12 or 12q14∼15 lead to an overexpression of the genes of the genuine transcription factor PLAG1 or the architectural transcription factor HMGA2, respectively. Both genes are also affected by recurrent chromosomal rearrangements in benign adipocytic tumors as e. g. lipomas and lipoblastomas. Herein, we observed a strong correlation between the expression of HMGA2 and PLAG1 in 14 benign and 23 malignant thyroid tumors. To address the question if PLAG1 can be activated by HMGA2, the expression of both genes was quantified in 32 uterine leiomyomas 17 of which exhibited an overexpression of HMGA2. All leiomyomas with HMGA2 overexpression also revealed an activation of PLAG1 in the absence of detectable chromosome 8 abnormalities affecting the PLAG1 locus. To further investigate if the overexpression of PLAG1 is inducible by HMGA2 alone, HMGA2 was transiently overexpressed in MCF-7 cells. An increased PLAG1 expression was observed 24 and 48 h after transfection. Likewise, stimulation of HMGA2 by FGF1 in adipose tissue-derived stem cells led to a simultaneous increase of PLAG1 mRNA. Altogether, these data suggest that HMGA2 is an upstream activator of PLAG1. Accordingly, this may explain the formation of tumors as similar as lipomas and lipoblastomas resulting from an activation of either of both genes by chromosomal rearrangements.

Blumenschein GR, Saintigny P, Liu S, et al.
Comprehensive biomarker analysis and final efficacy results of sorafenib in the BATTLE trial.
Clin Cancer Res. 2013; 19(24):6967-75 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To report the clinical efficacy of sorafenib and to evaluate biomarkers associated with sorafenib clinical benefit in the BATTLE (Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination) program.
PATIENTS AND METHODS: Patients with previously treated non-small cell lung cancer (NSCLC) received sorafenib until progression or unacceptable toxicity. Eight-week disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) were assessed. Prespecified biomarkers included K-RAS, EGFR, and B-RAF mutations, and EGFR gene copy number. Gene expression profiles from NSCLC cell lines and patient tumor biopsies with wild-type EGFR were used to develop a sorafenib sensitivity signature (SSS).
RESULTS: A total of 105 patients were eligible and randomized to receive sorafenib. Among 98 patients evaluable for eight-week DCR, the observed DCR was 58.2%. The median PFS and OS were 2.83 [95% confidence interval (CI), 2.04-3.58] and 8.48 months (95% CI, 5.78-10.97), respectively. Eight-week DCR was higher in patients with wild-type EGFR than patients with EGFR mutation (P = 0.012), and in patients with EGFR gene copy number gain (FISH-positive) versus patients FISH-negative (P = 0.048). In wild-type EGFR tumors, the SSS was associated with improved PFS (median PFS 3.61 months in high SSS vs. 1.84 months in low SSS; P = 0.026) but not with eight-week DCR. Increased expression of fibroblast growth factor-1, NF-κB, and hypoxia pathways were identified potential drivers of sorafenib resistance.
CONCLUSION: Sorafenib demonstrates clinical activity in NSCLC, especially with wild-type EGFR. SSS was associated with improved PFS. These data identify subgroups that may derive clinical benefit from sorafenib and merit investigation in future trials.

Meng QH, Xu E, Hildebrandt MA, et al.
Genetic variants in the fibroblast growth factor pathway as potential markers of ovarian cancer risk, therapeutic response, and clinical outcome.
Clin Chem. 2014; 60(1):222-32 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The fibroblast growth factor (FGF) and FGF receptor (FGFR) axis plays a critical role in tumorigenesis, but little is known of its influence in ovarian cancer. We sought to determine the association of genetic variants in the FGF pathway with risk, therapeutic response, and survival of patients with ovarian cancer.
METHODS: We matched 339 non-Hispanic white ovarian cancer cases with 349 healthy controls and genotyped them for 183 single-nucleotide polymorphisms (SNPs) from 24 FGF (fibroblast growth factor) and FGFR (fibroblast growth factor receptor) genes. Genetic associations for the main effect, gene-gene interactions, and the cumulative effect were determined.
RESULTS: Multiple SNPs in the FGF-FGFR axis were associated with an increased risk of ovarian cancer. In particular, FGF1 [fibroblast growth factor 1 (acidic)] SNP rs7727832 showed the most significant association with ovarian cancer (odds ratio, 2.27; 95% CI, 1.31-3.95). Ten SNPs were associated with a reduced risk of ovarian cancer. FGF18 (fibroblast growth factor 18) SNP rs3806929, FGF7 (fibroblast growth factor 7) SNP rs9920722, FGF23 (fibroblast growth factor 23) SNP rs12812339, and FGF5 (fibroblast growth factor 5) SNP rs3733336 were significantly associated with a favorable treatment response, with a reduction of risk of nonresponse of 40% to 60%. Eleven SNPs were significantly associated with overall survival. Of these SNPs, FGF23 rs7961824 was the most significantly associated with improved prognosis (hazard ratio, 0.55; 95% CI, 0.39-0.78) and was associated with significantly longer survival durations, compared with individuals with the common genotype at this locus (58.1 months vs. 38.0 months, P = 0.005). Survival tree analysis revealed FGF2 rs167428 as the primary factor contributing to overall survival.
CONCLUSIONS: Significant associations of genetic variants in the FGF pathway were associated with ovarian cancer risk, therapeutic response, and survival. The discovery of multiple SNPs in the FGF-FGFR pathway provides a molecular approach for risk assessment, monitoring therapeutic response, and prognosis.

Thies HW, Nolte I, Wenk H, et al.
Permanent activation of HMGA2 in lipomas mimics its temporal physiological activation linked to the gain of adipose tissue.
Obesity (Silver Spring). 2014; 22(1):141-50 [PubMed] Related Publications
OBJECTIVE: In this study the activation of HMGA2 and overexpression by FGF1-driven stimulation of adipose tissue derived stem cells (ADSCs) in adipose tissue tumors were analyzed. In addition, the expression of HMGA2 and PPAR-gamma mRNA were quantified in canine subcutaneous abdominal adipose tissue from normal and overweight purebred dogs.
DESIGN AND METHODS: ADSCs and adipose tissue explants stimulated with FGF1 followed by gene expression analyses of HMGA2 and p14(Arf) using Western-blot and qRT-PCR. Furthermore, canine subcutaneous white adipose tissue (WAT) were analyzed by qRT-PCR for their expression of HMGA2 and PPAR-gamma.
RESULTS: ADSCs and adipose tissue explants are able to execute a HMGA2 response upon FGF1 stimulation. FGF1 enhances proliferation of ADSCs by a HMGA2-dependent mechanism. In lipomas increase of HMGA2 is accompanied by increased expression of p14(Arf) . Furthermore, a significantly elevated level of HMGA2 in overweight dogs and a negative correlation between the expression of HMGA2 and PPAR-gamma in subcutaneous cWAT were noted.
CONCLUSIONS: These results suggest that WAT contains cells that as essential part of adipogenesis up-regulate HMGA2 resulting from growth factor stimulation. In subgroups of lipoma, constitutive activation of HMGA2 due to rearrangements replaces the temporal response triggered by growth factors.

Ishino R, Minami K, Tanaka S, et al.
FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro.
Biochem Biophys Res Commun. 2013; 440(1):125-31 [PubMed] Related Publications
FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1(+/+) MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1(-/-) MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1(+/+) and Med1(-/-) MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

Georgiou GK, Igglezou M, Sainis I, et al.
Impact of breast cancer surgery on angiogenesis circulating biomarkers: a prospective longitudinal study.
World J Surg Oncol. 2013; 11:213 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Debate about the potential effects that surgery might have on cancer cells dormancy and angiogenesis prompted us to investigate the impact of breast surgery on circulating angiogenesis modulating gene transcripts and proteins.
METHODS: Blood samples from 10 female patients diagnosed with breast cancer and 6 with fibroadenoma were collected before surgery and post-operatively on days 3 and 7 (breast cancer patients only). A set of 84 angiogenesis-associated transcripts were assessed using quantitative PCR arrays, and circulating protein levels (vascular endothelial growth factor A (VEGFA), IL8 and fibroblast growth factor 2 (FGF2) were measured using ELISA in the same samples. The results were investigated against clinicopathological data and patient outcome.
RESULTS: Plasma levels of VEGFA and IL8 after surgery were significantly elevated in the breast cancer group compared to the control group (P = 0.038 and P = 0.021, respectively). In the cohort of breast cancer patients, VEGFA increased on day 3 (P = 0.038) and declined on day 7 (P= 0.017), while IL8 did not change on day 3 but showed a significant decline on day 7 (P = 0.02). FGF2 levels did not change significantly over time. Regarding gene transcripts, we detected upregulation of a significant number of angiogenesis-specific genes in patients with breast cancer versus controls: sphingosine kinase 1(SPHK1), epidermal growth factor (EGF), vascular endothelial growth factor C (VEGFC), neuropilin 1 (NRP1), fibroblast growth factor (FGF1), laminin alpha 5 (LAMA5), collagen type IV alpha 3 (COL4A3), IL8, ephrin B2 (EFNB2), ephrin A3 (EFNA3), tyrosine endothelial kinase (TEK), integrin beta 3 (ITGB3), AKT1, thrombospondin 1 (THBS1), chemokine (C-C motif) ligand 11 (CCL11) and TIMP metallopeptidase inhibitor 3 (TIMP3). Surgery induced an altered expression in several keygenes in breast cancer patients. We identified an upregulation of COL4A3 and downregulation of chemokine (C-X-C motif) ligand 9 (CXCL9), EGF, FGF1, Kinase insert domain receptor (KDR), Placental growth factor (PGF), TIMP3 and VEGFC.
CONCLUSION: Breast cancer patients have a different expression profile of circulating angiogenesis biomarkers compared to patients with fibroadenoma. Moreover, mastectomy promotes a transient increase of VEGFA and a shift in the expression patterns of a broad panel of angiogenesis-related circulating gene transcripts.

Nomura T, Morishita A, Jian G, et al.
Expression of angiogenic factors in hepatocarcinogenesis: Identification by antibody arrays.
Oncol Rep. 2013; 30(5):2476-80 [PubMed] Related Publications
Angiogenesis plays a pivotal role in the progression and metastasis of hepatocellular carcinoma (HCC). However, the expression of a wide range of angiogenic factors remains obscure in HCC. The purpose of the present study was to determine the expression of various angiogenic factors related to hepatocarcinogenesis. We examined the expression of 19 angiogenic factors using antibody arrays in human tissues of various liver diseases, including HCC. We also studied the expression of 19 angiogenic factors in the human HCC cell lines PLC/PRF/5, Hep 3B, HuH7, HLE, HLF and Li-7 and the normal hepatocyte cell line ACBRI3716. In human tissues, although the expression of acidic fibroblast growth factor (aFGF) was found to increase from normal liver to chronic hepatitis, its expression remained unchanged in the transition from chronic hepatitis to HCC. Vascular endothelial growth factor (VEGF) was elevated in liver cirrhosis, but the amounts remained unchanged in the transition from liver cirrhosis to HCC. In contrast, either interleukin-8 (IL-8) or basic fibroblast growth factor (bFGF) was upregulated in HCC. In the HCC cell lines PLC/PRF/5, Hep 3B and HuH-7, the expression of IL-8 was elevated. Although IL-8 was not elevated, bFGF was upregulated in the other HCC cell lines HLE, HLF and Li-7. Thus, either IL-8 or bFGF was upregulated in HCC cell lines and in HCC tissue samples. These data suggest that the upregulation of either IL-8 or bFGF is closely related to the transition from liver cirrhosis into HCC. Therefore, the analysis of the expression of these cytokines using protein arrays may identify novel therapies for individual patients with HCC.

Rong G, Kang H, Wang Y, et al.
Candidate markers that associate with chemotherapy resistance in breast cancer through the study on Taxotere-induced damage to tumor microenvironment and gene expression profiling of carcinoma-associated fibroblasts (CAFs).
PLoS One. 2013; 8(8):e70960 [PubMed] Free Access to Full Article Related Publications
Recently, emerging evidence has suggested that carcinoma-associated fibroblasts (CAFs) could contribute to chemotherapy resistances in breast cancer treatment. The aim of this study is to compare the gene expression profiling of CAFs before and after chemotherapy and pick up candidate genes that might associate with chemotherapy resistance and could be used as predictors of treatment response. CAFs were cultured from surgically resected primary breast cancers and identified with immunohistochemistry (IHC) and Flow cytometry (FCM). MDA-MB-231 cells were cultured as the breast cancer cell line. Cell adhesion assay, invasion assay, and proliferation assay (MTT) were performed to compare the function of MDA-MB-231 cells co-cultured with CAFs and MDA-MB-231 cells without co-culture, after chemotherapy. Totally 6 pairs of CAFs were prepared for microarray analysis. Each pair of CAFs were obtained from the same patient and classified into two groups. One group was treated with Taxotere (regarded as after chemotherapy) while the other group was not processed with Taxotere (regarded as before chemotherapy). According to our study, the primary-cultured CAFs exhibited characteristic phenotype. After chemotherapy, MDA-MB-231 cells co-cultured with CAFs displayed increasing adhesion, invasiveness and proliferation abilities, compared with MDA-MB-231 cells without CAFs. Moreover, 35 differentially expressed genes (absolute fold change >2) were identified between CAFs after chemotherapy and before chemotherapy, including 17 up-regulated genes and 18 down-regulated genes. CXCL2, MMP1, IL8, RARRES1, FGF1, and CXCR7 were picked up as the candidate markers, of which the differential expression in CAFs before and after chemotherapy was confirmed. The results indicate the changes of gene expression in CAFs induced by Taxotere treatment and propose the candidate markers that possibly associate with chemotherapy resistance in breast cancer.

Slattery ML, John EM, Stern MC, et al.
Associations with growth factor genes (FGF1, FGF2, PDGFB, FGFR2, NRG2, EGF, ERBB2) with breast cancer risk and survival: the Breast Cancer Health Disparities Study.
Breast Cancer Res Treat. 2013; 140(3):587-601 [PubMed] Free Access to Full Article Related Publications
Growth factors (GF) stimulate cell proliferation through binding to cell membrane receptors and are thought to be involved in cancer risk and survival. We examined how genetic variation in epidermal growth factor (EGF), neuregulin 2 (NRG2), ERBB2 (HER2/neu), fibroblast growth factors 1 and 2 (FGF1 and FGF2) and its receptor 2 (FGFR2), and platelet-derived growth factor B (PDGFB) independently and collectively influence breast cancer risk and survival. We analyzed data from the Breast Cancer Health Disparities Study which includes Hispanic (2,111 cases, 2,597 controls) and non-Hispanic white (1,481 cases, 1,586 controls) women. Adaptive rank-truncated product (ARTP) analysis was conducted to determine gene significance. Odds ratios (OR) and 95 % confidence intervals were obtained from conditional logistic regression models to estimate breast cancer risk and Cox proportional hazard models were used to estimate hazard ratios (HR) of dying from breast cancer. We assessed Native American (NA) ancestry using 104 ancestry informative markers. We observed few significant associations with breast cancer risk overall or by menopausal status other than for FGFR2 rs2981582. This SNP was significantly associated with ER+/PR+ (OR 1.66, 95 % CI 1.37-2.00) and ER+/PR- (OR 1.54, 95 % CI 1.03-2.31) tumors. Multiple SNPs in FGF1, FGF2, and NRG2 significantly interacted with multiple SNPs in EGFR, ERBB2, FGFR2, and PDGFB, suggesting that breast cancer risk is dependent on the collective effects of genetic variants in other GFs. Both FGF1 and ERBB2 significantly influenced overall survival, especially among women with low levels of NA ancestry (P ARTP = 0.007 and 0.003, respectively). Our findings suggest that genetic variants in growth factors signaling appear to influence breast cancer risk through their combined effects. Genetic variation in ERBB2 and FGF1 appear to be associated with survival after diagnosis with breast cancer.

Tanabe E, Kitayoshi M, Hirane M, et al.
Downregulation of activation factors of endothelia and fibroblasts via lysophosphatidic acid signaling in a mouse lung cancer LL/2 cell line.
J Recept Signal Transduct Res. 2013; 33(5):286-90 [PubMed] Related Publications
Angiogenesis stimulates the invasive and metastatic process of cancer cells. It is also known that activated fibroblasts promote cancer cell growth and enhance invasive and metastatic potential. Lysophosphatidic acid (LPA) is a biological mediator and interacts with G protein-coupled transmembrane LPA receptors (LPA1 to LPA6). In this study, to assess an involvement of LPA3 on angiogenesis and fibroblast activation, the Lpar3-expressing cells were generated from mouse lung cancer LL/2 cells, which unexpressed LPA3. The Lpar3-expressing cells were maintained in serum-free Dulbecco's modified Eagle's medium for 48 h, and cell motility assay was performed with a cell culture Insert. When endothelial F-2 cells and 3T3 fibroblasts were cultured with conditioned medium from the Lpar3-expressing cells, their cell motile activities were significantly lower than the Lpar3-unexpressing (control) cells. Expression levels of vascular endothelial growth factor (Vegf) and fibroblast growth factor (Fgf) genes in the Lpar3-expressing cells were measured by quantitative real time reverse transcription polymerase chain reaction analysis. The expressions of Vegf-A. Fgfa and Fgfb genes in the Lpar3-expressing cells were significantly lower than those in control cells, correlating with the effects on cell motile activities of F-2 and 3T3 cells. These results suggest that LPA signaling through LPA3 may inhibit angiogenesis and fibroblast activation in mouse lung cancer cells.

Müller MH, Drieschner N, Focken T, et al.
HMGA2 expression in the PC-3 prostate cancer cell line is autonomous of growth factor stimulation.
Anticancer Res. 2013; 33(8):3069-78 [PubMed] Related Publications
BACKGROUND: High-mobility group AT-hook 2 (HMGA2) protein acts as an oncofoetal transcriptional regulator. In mesenchymal tissues, its expression can be induced by a variety of growth factors such as fibroblast growth factor-1 (FGF1) and platelet-derived growth factor-BB (PDGF-BB) as well as by foetal bovine serum (FBS), thus enhancing proliferation.
MATERIALS AND METHODS: To examine these effects in epithelial malignancies, we used the PC-3 prostate cancer cell line for assaying proliferation and HMGA2 expression in response to incubation with growth factors and FBS. The HMGA2 locus was investigated by fluorescence in situ hybridisation (FISH) for loss, amplification or re-arrangement.
RESULTS: PC-3 is a cell line that moderately overexpresses HMGA2. None of the growth factors nor FBS caused significantly increased expression of HMGA2. In contrast, a significantly augmented proliferation rate was observed when applying FGF1 or PDGF-BB for 12 h.
CONCLUSION: HMGA2 is expressed independently of external stimuli, whereas proliferation stimulated by growth factors is independent of further elevated HMGA2 expression.

Kurimchak A, Haines DS, Garriga J, et al.
Activation of p107 by fibroblast growth factor, which is essential for chondrocyte cell cycle exit, is mediated by the protein phosphatase 2A/B55α holoenzyme.
Mol Cell Biol. 2013; 33(16):3330-42 [PubMed] Free Access to Full Article Related Publications
The phosphorylation state of pocket proteins during the cell cycle is determined at least in part by an equilibrium between inducible cyclin-dependent kinases (CDKs) and serine/threonine protein phosphatase 2A (PP2A). Two trimeric holoenzymes consisting of the core PP2A catalytic/scaffold dimer and either the B55α or PR70 regulatory subunit have been implicated in the activation of p107/p130 and pRB, respectively. While the phosphorylation state of p107 is very sensitive to forced changes of B55α levels in human cell lines, regulation of p107 in response to physiological modulation of PP2A/B55α has not been elucidated. Here we show that fibroblast growth factor 1 (FGF1), which induces maturation and cell cycle exit in chondrocytes, triggers rapid accumulation of p107-PP2A/B55α complexes coinciding with p107 dephosphorylation. Reciprocal solution-based mass spectrometric analysis identified the PP2A/B55α complex as a major component in p107 complexes, which also contain E2F/DPs, DREAM subunits, and/or cyclin/CDK complexes. Of note, p107 is one of the preferred partners of B55α, which also associates with pRB in RCS cells. FGF1-induced dephosphorylation of p107 results in its rapid accumulation in the nucleus and formation of larger complexes containing p107 and enhances its interaction with E2F4 and other p107 partners. Consistent with a key role of B55α in the rapid activation of p107 in chondrocytes, limited ectopic expression of B55α results in marked dephosphorylation of p107 while B55α knockdown results in hyperphosphorylation. More importantly, knockdown of B55α dramatically delays FGF1-induced dephosphorylation of p107 and slows down cell cycle exit. Moreover, dephosphorylation of p107 in response to FGF1 treatment results in early recruitment of p107 to the MYC promoter, an FGF1/E2F-regulated gene. Our results suggest a model in which FGF1 mediates rapid dephosphorylation and activation of p107 independently of the CDK activities that maintain p130 and pRB hyperphosphorylation for several hours after p107 dephosphorylation in maturing chondrocytes.

Lin ZY, Chuang WL
Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts.
Kaohsiung J Med Sci. 2013; 29(6):312-8 [PubMed] Related Publications
Cancer-associated fibroblast (CAF) is one of the most crucial components of the tumor microenvironment to promote the invasiveness of cancer cells. The interactions between cancer cells and CAFs are bidirectional. Our recent study showed that up-regulations of chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 26 (CCL26), interleukin 6 (IL6), and lysyl oxidase-like 2 (LOXL2) genes in cancer cells were parts of the common effects of CAFs on hepatocellular carcinoma (HCC) cells to promote proliferation, migration and invasion of cancer cells. However, the subject of how HCC cells to influence the gene expressions of CAFs still needs to be clarified. The purpose of this study was to investigate this issue. Two human HCC (HCC24/KMUH, HCC38/KMUH) and two human CAF cell lines (F26/KMUH, F28/KMUH) were studied. Influence of HCC38/KMUH cancer cells on differential expressions of genes in F28/KMUH CAFs was detected by microarray to select target genes for further analysis. Both HCC cell lines increased proliferation (all p < 0.005) and migration (all p < 0.0001) of two CAF cell lines. HCC24/KMUH cancer cells had stronger ability to promote migration of F26/KMUH CAFs than HCC38/KMUH cancer cells did (p < 0.0001). Eleven up-regulated cancer-promoting genes, including apelin (APLN), CCL2, CCL26, fibroblast growth factor 1 (FGF1), fibroblast growth factor 2 (FGF2), IL6, mucin 1 (MUC1), LOXL2, platelet-derived growth factor alpha polypeptide (PDGFA), phosphoglycerate kinase 1 (PGK1), and vascular endothelial growth factor A (VEGFA) detected by microarray showed good correlation with results of quantitative reverse transcriptase-polymerase chain reaction study. Among these genes, HCC24/KMUH cancer cells had same tendency of effects on differential expressions of genes in F28/KMUH CAFs as HCC38/KMUH cancer cells did. However, the responses of F26/KMUH CAFs to different HCC cell lines were variable. Only PGK1 gene was consistently up-regulated and PDGFA gene was consistently down-regulated caused by both HCC cell lines in F26/KMUH CAFs. Besides PGK1 gene, HCC38/KMUH cancer cells only up-regulated APLN, LOXL2, and VEGFA genes and HCC24/KMUH cancer cells only up-regulated FGF2 gene in F26/KMUH CAFs. In conclusion, HCC cells can promote proliferation and migration of CAFs. However, the impact of HCC cells on differential expressions of cancer-promoting genes in CAFs is influenced by the characteristics of CAFs. This implies that blocking single or several particular cancer-promoting genes in CAFs is unable to become a common stratagem for the treatment of HCC.

Ishigami T, Hida Y, Matsudate Y, et al.
The involvement of fibroblast growth factor receptor signaling pathways in dermatofibroma and dermatofibrosarcoma protuberans.
J Med Invest. 2013; 60(1-2):106-13 [PubMed] Related Publications
Fibroblast growth factors (FGFs) and their receptors (FGFRs) control a wide range of biological functions; however, their involvement in the pathogenesis of dermatofibroma (DF) and dermatofibrosarcoma protuberans (DFSP) is currently unknown. In this study, we first confirmed the histological diagnosis by detecting fusion COL1A1-PDGFB transcripts in DFSP, and examined the expression of all FGFRs (FGFR1-4), some of their ligands (FGF1, 2, 9), and forkhead box N1 (FOXN1) as a downstream target of FGFR3 in DF and DFSP by immunohistochemical analysis. Although we failed to detect the expression of FGF1 and FGF9 as specific ligands for FGFR3 in DF, overexpression of FGFR3 and FOXN1 was observed in the epidermal regions of DF, suggesting that the epidermal regions of DF were similar to seborrhoeic keratosis both in terms of histological features and the activation of FGFR3/FOXN1. In addition, strong expression of FGF2 and FGFR4 was observed in the tumor lesions of DF. Expression patterns of FGFR3/FOXN1 and FGF2/FGFR4 in DF were in contrast with those of DFSP. The activation of FGFR signaling pathways may be not only relevant to the pathogenesis of DF, but also very useful in the differential diagnosis of DF and DFSP.

Yang B, Bhusari S, Kueck J, et al.
Methylation profiling defines an extensive field defect in histologically normal prostate tissues associated with prostate cancer.
Neoplasia. 2013; 15(4):399-408 [PubMed] Free Access to Full Article Related Publications
Prostate cancer (PCa) is typically found as a multifocal disease suggesting the potential for molecular defects within the morphologically normal tissue. The frequency and spatial extent of DNA methylation changes encompassing a potential field defect are unknown. A comparison of non-tumor-associated (NTA) prostate to histologically indistinguishable tumor-associated (TA) prostate tissues detected a distinct profile of DNA methylation alterations (0.2%) using genome-wide DNA arrays based on the Encyclopedia of DNA Elements 18 sequence that tile both gene-rich and poor regions. Hypomethylation (87%) occurred more frequently than hypermethylation (13%). Several of the most significantly altered loci (CAV1, EVX1, MCF2L, and FGF1) were then used as probes to map the extent of these DNA methylation changes in normal tissues from prostates containing cancer. In TA tissues, the extent of methylation was similar both adjacent (2 mm) and at a distance (>1 cm) from tumor foci. These loci were also able to distinguish NTA from TA tissues in a validation set of patient samples. These mapping studies indicate that a spatially widespread epigenetic defect occurs in the peripheral prostate tissues of men who have PCa that may be useful in the detection of this disease.

Zaid TM, Yeung TL, Thompson MS, et al.
Identification of FGFR4 as a potential therapeutic target for advanced-stage, high-grade serous ovarian cancer.
Clin Cancer Res. 2013; 19(4):809-20 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To evaluate the prognostic value of fibroblast growth factor receptor 4 (FGFR4) protein expression in patients with advanced-stage, high-grade serous ovarian cancer, delineate the functional role of FGFR4 in ovarian cancer progression, and evaluate the feasibility of targeting FGFR4 in serous ovarian cancer treatment.
EXPERIMENTAL DESIGN: Immunolocalization of FGFR4 was conducted on 183 ovarian tumor samples. The collected FGFR4 expression data were correlated with overall survival using Kaplan-Meier and Cox regression analyses. The effects of FGFR4 silencing on ovarian cancer cell growth, survival, invasiveness, apoptosis, and FGF1-mediated signaling pathway activation were evaluated by transfecting cells with FGFR4-specific siRNAs. An orthotopic mouse model was used to evaluate the effect of injection of FGFR4-specific siRNAs and FGFR4 trap protein encapsulated in nanoliposomes on ovarian tumor growth in vivo.
RESULTS: Overexpression of FGFR4 protein was significantly associated with decreased overall survival durations. FGFR4 silencing significantly decreased the proliferation, survival, and invasiveness and increased apoptosis of ovarian cancer cells. Also, downregulation of FGFR4 significantly abrogated the mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and WNT signaling pathways, which are activated by FGF1. Targeting FGFR4 with the FGFR4-specific siRNAs and FGFR4 trap protein significantly decreased ovarian tumor growth in vivo.
CONCLUSIONS: FGFR4 is a prognostic marker for advanced-stage, high-grade serous ovarian carcinoma. Silencing FGFR4 and inhibiting ligand-receptor binding significantly decrease ovarian tumor growth both in vitro and in vivo, suggesting that targeting ovarian cancer cells with high levels of FGFR4 protein expression is a new therapeutic modality for this disease and will improve survival of it.

Gourlaouen M, Welti JC, Vasudev NS, Reynolds AR
Essential role for endocytosis in the growth factor-stimulated activation of ERK1/2 in endothelial cells.
J Biol Chem. 2013; 288(11):7467-80 [PubMed] Free Access to Full Article Related Publications
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to VEGF receptor 2 (VEGFR2) on endothelial cells (ECs). Downstream activation of the extracellular related kinases 1/2 (ERK1/2) is important for angiogenesis to proceed. Receptor internalization has been implicated in VEGFR2 signaling, but its role in the activation of ERK1/2 is unclear. To explore this question we utilized pitstop and dynasore, two small molecule inhibitors of endocytosis. First, we confirmed that both inhibitors block the internalization of VEGFR2 in ECs. We then stimulated ECs with VEGF in the presence and absence of the inhibitors and examined VEGFR2 signaling to ERK1/2. Activation of VEGFR2 and C-Raf still occurred in the presence of the inhibitors, whereas the activation of MEK1/2 and ERK1/2 was abrogated. Therefore, although internalization is not required for activation of either VEGFR2 or C-Raf in ECs stimulated with VEGF, internalization is necessary to activate the more distal kinases in the cascade. Importantly, inhibition of internalization also prevented activation of ERK1/2 when ECs were stimulated with other pro-angiogenic growth factors, namely fibroblast growth factor 2 and hepatocyte growth factor. In contrast, the same inhibitors did not block ERK1/2 activation in fibroblasts or cancer cells stimulated with growth factors. Finally, we show that these small molecule inhibitors of endocytosis block angiogenesis in vitro and in vivo. Therefore, receptor internalization may be a generic requirement for pro-angiogenic growth factors to activate ERK1/2 signaling in human ECs, and targeting receptor trafficking may present a therapeutic opportunity to block tumor angiogenesis.

Williams SV, Hurst CD, Knowles MA
Oncogenic FGFR3 gene fusions in bladder cancer.
Hum Mol Genet. 2013; 22(4):795-803 [PubMed] Free Access to Full Article Related Publications
FGF receptor 3 (FGFR3) is activated by mutation or over-expression in many bladder cancers. Here, we identify an additional mechanism of activation via chromosomal re-arrangement to generate constitutively activated fusion genes. FGFR3-transforming acid coiled coil 3 (TACC3) fusions resulting from 4p16.3 re-arrangements and a t(4;7) that generates a FGFR3-BAI1-associated protein 2-like 1 (BAIAP2L1) fusion were identified in 4 of 43 bladder tumour cell lines and 2 of 32 selected tissue samples including the tumour from which one of the cell lines was derived. These are highly activated and transform NIH-3T3 cells. The FGFR3 component is identical in all cases and lacks the final exon that includes the phospholipase C gamma 1 (PLCγ1) binding site. Expression of the fusions in immortalized normal human urothelial cells (NHUC) induced activation of the mitogen-activated protein kinase pathway but not PLCγ1. A protein with loss of the terminal region alone was not as highly activated as the fusion proteins, indicating that the fusion partners are essential. The TACC3 fusions retain the TACC domain that mediates microtubule binding and the BAIAP2L1 fusion retains the IRSp53/MIM domain (IMD) that mediates actin binding and Rac interaction. As urothelial cell lines with FGFR3 fusions are extremely sensitive to FGFR-selective agents, the presence of a fusion gene may aid in selection of patients for FGFR-targeted therapy.

Truong M, Yang B, Livermore A, et al.
Using the epigenetic field defect to detect prostate cancer in biopsy negative patients.
J Urol. 2013; 189(6):2335-41 [PubMed] Free Access to Full Article Related Publications
PURPOSE: We determined whether a novel combination of field defect DNA methylation markers could predict the presence of prostate cancer using histologically normal transrectal ultrasound guided biopsy cores.
MATERIALS AND METHODS: Methylation was assessed using quantitative Pyrosequencing® in a training set consisting of 65 nontumor and tumor associated prostate tissues from University of Wisconsin. A multiplex model was generated using multivariate logistic regression and externally validated in blinded fashion in a set of 47 nontumor and tumor associated biopsy specimens from University of Washington.
RESULTS: We observed robust methylation differences in all genes at all CpGs assayed (p <0.0001). Regression models incorporating individual genes (EVX1, CAV1 and FGF1) and a gene combination (EVX1 and FGF1) discriminated nontumor from tumor associated tissues in the original training set (AUC 0.796-0.898, p <0.001). On external validation uniplex models incorporating EVX1, CAV1 or FGF1 discriminated tumor from nontumor associated biopsy negative specimens (AUC 0.702, 0.696 and 0.658, respectively, p <0.05). A multiplex model (EVX1 and FGF1) identified patients with prostate cancer (AUC 0.774, p = 0.001) and had a negative predictive value of 0.909. Comparison between 2 separate cores in patients in this validation set revealed similar methylation defects, indicating detection of a widespread field defect.
CONCLUSIONS: A widespread epigenetic field defect can be used to detect prostate cancer in patients with histologically negative biopsies. To our knowledge this assay is unique, in that it detects alterations in nontumor cells. With further validation this marker combination (EVX1 and FGF1) has the potential to decrease the need for repeat prostate biopsies, a procedure associated with cost and complications.

Cen YL, Qi ML, Li HG, et al.
Associations of polymorphisms in the genes of FGFR2, FGF1, and RBFOX2 with breast cancer risk by estrogen/progesterone receptor status.
Mol Carcinog. 2013; 52 Suppl 1:E52-9 [PubMed] Related Publications
Genetic polymorphisms of fibroblast growth factor receptor 2 (FGFR2) have been demonstrated to be associated with breast cancer risk, presumably through elevation of FGFR2 expression. Fibroblast growth factor 1 (FGF1) and RNA binding protein fox-1 homolog 2 (RBFOX2), which are functionally related to FGFR2, may also associate with breast cancer risk. We investigated the associations between breast cancer risk and the polymorphisms of FGFR2 rs2981582, FGF1 rs250108, and RBFOX2 rs2051579 among 839 incident breast cancer cases and 863 age-matched controls in the Guangzhou Breast Cancer Study. Stratified odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by estrogen receptor (ER)/progesterone receptor (PR) status using multivariate logistic regression. FGFR2 rs2981582 was confirmed to be significantly associated with the risk of ER-positive but not ER-negative breast cancer. In contrast, FGF1 rs250108 was significantly associated with the risk of ER-negative breast cancer (OR (95% CI) = 1.68 (1.20-2.35) for CT + TT vs. CC genotype) but not ER-positive breast cancer. CA + AA genotypes at RBFOX2 rs2051579 were associated with a reduced risk of ER-negative (0.71 (0.52-0.97)) but not ER-positive breast cancer compared to the CC genotype. Similar results were observed when differentiating breast cancer cases by PR status. Neither of the pairs between the three SNPs had a significant interaction on breast cancer risk. Our findings show a suggestively stronger association between FGFR2 rs2981582 and ER-positive breast cancer risk and suggest a greater association of FGF1 rs250108 and RBFOX2 rs2051579 with ER-negative compared to ER-positive breast cancer.

Smith G, Ng MT, Shepherd L, et al.
Individuality in FGF1 expression significantly influences platinum resistance and progression-free survival in ovarian cancer.
Br J Cancer. 2012; 107(8):1327-36 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Ovarian cancer is frequently advanced at presentation when treatment is rarely curative. Response to first-line platinum-based chemotherapy significantly influences survival, but clinical response is unpredictable and is frequently limited by the development of drug-resistant disease.
METHODS: We used qRT-PCR analysis to assess intertumour differences in the expression of fibroblast growth factor 1 (FGF1) and additional candidate genes in human ovarian tumours (n=187), and correlated individuality in gene expression with tumour histology, chemotherapy response and survival. We used MTT assays to assess platinum chemosensitivity in drug-sensitive and drug-resistant ovarian cell lines.
RESULTS: Marked intertumour differences in gene expression were observed, with each tumour having a unique gene expression profile. Nine genes, including FGF1 (P=1.7 × 10(-5)) and FGFR2 (P=0.003), were differentially expressed in serous and nonserous tumours. MDM2 (P=0.032) and ERBB2 (P=0.064) expression was increased in platinum-sensitive patients, and FGF1 (adjusted log-rank test P=0.006), FGFR2 (P=0.04) and PDRFRB expression (P=0.037) significantly inversely influenced progression-free survival. Stable FGF1 gene knockdown in platinum-resistant A2780DPP cells re-sensitised cells to both cisplatin and carboplatin.
CONCLUSION: We show for the first time that FGF1 is differentially expressed in high-grade serous ovarian tumours, and that individuality in FGF1 expression significantly influences progression-free survival and response to platinum-based chemotherapy.

Wang L, Huang X, Chen Y, et al.
Prognostic value of TP/PD-ECGF and thrombocytosis in gastric carcinoma.
Eur J Surg Oncol. 2012; 38(7):568-73 [PubMed] Related Publications
AIM: Thymidine phosphorylase/platelet-derived endothelial cell growth factor (TP/PD-ECGF) is upregulated in several cancers and plays an important role in angiogenesis and invasion of solid tumors. In this study, we investigated the expression of TP/PD-ECGF in gastric carcinoma and its correlation with clinicopathological features and thrombocytosis, and also determined their prognostic significance.
METHODS: Ninety-eight tissue specimens were resected from patients with gastric carcinoma. The immunohistochemical staining was used for expression of TP/PD-ECGF, platelet counts (PLT) of all patients before surgery were recorded. Patients were divided into high and low TP/PD-ECGF expression groups. Correlations among TP/PD-ECGF expression, PLT and the clinicopathological features of the patients and their prognostic values were studied statistically.
RESULTS: Sixty-one cases of high TP/PD-ECGF expression (62%) and 37 cases of low TP/PD-ECGF expression (38%) were detected. There were 21 patients with thrombocytosis (21%). The results show that high TP/PD-ECGF expression was correlated positively with thrombocytosis (P = 0.046, r = 0.20). The 5-year overall survival rate was 46.0% in patients with low TP/PD-ECGF expression, whereas it was only 14.8% in patients with high TP/PD-ECGF expression (P = 0.000). The 5-year survival rate for patients with and without thrombocytosis were 9.5% and 31.2%, respectively, and there was a significant difference between them (P = 0.0001). The multivariate Cox regression analysis showed that high TP/PD-ECGF expression and thrombocytosis would play a role as independent prognostic factors in patients with gastric carcinoma.
CONCLUSIONS: High TP/PD-ECGF expression and thrombocytosis can be regarded as valuable tools for predicting overall survival in patients with gastric carcinoma.

Hsu YC, Kao CY, Chung YF, et al.
Ciliogenic RFX transcription factors regulate FGF1 gene promoter.
J Cell Biochem. 2012; 113(7):2511-22 [PubMed] Related Publications
Fibroblast growth factor 1 (FGF1) has been shown to regulate cell proliferation, cell division, and neurogenesis. Human FGF1 gene 1B promoter (-540 to +31)-driven green fluorescence (F1BGFP) was shown to recapitulate endogenous FGF1 gene expression. It can also be used to isolate neural stem/progenitor cells (NSPCs) and glioblastoma stem cells (GBM-SCs) from developing mouse brains and human glioblastoma tissues, respectively. However, the regulatory mechanisms of FGF-1B promoter and F1BGFP(+) cells are not clear. In this study, we present several lines of evidence to show the roles of ciliogenic RFX transcription factors in the regulation of FGF-1B gene promoter and F1BGFP(+) cells: (i) RFX1, RFX2, and RFX3 transcription factors could directly bind the 18-bp cis-element (-484 to -467), and contribute to the regulation of FGF1 promoter and neurosphere formation. (ii) We demonstrated RFX2/RFX3 complex could only be detected in the nuclear extract of FGF-1B positive cells, but not in FGF-1B negative cells. (iii) Protein kinase C inhibitors, staurosporine and rottlerin, could decrease the percentage of F1BGFP(+) cells and their neurosphere formation efficiency through reducing the RFX2/3 complex. (iv) RNA interference knockdown of RFX2 could significantly reduce the percentage of F1BGFP(+) cells and their neurosphere formation efficiency whereas overexpression of RFX2 resulted in the opposite effects. Taken together, this study suggests ciliogenic RFX transcription factors regulate FGF-1B promoter activity and the maintenance of F1BGFP(+) NSPCs and GBM-SCs.

Schulze D, Plohmann P, Höbel S, Aigner A
Anti-tumor effects of fibroblast growth factor-binding protein (FGF-BP) knockdown in colon carcinoma.
Mol Cancer. 2011; 10:144 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Fibroblast growth factors FGF-1 and FGF-2 are often upregulated in tumors, but tightly bound to heparan sulphate proteoglycans of the extracellular matrix (ECM). One mechanism of their bioactivation relies on the FGF-binding protein (FGF-BP) which, upon reversible binding to FGF-1 or -2, leads to their release from the ECM. FGF-BP increases tumorigenicity and is highly expressed in tumors like colon carcinoma. In this paper, we analyse cellular and molecular consequences of RNAi-mediated FGF-BP knockdown in colon carcinoma, and explore the therapeutic effects of the nanoparticle-mediated delivery of small interfering RNAs (siRNAs) for FGF-BP targeting.
RESULTS: Employing stable RNAi cells, we establish a dose-dependence of cell proliferation on FGF-BP expression levels. Decreased proliferation is mirrored by alterations in cell cycle distribution and upregulation of p21, which is relevant for mediating FGF-BP effects. While inhibition of proliferation is mainly associated with reduced Akt and increased GSK3β activation, antibody array-based analyses also reveal other alterations in MAPK signalling. Additionally, we demonstrate induction of apoptosis, mediated through caspase-3/7 activation, and alterations in redox status upon FGF-BP knockdown. These effects are based on the upregulation of Bad, Bax and HIF-1α, and the downregulation of catalase. In a therapeutic FGF-BP knockdown approach based on RNAi, we employ polymer-based nanoparticles for the in vivo delivery of siRNAs into established wildtype colon carcinoma xenografts. We show that the systemic treatment of mice leads to the inhibition of tumor growth based on FGF-BP knockdown.
CONCLUSIONS: FGF-BP is integrated in a complex network of cytoprotective effects, and represents a promising therapeutic target for RNAi-based knockdown approaches.

Takeuchi H, Kimura T, Okamoto K, et al.
A mechanism for abnormal angiogenesis in human radiation proctitis: analysis of expression profile for angiogenic factors.
J Gastroenterol. 2012; 47(1):56-64 [PubMed] Related Publications
BACKGROUND: Radiation proctitis is an increasingly prevalent problem, with many patients being treated with radiotherapy for pelvic cancers. However, the mechanisms by which radiation proctitis develops in humans are not well understood. In this study, the expression profiles of angiogenic factors were analyzed to clarify their role in the etiology of radiation proctitis.
METHODS: Rectal biopsies were taken from 8 patients with radiation proctitis and 8 normal subjects. Protein lysates of the tissues were applied to an antibody array for angiogenesis-related factors. The mRNA level of each factor was evaluated by Taqman real-time PCR. Immunohistochemistry was performed using the labeled streptavidin biotin method.
RESULTS: Antibody array analysis revealed 2.12- to 7.31-fold higher expression levels of angiogenin, fibroblast growth factor 1 (FGF1), endoglin, matrix metalloproteinase (MMP)-8, urokinase-type plasminogen activator (uPA) and maspin in radiation proctitis tissues compared with normal rectal mucosa. The mRNA level of each factor in radiation proctitis tissue was significantly higher than in normal rectal mucosa, suggesting their transcriptional activation. Immunohistochemical staining showed strong expression of angiogenin and maspin in rectal epithelia, MMP-8 and uPA in infiltrating lymphocytes, FGF1 in fibroblasts and endoglin in endothelial cells. The expression of VEGF was not evident.
CONCLUSIONS: Our results suggest that in radiation proctitis, MMP-8 and uPA cooperatively degrade the extracellular matrix and basement membrane to provide space for angiogenesis. Simultaneously, angiogenin and FGF1 promote endothelial cell proliferation, and endoglin induces vessel formation, culminating in angiogenesis. Inhibitors of angiogenic factors such as angiogenin and FGF1 may be effective for treating radiation proctitis.

Tomlinson DC, Knowles MA, Speirs V
Mechanisms of FGFR3 actions in endocrine resistant breast cancer.
Int J Cancer. 2012; 130(12):2857-66 [PubMed] Related Publications
Although endocrine therapy has dramatically improved the treatment of breast cancer therapeutic resistance and tumour recurrence occurs, even in estrogen receptor (ER) positive cases. Identifying and understanding the molecular mechanisms which underpin endocrine resistance is therefore important if future therapeutic strategies are to be developed. Members of the fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) families have been implicated in breast cancer development and progression. Our results demonstrate that culture of michigan cancer foundation - 1 (MCF)7 cells with FGF1 results in reduced sensitivity to tamoxifen in vitro. Furthermore, our tissue microarray expression data demonstrates that FGFR3 expression is increased in tamoxifen resistant breast tumours. To confirm that activation of FGFR3 reduced sensitivity to tamoxifen we used an inducible activation system and a constitutively active mutant of FGFR3 expressed in MCF7 cells. Activation of FGFR3 reduced sensitivity to tamoxifen and Fulvestrant but did not lead to phosphorylation of ER demonstrating that FGFR3 does not feedback to modulate ER activity. FGFR3 activation in MCF7 cells stimulated activation of the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signalling pathways, both of which have been implicated in tamoxifen resistance in breast cancer. Furthermore, our data indicates that activation of phospholipase C gamma is a key-signalling event regulating MAPK and PI3K activation and that its activation reduces sensitivity to tamoxifen. Therefore, we hypothesise that FGFRs could play an integral part, not only in breast cancer development but also in resistance to endocrine-therapy.

Leali D, Alessi P, Coltrini D, et al.
Long pentraxin-3 inhibits FGF8b-dependent angiogenesis and growth of steroid hormone-regulated tumors.
Mol Cancer Ther. 2011; 10(9):1600-10 [PubMed] Related Publications
Fibroblast growth factor-8b (FGF8b) exerts nonredundant autocrine/paracrine functions in steroid hormone-regulated tumors. Previous observations had shown that the soluble pattern recognition receptor long pentraxin-3 (PTX3) is a natural selective antagonist for a restricted number of FGF family members, inhibiting FGF2 but not FGF1 and FGF4 activity. Here, we assessed the capacity of PTX3 to antagonize FGF8b and to inhibit the vascularization and growth of steroid hormone-regulated tumors. Surface plasmon resonance analysis shows that PTX3 binds FGF8b with high affinity (K(d) = 30-90 nmol/L). As a consequence, PTX3 prevents the binding of FGF8b to its receptors, inhibits FGF8b-driven ERK1/2 activation, cell proliferation, and chemotaxis in endothelial cells, and suppresses FGF8b-induced neovascularization in vivo. Also, PTX3 inhibits dihydrotestosterone (DHT)- and FGF8b-driven proliferation of androgen-regulated Shionogi 115 (S115) mouse breast tumor cells. Furthermore, DHT-treated, PTX3 overexpressing hPTX3_S115 cell transfectants show a reduced proliferation rate in vitro and a limited angiogenic activity in the chick embryo chorioallantoic membrane and murine s.c. Matrigel plug assays. Accordingly, hPTX3_S115 cells show a dramatic decrease of their tumorigenic activity when grafted in immunodeficient male mice. These results identify PTX3 as a novel FGF8b antagonist endowed with antiangiogenic and antineoplastic activity with possible implications for the therapy of hormonal tumors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FGF1, Cancer Genetics Web: http://www.cancer-genetics.org/FGF1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999