Gene Summary

Gene:WNT4; Wnt family member 4
Aliases: WNT-4, SERKAL
Summary:The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family, and is the first signaling molecule shown to influence the sex-determination cascade. It encodes a protein which shows 98% amino acid identity to the Wnt4 protein of mouse and rat. This gene and a nuclear receptor known to antagonize the testis-determining factor play a concerted role in both the control of female development and the prevention of testes formation. This gene and another two family members, WNT2 and WNT7B, may be associated with abnormal proliferation in breast tissue. Mutations in this gene can result in Rokitansky-Kuster-Hauser syndrome and in SERKAL syndrome. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein Wnt-4
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (73)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: WNT4 (cancer-related)

Luo J, Lou Z, Zheng J
Targeted regulation by ROCK2 on bladder carcinoma via Wnt signaling under hypoxia.
Cancer Biomark. 2019; 24(1):109-116 [PubMed] Related Publications
Bladder cancer is frequently occurred in urinary system and has complicated pathogenesis factors including both genetics and environmental factors that have not been fully illustrated. Hypoxia can further induce tumor progression. ROCK2 has abnormal expression in various tumors but its expression or functional role in bladder cancer have not been illustrated. In vitro cultured bladder cancer cell line T24 was randomly assigned into control group, hypoxia group (prepared under hypoxic culture), and ROCK2 siRNA group (transfected with ROCK2 siRNA after hypoxia treatment). Real-time PCR and Western bot measured ROCK2 expression. MTT assay tested cell proliferation, and cell migration was quantified. Cell apoptosis was measured by caspase3 activity assay kit and Transwell chamber measured cell migration. Western blot quantified expressional change of HIF-1α and E-cadherin, and Wnt signal pathway proteins including Wnt4, and β-catenin. ROCK2 is up-regulated in bladder cancer T24 cells under hypoxia, and can facilitate cell proliferation, migration and invasion, inhibited Caspase3 activity, enhanced HIF-1α expression, decreased E-cadherin expression, and up-regulated Wnt4 and β-catenin (p< 0.05 comparing to hypoxia group). Under hypoxia conditions, ROCK2 can facilitate apoptosis of bladder cancer cells via modulating Wnt signal pathway, inhibit cell proliferation, migration, invasion or formation of epithelial mesenchymal transition (EMT).

Becer E, Hanoğlu DY, Kabadayı H, et al.
The effect of Colchicum pusillum in human colon cancer cells via Wnt/β-catenin pathway.
Gene. 2019; 686:213-219 [PubMed] Related Publications
OBJECTIVE: Colchicum pusillum belongs to the family Colchicaceae that particularly rich in tropolonic alkaloids. The aim of this study was to investigate the cytotoxicity and in vitro anticancer activity of Colchicum pusillum ethanolic extract on Colo-320 primer and Colo-741 metastatic colon adenocarcinoma cell lines.
MATERIALS AND METHODS: Colchicum pusillum was collected and extracted with ethanol. Different concentrations of Colchicum pusillum extract were incubated for 24 h and 48 h with Colo-320 and Colo-741 cells. Cell growth and cytotoxicity were measured by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assays. Anticancer and antiproliferative activities of Colchicum pusillum were investigated by immunocytochemistry using antibodies directed against to β-catenin, Ki-67, LGR-5 Ki-67, DKK1, Frizzled-4, Wnt4, Wnt7a and caspase3 in Colo-741 cells.
RESULTS: All concentrations of Colchicum pusillum extract had toxic effect in Colo-320 cells. Because of this, we used Colchicum pusillum extract at 20 μg/ml for evaluate anticancer activities only in Colo-741 cells. As a result of immunohistochemical staining, β-catenin, LGR-5 and caspase-3 immunoreactivities were significantly increased while Wnt7a immunostaining intensity was decreased in Colo-741 cells. Conclusion We conclude that Colchicum pusillum extract increased β-catenin and LGR-5 via Wnt/β-catenin pathway in colon cancer cells. Interestingly, it decreased other signaling molecule, Wnt7a which is assumed to play protective role during carcinogenesis. Also, it increased significantly caspase-3 immunoreactivity showing that apoptotic pathways were triggered.

Zhang J, Zhang P, Shen Y, et al.
Relationship of WNT4 Gene with the Risk of Epithelial Ovarian Cancer: A Han Chinese Population-Based Association Study.
Genet Test Mol Biomarkers. 2018; 22(12):686-692 [PubMed] Related Publications
OBJECTIVE: In China, epithelial ovarian cancer (EOC) patients account for the majority of ovarian cancer patients. The pathogenesis of EOC, one of the most lethal gynecological malignancies, remains unclear. Recently, the role of WNT4 in gynecological disease and tumor development was reported, and a suspicious association of WNT4 with EOC was identified in Europeans. However, the contributions of the WNT4 gene to EOC and the underlying molecular mechanisms remains largely unknown. To determine whether the WNT4 gene is associated with EOC, this study investigated polymorphisms of the WNT4 gene in Han Chinese individuals.
MATERIALS AND METHODS: We designed a case/control study with 707 EOC patients and 1563 unrelated healthy controls of Han Chinese descent. A total of eight tag single-nucleotide polymorphisms (SNPs) were genotyped successfully, and both single SNP and haplotype analyses were performed to detect the potential association of variations in the WNT4 gene with EOC.
RESULTS: The SNP rs56318008 was found to be strongly associated with EOC risk. In the serous EOC subgroup, individuals harboring the T allele of rs56318008 exhibited a higher risk of EOC than individuals harboring the C allele. Moreover, the odds ratios and 95% confidence intervals revealed an increased risk of EOC in individuals with the T allele of the SNP, and haplotypic analyses confirmed the results, showing a similar pattern.
CONCLUSION: Our results show that the WNT4 gene is associated with EOC risk, indicating that this gene may be a potential genetic risk factor for developing EOC.

Wanifuchi-Endo Y, Asano T, Kondo N, et al.
Effects of serum estradiol and progesterone on estrogen-regulated gene expression in breast cancers of premenopausal patients.
Jpn J Clin Oncol. 2019; 49(1):12-21 [PubMed] Related Publications
Background: Expression of estrogen receptor α in breast cancer is essential for estrogen-dependent growth and partially determines the breast cancer subtype. In premenopausal women, expression of estrogen-regulated genes in estrogen receptor-positive breast cancer tissues are reportedly influenced by the menstrual cycle.
Methods: We investigated correlations between serum estradiol (E2; tested on the day of surgery) and expression of estrogen-regulated genes and proliferation genes in strongly estrogen receptor α-positive breast cancer tissues from 91 premenopausal women by quantitative reverse transcription-polymerase chain reaction. We also investigated correlations between serum progesterone levels on the day of surgery and mRNA expression of progesterone-regulated genes and proliferation genes.
Results: The serum E2 level affected expression of estrogen-regulated genes, including progesterone receptor (P = 0.016, Rs = 0.07) but showed no correlation with expression of genes associated with proliferation. We also observed strong positive correlations between mRNA expression of ESR1 and that of estrogen-regulated genes (P < 0.0001, Rs = 0.329-0.756) and proliferation genes (P < 0.0001, Rs = 0.753-0.843). The serum progesterone level affected expression of RANKL mRNA. However, we observed no correlations between serum progesterone and expression of Wnt-4 or proliferation genes.
Conclusions: The serum E2 level on the day of surgery influences estrogen-regulated gene expression moderately in patients found to be strongly positive for estrogen receptor α by immunohistochemistry. Changes in serum E2 levels might influence the results of molecular profiling tests in premenopausal women with breast cancer.

Välimäki N, Kuisma H, Pasanen A, et al.
Genetic predisposition to uterine leiomyoma is determined by loci for genitourinary development and genome stability.
Elife. 2018; 7 [PubMed] Free Access to Full Article Related Publications
Uterine leiomyomas (ULs) are benign tumors that are a major burden to women's health. A genome-wide association study on 15,453 UL cases and 392,628 controls was performed, followed by replication of the genomic risk in six cohorts. Effects of the risk alleles were evaluated in view of molecular and clinical characteristics. 22 loci displayed a genome-wide significant association. The likely predisposition genes could be grouped to two biological processes. Genes involved in genome stability were represented by

Rafnar T, Gunnarsson B, Stefansson OA, et al.
Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits.
Nat Commun. 2018; 9(1):3636 [PubMed] Free Access to Full Article Related Publications
Uterine leiomyomas are common benign tumors of the myometrium. We performed a meta-analysis of two genome-wide association studies of leiomyoma in European women (16,595 cases and 523,330 controls), uncovering 21 variants at 16 loci that associate with the disease. Five variants were previously reported to confer risk of various malignant or benign tumors (rs78378222 in TP53, rs10069690 in TERT, rs1800057 and rs1801516 in ATM, and rs7907606 at OBFC1) and four signals are located at established risk loci for hormone-related traits (endometriosis and breast cancer) at 1q36.12 (CDC42/WNT4), 2p25.1 (GREB1), 20p12.3 (MCM8), and 6q26.2 (SYNE1/ESR1). Polygenic score for leiomyoma, computed using UKB data, is significantly correlated with risk of cancer in the Icelandic population. Functional annotation suggests that the non-coding risk variants affect multiple genes, including ESR1. Our results provide insights into the genetic background of leiomyoma that are shared by other benign and malignant tumors and highlight the role of hormones in leiomyoma growth.

Jucá CEB, Colli LM, Martins CS, et al.
Impact of the Canonical Wnt Pathway Activation on the Pathogenesis and Prognosis of Adamantinomatous Craniopharyngiomas.
Horm Metab Res. 2018; 50(7):575-581 [PubMed] Related Publications

Sherif RN, Abdellatif H, Hazem N, et al.
Effect of human umbilical cord blood derived CD34
Tissue Cell. 2018; 50:125-132 [PubMed] Related Publications
BACKGROUND AND AIM OF THE WORK: Hepatocellular carcinoma (HCC) is the most frequent primary liver malignancy. Chronic liver injuries as chronic hepatitis C and hepatitis B viruses, aflatoxins consumption and nonalcoholic fatty liver disease are well-established causes of HCC. HCC is associated with a series of molecular changes, as alternation in glypican-3, P53 expression and Wnt/β-catenin pathway. Hepatic cancer progenitor cells could contribute to HCC development. This research aimed to study the effectiveness of human CD34+ hematopoietic stem cell on Wnt4 and P53 genes expression, histopathological grading and hepatic progenitor cells percentage in HCC rat model.
MATERIALS AND METHODS: HCC was induced in the experimental group of outbred Sprague Dawley rats by administration of 50 mg/L N-nitroso-Di-Ethylamine (DEN) in drinking water for 15 weeks. Forty-six animals were used in total, they were initially subdivided into two groups; control (n = 6) and experimental (n = 40), the latter consisting of 4 DEN-unaffected, 6 DEN-lethalities and 30 surviving DEN-animals with elevated AFP. These 30 animals with elevated AFP were then subdivided into a new HCC control group (n = 15) and the stem cell treated group (n = 15). The latter group was injected with CD34
RESULTS: The saline-treated HCC group (with prior 15 week DEN exposure) showed higher levels of wnt4 and p53 gene expression (1.59 and 1.36 fold, respectively) and increased percentage in OV6+ progenitor cells (+4.9% in absolute terms) compared to saline-treated controls (p < 0.01, ANOVA). Compared with the saline HCC-group, transplantation with CD34+ human hematopoietic stem cells produced a further increase in the levels of wnt4 (+19.4%) and p53 gene expression (+53%), a 2-fold increase in the percentage of cancer progenitor cells and increased HCC pathology grading (all p < 0.01). The positive correlation between p53 and HCC grade (Spearman rho +0.73, p < 0.05) and negative correlation between wnt and OV6

Russo A, Czarnecki AA, Dean M, et al.
PTEN loss in the fallopian tube induces hyperplasia and ovarian tumor formation.
Oncogene. 2018; 37(15):1976-1990 [PubMed] Free Access to Full Article Related Publications
The signaling events involved in the onset of ovarian cancer from the fallopian tube epithelium (FTE) are crucial for early detection and treatment of the disease, but they remain poorly defined. Conditional homozygous knockout of PTEN mediated by PAX8-cre recombinase was sufficient to drive endometrioid and serous borderline ovarian carcinoma, providing the first model of FTE-derived borderline tumors. In addition, heterozygous PTEN deletion in the FTE resulted in hyperplasia, providing a model to study early events of human ovarian pathogenesis. To uncover the mechanism underlying the invasion of cancerous oviductal cells to the ovary, PTEN-deficient murine oviductal cells were developed and tagged with green fluorescent protein. Loss of PTEN increased cell migration, invasion, and upregulated WNT4, a key regulator of Müllerian duct development during embryogenesis. Further investigation revealed that WNT4 was required for increased migration and colonization of the ovary by PTEN-deficient oviductal cells in a β-catenin independent manner. Human tumor microarrays and ovarian cancer cells lines confirmed WNT4 expression in cancer and its role in migration. Together, these findings provide a novel model to study the mechanism of fallopian tube tumor initiation and invasion to the ovary mediated by loss of PTEN, which may help to define early events of human ovarian carcinogenesis.

Pereira TDSF, Diniz MG, França JA, et al.
The Wnt/β-catenin pathway is deregulated in cemento-ossifying fibromas.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2018; 125(2):172-178 [PubMed] Related Publications
OBJECTIVE: The molecular pathogenesis of cemento ossifying fibroma (COF) is unclear. The purpose of this study was to investigate mutations in 50 oncogenes and tumor suppressor genes, including APC and CTNNB1, in which mutations in COF have been previously reported. In addition, we assessed the transcriptional levels of the Wnt/β-catenin pathway genes in COF.
STUDY DESIGN: We used a quantitative polymerase chain reaction array to evaluate the transcriptional levels of 44 Wnt/β-catenin pathway genes in 6 COF samples, in comparison with 6 samples of healthy jaws. By using next-generation sequencing (NGS) in 7 COF samples, we investigated approximately 2800 mutations in 50 genes.
RESULTS: The expression assay revealed 12 differentially expressed Wnt/β-catenin pathway genes in COF, including the upregulation of CTNNB1, TCF7, NKD1, and WNT5 A, and downregulation of CTNNBIP1, FRZB, FZD6, RHOU, SFRP4, WNT10 A, WNT3 A, and WNT4, suggesting activation of the Wnt/β-catenin signaling pathway. NGS revealed 5 single nucleotide variants: TP53 (rs1042522), PIK3 CA (rs2230461), MET (rs33917957), KIT (rs3822214), and APC (rs33974176), but none of them was pathogenic.
CONCLUSIONS: Although NGS detected no oncogenic mutation, deregulation of key Wnt/β-catenin signaling pathway genes appears to be relevant to the molecular pathogenesis of COF.

Li Y, Wang M, Huang BW, et al.
Transcriptome-wide elucidation of liposomal formulations for anticancer drug delivery.
Int J Nanomedicine. 2017; 12:8557-8572 [PubMed] Free Access to Full Article Related Publications
Although widely used in chemotherapy, free doxorubicin (Dox) might enhance cell malignancy undesirably. Liposomal Dox (Doxlipo) has been clinically approved for the treatment of breast cancer due to reduced systematical toxicity and increased tumor targeting, yet the transcriptome-wide elucidation of the Doxlipo formulations remains elusive. To this end, we explored the impact of two Dox liposomal formulations, Doxlipo mainly containing hydrogenated soy phosphatidylcholine or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, on the transcriptional pattern of MCF-7 cells. The two types of Dox liposomal formulations with different drug release kinetics were investigated to reveal the relationship between the formulation and tumor malignancy. Interestingly, we found that liposomal formulation significantly altered the transcriptional pattern of a wide range of genes. Under equivalent dosage of Dox, free Dox substantially changed the expression of ANK1, ACTA2, GPR87, GDF15, FZD6, and WNT4 in MCF-7 cells. Notably, free Dox induced much higher expression of ABCB1 and significantly enhanced the cell migration behavior in comparison with HSPC Doxlipo under a similar level of cytotoxicity. Finally, siRNA targeting GPR87 was codelivered with cationic Doxlipo to reduce the expression of malignancy-related genes. Our study, for the first time, provides an overview of the influence of formulation on the malignancy at transcriptional level and reveals the relationship between cytotoxicity and cell malignancy from the formulation aspect, offering valuable reference for the future formulation design for anticancer drug delivery.

Yuan D, Zhao Y, Wang Y, et al.
Effect of integrin‑linked kinase gene silencing on microRNA expression in ovarian cancer.
Mol Med Rep. 2017; 16(5):7267-7276 [PubMed] Free Access to Full Article Related Publications
Integrin‑linked kinase (ILK) is overexpressed in ovarian cancer (OC), and ILK gene silencing results in apoptosis in OC cells. In the present study, the mechanism by which ILK induces apoptosis was explored from the perspective of microRNA (miRNA) expression. Alterations in the global miRNA expression profile were detected using a miRNA microarray after OC cells were transduced with an ILK small hairpin RNA lentivirus. ILK silencing led to a significant upregulation of 14 miRNAs by at least 1.5‑fold. These findings were validated by reverse transcription‑quantitative polymerase chain reaction. A pathway analysis of experimentally validated target genes revealed the inhibition of multiple cancer‑associated signaling pathways and the wnt signaling pathway. Compared with cells transfected with scrambled RNA, the ILK‑silenced cells had remarkably lower expression of wnt ligands (wnt3a, wnt4 and wnt5a) and downstream β‑catenin. ILK silencing led to apoptosis of OC cells and impaired the migratory ability. Taken together, the present results suggested that miRNA‑mediated wnt pathway alterations are involved in the anti‑apoptotic role of ILK in OC. It was also indicated that ILK silencing reduced the ability of OC cells to adhere to fibronectin, which may lead to unstable focal contact. Consistently, the phosphorylation levels of focal adhesion kinase and RAC‑α serine/threonine protein kinase were downregulated. The present work demonstrated the first global miRNA expression profile of OC cells when ILK was inhibited, and this expression profile may provide a basis for the development of biomarkers and therapeutic targets for OC.

Zhu XB, Zhang ZC, Han GS, et al.
Overexpression of miR‑214 promotes the progression of human osteosarcoma by regulating the Wnt/β‑catenin signaling pathway.
Mol Med Rep. 2017; 15(4):1884-1892 [PubMed] Related Publications
The aberrant expression of microRNA (miR)‑214 contributes to the regulation of normal and cancer cell biology, and is associated with human malignancies, however, it can operate in a contradictory manner. The role of miR‑214 in osteosarcoma remains to be fully elucidated. The aim of the present study was to investigate the effects of miR‑214 on osteosarcoma progression and tumor cell proliferation, and examine the molecular mechanism underlying osteosarcoma. The level of miR‑214 was determined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis in osteosarcoma and matched paracancerous tissues, and in human osteosarcoma cancer cell lines. The roles of miR‑214 in cell proliferation, survival and cell cycle were analyzed using miR‑214 lentivirus (LV‑miR‑214)‑infected osteosarcoma cells. In addition, the downstream target proteins in the Wnt/β‑catenin signaling pathway were evaluated using western blot analysis in the LV‑miR‑214‑infected cells. The LV‑miR‑214‑infected MG63 cells were also treated with exogenous β‑catenin for 24, 48 and 72 h, respectively, following which the expression of β‑catenin was measured using western blot analysis and survival was determined using a 3‑(4,5‑cimethylthiazol‑2‑yl)‑2,5‑diphenyl tetrazolium bromide (MTT) assay. The results of the RT‑qPCR analysis showed that the expression level of miR‑214 was significantly higher in the osteosarcoma tissues, compared with that in the matched paracancerous tissues, and the same was observed in the osteosarcoma cell lines. The MG63, Saos‑2 and U2OS cells were infected with the hsa‑mir‑214 lentivirus for 48 h, and the levels of miR‑214 were significantly upregulated in the human osteosarcoma cancer cells. The overexpression of miR‑214 in the MG‑63 and Saos‑2 cells promoted cell growth, and treatment of the cells with specific antisense‑microRNA oligonucleotides (AMOs) for miR‑214 for indicated durations reversed the effects of miR‑214. Additionally, the AMO‑treated MG63 cells showed G0/G1 phase arrest, suggesting that miR‑214 contributed to regulation of the cell cycle. In addition, the results of western blot analysis showed that, in the miR‑214 lentivirus‑infected cells, the levels of cyclin‑D1, c‑myc and lymphoid enhancer‑binding factor‑1 were significantly increased, compared with those in the control lentivirus‑infected cancer cells. Of note, infection with the miR‑214 lentivirus did not affect the levels of Wnt1, Wnt2, Wnt4, Axin or glycogen synthase kinase β in the U2OS cells, whereas the expression levels of β‑catenin in the MG63 cells and Saos‑2 cells were significantly increased. The addition of exogenous β‑catenin effectively reversed the efficiency of miR‑214‑specific AMOs, which was detected using an MTT assay. These data suggested the critical role of miR‑214 in human osteosarcoma via regulation of the Wnt/β‑catenin signaling pathway and demonstrated that miR‑214 is as an oncogene for human osteosarcoma.

Al-Hendy A, Laknaur A, Diamond MP, et al.
Silencing Med12 Gene Reduces Proliferation of Human Leiomyoma Cells Mediated via Wnt/β-Catenin Signaling Pathway.
Endocrinology. 2017; 158(3):592-603 [PubMed] Free Access to Full Article Related Publications
Uterine fibroids, or leiomyoma, are the most common benign tumors in women of reproductive age. In this work, the effect of silencing the mediator complex subunit 12 (Med12) gene in human uterine fibroid cells was evaluated. The role of Med12 in the modulation of Wnt/β-catenin and cell proliferation-associated signaling was evaluated in human uterine fibroid cells. Med12 was silenced in the immortalized human uterine fibroid cell line (HuLM) using a lentivirus-based Med12 gene-specific RNA interference strategy. HuLM cells were infected with lentiviruses carrying Med12-specific short hairpin RNA (shRNA) sequences or a nonfunctional shRNA scrambled control with green fluorescence protein. Stable cells that expressed low levels of Med12 protein were characterized. Wnt/β-catenin signaling, sex steroid receptor signaling, cell cycle-associated, and fibrosis-associated proteins were measured. Med12 knockdown cells showed significantly (P < 0.05) reduced levels of Wnt4 and β-catenin proteins as well as cell proliferation, as compared with scrambled control cells. Med12 knockdown cells also showed reduced levels of cell cycle-associated cyclin D1, Cdk1, and Cdk2 proteins as well as reduced activation of p-extracellular signal-regulated kinase, p-protein kinase B, and transforming growth factor (TGF)-β signaling pathways as compared with scrambled control cells. Moreover, TGF-β-regulated fibrosis-related proteins such as fibronectin, collagen type 1, and plasminogen activator inhibitor-1 were significantly (P < 0.05) reduced in Med12 knockdown cells as compared with scrambled control cells. Together, these results suggest that Med12 plays a key role in the regulation of HuLM cell proliferation through the modulation of Wnt/β-catenin, cell cycle-associated, and fibrosis-associated protein expression.

Sikora MJ, Jacobsen BM, Levine K, et al.
WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines.
Breast Cancer Res. 2016; 18(1):92 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor.
METHODS: The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling.
RESULTS: ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown.
CONCLUSIONS: WNT4 drives a novel signaling pathway in ILC cells, with a critical role in estrogen-induced growth that may also mediate endocrine resistance. WNT4 signaling may represent a novel target to modulate endocrine response specifically for patients with ILC.

Lo PK, Zhang Y, Wolfson B, et al.
Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis.
Oncotarget. 2016; 7(40):65067-65089 [PubMed] Free Access to Full Article Related Publications
Dysregulation of long non-codng RNA (lncRNA) expression has been found to contribute to tumorigenesis. However, the roles of lncRNAs in BRCA1-related breast cancer remain largely unknown. In this study, we delineate the role of the novel BRCA1/lncRNA NEAT1 signaling axis in breast tumorigenesis. BRCA1 inhibits NEAT1 expression potentially through binding to its genomic binding site upstream of the NEAT1 gene. BRCA1 deficiency in human normal/cancerous breast cells and mouse mammary glands leads to NEAT1 overexpression. Our studies show that NEAT1 upregulation resulting from BRCA1 deficiency stimulates in vitro and in vivo breast tumorigenicity. We have further identified molecular mediators downstream of the BRCA1/NEAT1 axis. NEAT1 epigenetically silences miR-129-5p expression by promoting the DNA methylation of the CpG island in the miR-129 gene. Silencing of miR-129-5p expression by NEAT1 results in upregulation of WNT4 expression, a target of miR-129-5p, which leads to activation of oncogenic WNT signaling. Our functional studies indicate that this NEAT1/miR-129-5p/WNT4 axis contributes to the tumorigenic effects of BRCA1 deficiency. Finally our in silico expression correlation analysis suggests the existence of the BRCA1/NEAT1/miR-129-5p axis in breast cancer. Our findings, taken together, suggest that the dysregulation of the BRCA1/NEAT1/miR-129-5p/WNT4 signaling axis is involved in promoting breast tumorigenesis.

Vouyovitch CM, Perry JK, Liu DX, et al.
WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells.
Endocr Relat Cancer. 2016; 23(7):571-85 [PubMed] Related Publications
The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype.

Park JY, Yi JW, Park CH, et al.
Role of BRAF and RAS Mutations in Extrathyroidal Extension in Papillary Thyroid Cancer.
Cancer Genomics Proteomics. 2016 Mar-Apr; 13(2):171-81 [PubMed] Related Publications
BACKGROUND/AIM: Extrathyroidal extension (ETE) indicates the invasiveness of primary thyroid tumor into the adjacent tissue, and its importance as a prognostic factor overrides tumor size in classifying the cancer stage. The aim of this study was to determine the molecular basis of ETE in papillary thyroid carcinomas (PTCs).
MATERIALS AND METHODS: We systematically defined genes and pathways regulated in ETE using mutation and gene expression profiles from The Cancer Genome Atlas, and examined the effect of BRAF and RAS mutations on ETE. The significance of these genes was further validated using public microarray data.
RESULTS: Genes related to extracellular matrix and immune response were significantly up-regulated in ETE and ion-transport genes were often down-regulated. Differentiation properties and WNT signaling were also found to be altered by ETE. BRAF and RAS mutations were shown to have distinct effects on genes associated with ETE. Specifically, PAX8 and its downstream target WNT4 were differentially expressed according to mutation status in addition to ETE, indicating their critical roles in cell motility.
CONCLUSION: BRAF V600E mutation predisposes PTC cells toward invasive phenotypes, while RAS mutation confers resistance to ETE. The differential regulation appears to be mediated through WNT4.

Al-Hendy A, Diamond MP, Boyer TG, Halder SK
Vitamin D3 Inhibits Wnt/β-Catenin and mTOR Signaling Pathways in Human Uterine Fibroid Cells.
J Clin Endocrinol Metab. 2016; 101(4):1542-51 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Somatic mutations in the Med12 gene are known to activate Wnt/β-catenin signaling in human uterine fibroids (UFs).
OBJECTIVE: The objective of the study was to examine the role of vitamin D3 in the modulation of Wnt/β-catenin and mammalian target of rapamycin (mTOR) signaling in human UF cells.
DESIGN: Immortalized human UF cells (HuLM) and human primary UF (PUF) cells were treated with increasing concentrations of vitamin D3 and thereafter analyzed using Western blots and immunocytochemistry.
MAIN OUTCOME MEASURES: Wnt/β-catenin and mTOR signaling proteins in cultured HuLM and PUF cells were measured.
RESULTS: UF tumors with Med12 somatic mutations showed an up-regulation of Wnt4 and β-catenin as compared with adjacent myometrium. Vitamin D3 administration reduced the levels of Wnt4 and β-catenin in both HuLM and PUF cells. Vitamin D3 also reduced the expression/activation of mTOR signaling in both cell types. In contrast, vitamin D3 induced the expression of DNA damaged-induced transcription 4 (an inhibitor of mTOR) and tuberous sclerosis genes (TSC1/2) in a concentration-dependent manner in HuLM cells. Furthermore, we observed a concentration-dependent reduction of Wisp1 (Wnt induced signaling protein 1) and flap endonuclease 1 proteins in HuLM cells. Additionally, abrogation of vitamin D receptor expression (by silencing) in normal myometrial cells induces Wnt4/β-catenin as well as prompts a fibrotic process including an increase in cell proliferation and increased extracellular matrix production. Together these results suggest that vitamin D3 functions as an inhibitor of Wnt4/β-catenin and mTOR signaling pathways, which may play major roles in fibroid pathogenesis.
CONCLUSIONS: Vitamin D3 may have utility as a novel long-term therapeutic and/or preventive option for uterine fibroids.

Tsai CH, Chiu JH, Yang CW, et al.
Molecular characteristics of recurrent triple-negative breast cancer.
Mol Med Rep. 2015; 12(5):7326-34 [PubMed] Free Access to Full Article Related Publications
Due to the fact that the treatment of breast cancer depends significantly on the molecular markers present in the cancer, including estrogen receptor (+), progesterone receptor (+) or erbB2 receptor (+), further investigation targeting triple‑negative breast cancer (TNBC) subtypes may assist in elucidating the mechanisms of recurrence of TNBC and enable the identification of novel therapeutic strategies for patients with TNBC. The aim of the present study was to compare the gene expression profiles between TNBC samples that were identified as having recurrent and non‑recurrent statuses. Between June 2011 and May 2012, a total of 30 patients with TNBC were examined using a follow-up period of at least 5 years. Their clinicopathological information was retrospectively reviewed and they were classified with a status either of recurrence [n=15 stage II (9), IIIA (2), IIIC (4)] or non‑recurrence [n=15 stage II (6), IIIA (1), IIIC (8)]. The total RNA from tissue samples obtained from the recurrent and non‑recurrent TNBC patients were used to performed oligonucleotide microarray analysis. The dataset was analyzed using GeneSpring software and validated using reverse transcription-quantitative polymerase chain reaction. Principal component analysis demonstrated that there was a marked difference in the gene expression distribution between the stage IIIc recurrent samples and early stage (stages IIa, IIb and IIIa) recurrent samples. In early stage recurrence, the significant pathway‑associated upregulated genes were matrix metalloproteinases (MMPs) and genes associated with cancer cell migration (CDH2) and cell adhesion/motility (KRAS, CDC42, RAC1, ICAM and SRGAP2). By contrast, during stage IIIc recurrence, the significant pathway‑associated upregulated genes in the recurrent samples were WNT signaling genes, including WNT 4 and WNT 16. It was concluded that there were markedly different distributions and gene expression profiles between stage IIIc recurrent TNBC tumors and early stage (IIa, IIb, IIIa) recurrent TNBC tumors, which provides important information for the development of effective treatment strategies for TNBC.

Liu Z, Ren YA, Pangas SA, et al.
FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development.
Mol Endocrinol. 2015; 29(7):1006-24 [PubMed] Free Access to Full Article Related Publications
The forkhead box (FOX), FOXO1 and FOXO3, transcription factors regulate multiple functions in mammalian cells. Selective inactivation of the Foxo1 and Foxo3 genes in murine ovarian granulosa cells severely impairs follicular development and apoptosis causing infertility, and as shown here, granulosa cell tumor (GCT) formation. Coordinate depletion of the tumor suppressor Pten gene in the Foxo1/3 strain enhanced the penetrance and onset of GCT formation. Immunostaining and Western blot analyses confirmed FOXO1 and phosphatase and tensin homolog (PTEN) depletion, maintenance of globin transcription factor (GATA) 4 and nuclear localization of FOXL2 and phosphorylated small mothers against decapentaplegic (SMAD) 2/3 in the tumor cells, recapitulating results we observed in human adult GCTs. Microarray and quantitative PCR analyses of mouse GCTs further confirmed expression of specific genes (Foxl2, Gata4, and Wnt4) controlling granulosa cell fate specification and proliferation, whereas others (Emx2, Nr0b1, Rspo1, and Wt1) were suppressed. Key genes (Amh, Bmp2, and Fshr) controlling follicle growth, apoptosis, and differentiation were also suppressed. Inhbb and Grem1 were selectively elevated, whereas reduction of Inha provided additional evidence that activin signaling and small mothers against decapentaplegic (SMAD) 2/3 phosphorylation impact GCT formation. Unexpectedly, markers of Sertoli/epithelial cells (SRY [sex determining region Y]-box 9/keratin 8) and alternatively activated macrophages (chitinase 3-like 3) were elevated in discrete subpopulations within the mouse GCTs, indicating that Foxo1/3/Pten depletion not only leads to GCTs but also to altered granulosa cell fate decisions and immune responses. Thus, analyses of the Foxo1/3/Pten mouse GCTs and human adult GCTs provide strong evidence that impaired functions of the FOXO1/3/PTEN pathways lead to dramatic changes in the molecular program within granulosa cells, chronic activin signaling in the presence of FOXL2 and GATA4, and tumor formation.

Al-Tassan NA, Whiffin N, Hosking FJ, et al.
A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer.
Sci Rep. 2015; 5:10442 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies (GWAS) of colorectal cancer (CRC) have identified 23 susceptibility loci thus far. Analyses of previously conducted GWAS indicate additional risk loci are yet to be discovered. To identify novel CRC susceptibility loci, we conducted a new GWAS and performed a meta-analysis with five published GWAS (totalling 7,577 cases and 9,979 controls of European ancestry), imputing genotypes utilising the 1000 Genomes Project. The combined analysis identified new, significant associations with CRC at 1p36.2 marked by rs72647484 (minor allele frequency [MAF] = 0.09) near CDC42 and WNT4 (P = 1.21 × 10(-8), odds ratio [OR] = 1.21 ) and at 16q24.1 marked by rs16941835 (MAF = 0.21, P = 5.06 × 10(-8); OR = 1.15) within the long non-coding RNA (lncRNA) RP11-58A18.1 and ~500 kb from the nearest coding gene FOXL1. Additionally we identified a promising association at 10p13 with rs10904849 intronic to CUBN (MAF = 0.32, P = 7.01 × 10(-8); OR = 1.14). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CRC. Additionally, our analysis further demonstrates that imputation can be used to exploit GWAS data to identify novel disease-causing variants.

Arya M, Thrasivoulou C, Henrique R, et al.
Targets of Wnt/ß-catenin transcription in penile carcinoma.
PLoS One. 2015; 10(4):e0124395 [PubMed] Free Access to Full Article Related Publications
Penile squamous cell carcinoma (PeCa) is a rare malignancy and little is known regarding the molecular mechanisms involved in carcinogenesis of PeCa. The Wnt signaling pathway, with the transcription activator ß-catenin as a major transducer, is a key cellular pathway during development and in disease, particularly cancer. We have used PeCa tissue arrays and multi-fluorophore labelled, quantitative, immunohistochemistry to interrogate the expression of WNT4, a Wnt ligand, and three targets of Wnt-ß-catenin transcription activation, namely, MMP7, cyclinD1 (CD1) and c-MYC in 141 penile tissue cores from 101 unique samples. The expression of all Wnt signaling proteins tested was increased by 1.6 to 3 fold in PeCa samples compared to control tissue (normal or cancer adjacent) samples (p<0.01). Expression of all proteins, except CD1, showed a significant decrease in grade II compared to grade I tumors. High magnification, deconvolved confocal images were used to measure differences in co-localization between the four proteins. Significant (p<0.04-0.0001) differences were observed for various permutations of the combinations of proteins and state of the tissue (control, tumor grades I and II). Wnt signaling may play an important role in PeCa and proteins of the Wnt signaling network could be useful targets for diagnosis and prognostic stratification of disease.

Kuchenbaecker KB, Ramus SJ, Tyrer J, et al.
Identification of six new susceptibility loci for invasive epithelial ovarian cancer.
Nat Genet. 2015; 47(2):164-71 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.

King TF, Conway GS
Swyer syndrome.
Curr Opin Endocrinol Diabetes Obes. 2014; 21(6):504-10 [PubMed] Related Publications
PURPOSE OF REVIEW: This review focuses on the pathogenesis, diagnosis, management and long-term outcomes of disorders of sex development, specifically women with Swyer syndrome (46,XY complete gonadal dysgenesis).
RECENT FINDINGS: Recent discoveries have broadened our understanding of the complex pathways involved in normal and abnormal sex development. In 46,XY gonadal dysgenesis, lack of testis development may be triggered by sex determining region Y, NR5A1, DHH or testis-determining gene loss-of-function mutations, DAX1 or WNT4 duplication or MAP3K1 gain-of-function mutations. The diagnosis and management of patients with Swyer syndrome is complex, and optimal care requires an experienced multidisciplinary team. Early diagnosis is vital because of the significant risk of germ cell tumour, and bilateral gonadectomy should be performed. Furthermore, early sex hormone treatment is necessary to induce and maintain typical pubertal development and to achieve optimal bone mineral accumulation. Pregnancy is possible via ova donation, and outcomes are similar to women with 46,XX ovarian failure.
SUMMARY: Further pathogenic gene mutations are likely to be identified, and the function, interaction and phenotypic effects of new and existing mutations will be further defined. Patients require long-term follow-up in specialist centres.

Filippone MG, Di Palma T, Lucci V, Zannini M
Pax8 modulates the expression of Wnt4 that is necessary for the maintenance of the epithelial phenotype of thyroid cells.
BMC Mol Biol. 2014; 15:21 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The transcription factor Pax8 is expressed during thyroid development and is involved in the morphogenesis of the thyroid gland and maintenance of the differentiated phenotype. In particular, Pax8 has been shown to regulate genes that are considered markers of thyroid differentiation. Recently, the analysis of the gene expression profile of FRTL-5 differentiated thyroid cells after the silencing of Pax8 identified Wnt4 as a novel target. Like the other members of the Wnt family, Wnt4 has been implicated in several developmental processes including regulation of cell fate and patterning during embryogenesis. To date, the only evidence on Wnt4 in thyroid concerns its down-regulation necessary for the progression of thyroid epithelial tumors.
RESULTS: Here we demonstrate that Pax8 is involved in the transcriptional modulation of Wnt4 gene expression directly binding to its 5'-flanking region, and that Wnt4 expression in FRTL-5 cells is TSH-dependent. Interestingly, we also show that in thyroid cells a reduced expression of Wnt4 correlates with the alteration of the epithelial phenotype and that the overexpression of Wnt4 in thyroid cancer cells is able to inhibit cellular migration.
CONCLUSIONS: We have identified and characterized a functional Pax8 binding site in the 5'-flanking region of the Wnt4 gene and we show that Pax8 modulates the expression of Wnt4 in thyroid cells. Taken together, our results suggest that in thyroid cells Wnt4 expression correlates with the integrity of the epithelial phenotype and is reduced when this integrity is perturbed. In the end, we would like to suggest that the overexpression of Wnt4 in thyroid cancer cells is able to revert the mesenchymal phenotype.

Wang W, Meng M, Zhang Y, et al.
Global transcriptome-wide analysis of CIK cells identify distinct roles of IL-2 and IL-15 in acquisition of cytotoxic capacity against tumor.
BMC Med Genomics. 2014; 7:49 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cytokine-induced killer (CIK) cells are an emerging approach of cancer treatment. Our previous study have shown that CIK cells stimulated with combination of IL-2 and IL-15 displayed improved proliferation capacity and tumor cytotoxicity. However, the mechanisms of CIK cell proliferation and acquisition of cytolytic function against tumor induced by IL-2 and IL-15 have not been well elucidated yet.
METHODS: CIK(IL-2) and CIK(IL-15) were generated from peripheral blood mononuclear cells primed with IFN-γ, and stimulated with IL-2 and IL-15 in combination with OKT3 respectively. RNA-seq was performed to identify differentially expressed genes, and gene ontology and pathways based analysis were used to identify the distinct roles of IL-2 and IL-15 in CIK preparation.
RESULTS: The results indicated that CIKIL-15 showed improved cell proliferation capacity compared to CIK(IL-2). However, CIK(IL-2) has exhibited greater tumor cytotoxic effect than CIKIL-15. Employing deep sequencing, we sequenced mRNA transcripts in CIK(IL-2) and CIK(IL-15). A total of 374 differentially expressed genes (DEGs) were identified including 175 up-regulated genes in CIK(IL-15) and 199 up-regulated genes in CIK(IL-2)). Among DEGs in CIK(IL-15), Wnt signaling and cell adhesion were significant GO terms and pathways which related with their functions. In CIK(IL-2, type I interferon signaling and cytokine-cytokine receptor interaction were significant GO terms and pathways. We found that the up-regulation of Wnt 4 and PDGFD may contribute to enhanced cell proliferation capacity of CIK(IL-15), while inhibitory signal from interaction between CTLA4 and CD80 may be responsible for the weak proliferation capacity of CIK(IL-2). Moreover, up-regulated expressions of CD40LG and IRF7 may make for improved tumor cytolytic function of CIK(IL-2) through type I interferon signaling.
CONCLUSIONS: Through our findings, we have preliminarily elucidated the cells proliferation and acquisition of tumor cytotoxicity mechanism of CIK(IL-15) and CIK(IL-2). Better understanding of these mechanisms will help to generate novel CIK cells with greater proliferation potential and improved tumor cytolytic function.

Gauger KJ, Bassa LM, Henchey EM, et al.
The effects of diet induced obesity on breast cancer associated pathways in mice deficient in SFRP1.
Mol Cancer. 2014; 13:117 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Secreted frizzled-related proteins (SFRPs) are a family of proteins that block the Wnt signaling pathway and loss of Sfrp1 expression is observed in breast cancer. The molecular mechanisms by which obesity contributes to breast tumorigenesis are not well defined, but involve increased inflammation. Mice deficient in Sfrp1 show enhanced mammary gland inflammation in response to diet induced obesity (DIO). Furthermore, mammary glands from Sfrp1-/- mice exhibit increased Wnt signaling, decreased cell death responses, and excessive hyper branching. The work described here was initiated to investigate whether obesity exacerbates the aforementioned pathways, as they each play a key roles in the development of breast cancer.
FINDINGS: Wnt signaling is significantly affected by DIO and Sfrp1-/- loss as revealed by analysis of Myc mRNA expression and active β-catenin protein expression. Furthermore, Sfrp1-/- mice fed a high fat diet (HFD) exhibit an increase in mammary cell proliferation. The death response is also impaired in the mammary gland of Sfrp1-/- mice fed a normal diet (ND) as well as a HFD. In response to γ-irradiation, mammary glands from Sfrp1-/- mice express significantly less Bax and Bbc3 mRNA, caspase-3 positive cells, and p53 protein. The expression of Wnt4 and Tnfs11 are critical for normal progesterone mediated mammary gland development and in response to obesity, Sfrp1-/- mice express significantly more Wnt4 and Tnfs11 mRNA expression. Evaluation of progesterone receptor (PR) expression showed that DIO increases the number of PR positive cells.
CONCLUSIONS: Our data indicate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular homeostasis in response to the onset of obesity.

Tanabe S, Aoyagi K, Yokozaki H, Sasaki H
Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition.
Int J Oncol. 2014; 44(6):1955-70 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy. The hedgehog-EMT pathway is preferentially activated in diffuse-type gastric cancer (GC) compared with intestinal-type GC; however, histological typing is currently the only method for distinguishing these two major types of GC. We compared the gene expression profiles of 12 bone marrow-derived mesenchymal stem cell cultures and 5 diffuse-type GC tissue samples. Numerous upregulated or downregulated genes were identified in diffuse-type GC, including CDH1, CDH2, VIM, WNT4 and WNT5. Among these genes, the mRNA ratio of CDH2 to CDH1 could distinguish the 15 diffuse-type GC samples from the 17 intestinal-type GC samples. Our results suggested that the mesenchymal features were more prominent in diffuse-type GC than in intestinal-type GC, but were weaker in diffuse-type GC than in mesenchymal stem cells. Diffuse-type GC that has undergone extensive EMT, which has a poor prognosis, can be identified by quantitative PCR analysis of only two genes.

Drosch M, Schmidt N, Markowski DN, et al.
The CD24hi smooth muscle subpopulation is the predominant fraction in uterine fibroids.
Mol Hum Reprod. 2014; 20(7):664-76 [PubMed] Related Publications
Uterine fibroids are the most common gynecological tumors affecting women in their reproductive age. Despite this high incidence the pathogenesis of fibroids is widely unsolved. Whereas formerly only imbalances in hormonal levels were considered to account for tumor development, the identification of genetic changes likely to affect myometrial stem cell reservoirs provided a novel approach to fibroid genesis. Here, we identified a certain subset of cells by the surface marker CD24 with increased abundance in fibroids compared with myometrial tissue. Fibroid cells expressing CD24 shared certain features of immature or progenitor-like cells such as quiescence, reduced expression of smooth muscle differentiation markers and elevated expression of genes involved in the wingless-type (WNT)-pathway such as beta-catenin. In addition, a positive correlation between CD24 and wingless-type family member 4 (WNT4) expression was observed in uterine fibroids with mediator subcomplex 12 gene (MED12) mutations. Our findings suggest that cells highly expressing CD24 represent a type of immature smooth muscle progenitor cells. Their accumulation might be driven by disturbed differentiation processes caused by genetic changes possibly involving MED12 mutations or high mobility group AT-hook (HMGA)2 rearrangements.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. WNT4, Cancer Genetics Web: http://www.cancer-genetics.org/WNT4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999