CD40

Gene Summary

Gene:CD40; CD40 molecule
Aliases: p50, Bp50, CDW40, TNFRSF5
Location:20q13.12
Summary:This gene is a member of the TNF-receptor superfamily. The encoded protein is a receptor on antigen-presenting cells of the immune system and is essential for mediating a broad variety of immune and inflammatory responses including T cell-dependent immunoglobulin class switching, memory B cell development, and germinal center formation. AT-hook transcription factor AKNA is reported to coordinately regulate the expression of this receptor and its ligand, which may be important for homotypic cell interactions. Adaptor protein TNFR2 interacts with this receptor and serves as a mediator of the signal transduction. The interaction of this receptor and its ligand is found to be necessary for amyloid-beta-induced microglial activation, and thus is thought to be an early event in Alzheimer disease pathogenesis. Mutations affecting this gene are the cause of autosomal recessive hyper-IgM immunodeficiency type 3 (HIGM3). Multiple alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. [provided by RefSeq, Nov 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tumor necrosis factor receptor superfamily member 5
Source:NCBIAccessed: 29 August, 2019

Ontology:

What does this gene/protein do?
Show (34)
Pathways:What pathways are this gene/protein implicaed in?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Chronic Lymphocytic Leukemia
  • Viral Proteins
  • Reed-Sternberg Cells
  • Cell Proliferation
  • Cancer Gene Expression Regulation
  • Receptors, Chemokine
  • Risk Factors
  • Stromal Cells
  • Apoptosis
  • Recombinant Fusion Proteins
  • CD40 Ligand
  • Xeroderma Pigmentosum
  • Vascular Cell Adhesion Molecule-1
  • Signal Transduction
  • Stomach Cancer
  • Transcription Factors
  • Precursor Cells, B-Lymphoid
  • Single Nucleotide Polymorphism
  • Lymphocyte Activation
  • Mutation
  • Autologous Transplantat
  • Receptors, Antigen, B-Cell
  • B-Lymphocytes
  • RTPCR
  • Uteroglobin
  • Kaposi Sarcoma
  • Liver Cancer
  • CD Antigens
  • Thymus Neoplasms
  • Gene Expression Profiling
  • Recombinant Proteins
  • Membrane Glycoproteins
  • Paracrine Communication
  • CD40 Antigens
  • Pilot Projects
  • Chromosome 20
  • Flow Cytometry
  • Dendritic Cells
  • CD40
  • Cancer RNA
  • NF-kappa B
  • Solubility
  • Thymoma and Thymic Carcinoma
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CD40 (cancer-related)

Zhao J, Lee EE, Kim J, et al.
Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus.
Nat Commun. 2019; 10(1):2300 [PubMed] Free Access to Full Article Related Publications
Single-stranded circular RNAs (circRNAs), generated through 'backsplicing', occur more extensively than initially anticipated. The possible functions of the vast majority of circRNAs remain unknown. Virus-derived circRNAs have recently been described in gamma-herpesviruses. We report that oncogenic human papillomaviruses (HPVs) generate circRNAs, some of which encompass the E7 oncogene (circE7). HPV16 circE7 is detectable by both inverse RT-PCR and northern blotting of HPV16-transformed cells. CircE7 is N

Choudhury AD, Beltran H
Retinoblastoma Loss in Cancer: Casting a Wider Net.
Clin Cancer Res. 2019; 25(14):4199-4201 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
Capturing both genomic and nongenomic mechanisms of retinoblastoma gene dysfunction has potential to improve risk stratification and patient selection for biomarker-driven therapy. A 186-gene expression signature is capable of identifying Rb loss across cancer types, providing a new framework for assessing Rb dysfunction based on transcriptome data.

Ando M, Saito Y, Xu G, et al.
Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers.
Nat Commun. 2019; 10(1):2188 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
Although promoter-associated CpG islands have been established as targets of DNA methylation changes in cancer, previous studies suggest that epigenetic dysregulation outside the promoter region may be more closely associated with transcriptional changes. Here we examine DNA methylation, chromatin marks, and transcriptional alterations to define the relationship between transcriptional modulation and spatial changes in chromatin structure. Using human papillomavirus-related oropharyngeal carcinoma as a model, we show aberrant enrichment of repressive H3K9me3 at the transcriptional start site (TSS) with methylation-associated, tumor-specific gene silencing. Further analysis identifies a hypermethylated subtype which shows a functional convergence on MYC targets and association with CREBBP/EP300 mutation. The tumor-specific shift to transcriptional repression associated with DNA methylation at TSSs was confirmed in multiple tumor types. Our data may show a common underlying epigenetic dysregulation in cancer associated with broad enrichment of repressive chromatin marks and aberrant DNA hypermethylation at TSSs in combination with MYC network activation.

Hung CY, Lee CH, Chiou HL, et al.
Praeruptorin-B Inhibits 12-O-Tetradecanoylphorbol-13-Acetate-Induced Cell Invasion by Targeting AKT/NF-κB via Matrix Metalloproteinase-2/-9 Expression in Human Cervical Cancer Cells.
Cell Physiol Biochem. 2019; 52(6):1255-1266 [PubMed] Related Publications
BACKGROUND/AIMS: Praeruptorins, a seselin-type coumarin, possess anti-inflammatory and antitumor promoting properties. However, molecular mechanisms through which Praeruptorin-B (Pra-B) exerts an antimetastatic effect on cervical cancer cells remain unclear.
METHODS: Cell viability was examined using the MTT assay, whereas cell migration and invasion were examined using the Boyden chamber assay. Western blotting and RT-PCR were performed to investigate the inhibitory effect of Pra-B on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced matrix metalloproteinase-2/-9 (MMP-2/-9) expression in HeLa cells. The findings of the luciferase assay confirmed the inhibitory effect of Pra-B on TPA-induced transcriptional activity of MMP2/-9 in HeLa cells.
RESULTS: Pra-B inhibited TPA-induced metastatic ability of human cervical cancer cells without any significant toxicity. Pra-B suppressed TPA-induced mRNA and protein expression and transcriptional activity of MMP-2/-9 in HeLa cells. Furthermore, Pra-B inhibited AKT phosphorylation but did not affect the MAPK pathway. Cotreatment of HeLa cells with TPA plus Pra-B or LY294002 (a PI3K inhibitor) reduced cell invasion and MMP-2/-9 expression and transcriptional activity. In addition, Pra-B attenuated TPA-induced nuclear translocation of NF-κB-p65/-p50, which reduced Ikk-α phosphorylation in HeLa cells. Cotreatment of HeLa cells with TPA plus Pra-B or LY294002 reduced NF-κB nuclear translocation.
CONCLUSION: These results suggested that Pra-B-mediated inhibition of TPA-induced cell metastasis involved the suppression of p-AKT/NF-κB via MMP-2/-9 expression in HeLa cells. Pra-B can be a potential antimetastatic agent against cervical cancer.

Brinkman AB, Nik-Zainal S, Simmer F, et al.
Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation.
Nat Commun. 2019; 10(1):1749 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
Global loss of DNA methylation and CpG island (CGI) hypermethylation are key epigenomic aberrations in cancer. Global loss manifests itself in partially methylated domains (PMDs) which extend up to megabases. However, the distribution of PMDs within and between tumor types, and their effects on key functional genomic elements including CGIs are poorly defined. We comprehensively show that loss of methylation in PMDs occurs in a large fraction of the genome and represents the prime source of DNA methylation variation. PMDs are hypervariable in methylation level, size and distribution, and display elevated mutation rates. They impose intermediate DNA methylation levels incognizant of functional genomic elements including CGIs, underpinning a CGI methylator phenotype (CIMP). Repression effects on tumor suppressor genes are negligible as they are generally excluded from PMDs. The genomic distribution of PMDs reports tissue-of-origin and may represent tissue-specific silent regions which tolerate instability at the epigenetic, transcriptomic and genetic level.

Zou Y, Palte MJ, Deik AA, et al.
A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis.
Nat Commun. 2019; 10(1):1617 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
Clear-cell carcinomas (CCCs) are a histological group of highly aggressive malignancies commonly originating in the kidney and ovary. CCCs are distinguished by aberrant lipid and glycogen accumulation and are refractory to a broad range of anti-cancer therapies. Here we identify an intrinsic vulnerability to ferroptosis associated with the unique metabolic state in CCCs. This vulnerability transcends lineage and genetic landscape, and can be exploited by inhibiting glutathione peroxidase 4 (GPX4) with small-molecules. Using CRISPR screening and lipidomic profiling, we identify the hypoxia-inducible factor (HIF) pathway as a driver of this vulnerability. In renal CCCs, HIF-2α selectively enriches polyunsaturated lipids, the rate-limiting substrates for lipid peroxidation, by activating the expression of hypoxia-inducible, lipid droplet-associated protein (HILPDA). Our study suggests targeting GPX4 as a therapeutic opportunity in CCCs, and highlights that therapeutic approaches can be identified on the basis of cell states manifested by morphological and metabolic features in hard-to-treat cancers.

Jahan R, Ganguly K, Smith LM, et al.
Trefoil factor(s) and CA19.9: A promising panel for early detection of pancreatic cancer.
EBioMedicine. 2019; 42:375-385 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
BACKGROUND: Trefoil factors (TFF1, TFF2, and TFF3) are small secretory molecules that recently have gained significant attention in multiple studies as an integral component of pancreatic cancer (PC) subtype-specific gene signature. Here, we comprehensively investigated the diagnostic potential of all the member of trefoil family, i.e., TFF1, TFF2, and TFF3 in combination with CA19.9 for detection of PC.
METHODS: Trefoil factors (TFFs) gene expression was analyzed in publicly available cancer genome datasets, followed by assessment of their expression in genetically engineered spontaneous mouse model (GEM) of PC (KrasG12D; Pdx1-Cre (KC)) and in human tissue microarray consisting of normal pancreas adjacent to tumor (NAT), precursor lesions (PanIN), and various pathological grades of PC by immunohistochemistry (IHC). Serum TFFs and CA19.9 levels were evaluated via ELISA in comprehensive sample set (n = 362) comprised of independent training and validation sets each containing benign controls (BC), chronic pancreatitis (CP), and various stages of PC. Univariate and multivariate logistic regression and receiver operating characteristic curves (ROC) were used to examine their diagnostic potential both alone and in combination with CA19.9.
FINDINGS: The publicly available datasets and expression analysis revealed significant increased expression of TFF1, TFF2, and TFF3 in human PanINs and PC tissues. Assessment of KC mouse model also suggested upregulated expression of TFFs in PanIN lesions and early stage of PC. In serum analyses studies, TFF1 and TFF2 were significantly elevated in early stages of PC in comparison to benign and CP control group while significant elevation in TFF3 levels were observed in CP group with no further elevation in its level in early stage PC group. In receiver operating curve (ROC) analyses, combination of TFFs with CA19.9 emerged as promising panel for discriminating early stage of PC (EPC) from BC (AUC
INTERPRETATION: In silico, tissue and serum analyses validated significantly increased level of all TFFs in precursor lesions and early stages of PC. The combination of TFFs enhanced sensitivity and specificity of CA19.9 to discriminate early stage of PC from benign control and chronic pancreatitis groups.

Wang Y, Hou Y, Zhang W, et al.
Lipolytic inhibitor G0S2 modulates glioma stem-like cell radiation response.
J Exp Clin Cancer Res. 2019; 38(1):147 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
BACKGROUND: Ionizing radiation (IR) therapy is the standard first-line treatment for newly diagnosed patients with glioblastoma (GBM), the most common and malignant primary brain tumor. However, the effects of IR are limited due to the aberrant radioresistance of GBM.
METHODS: Transcriptome analysis was performed using RNA-seq in radioresistant patient-derived glioma stem-like cells (GSCs). Survival of glioma patient and mice bearing-brain tumors was analyzed by Kaplan-Meier survival analysis. Lipid droplet and γ-H2AX foci-positive cells were evaluated using immunofluorescence staining.
RESULTS: Lipolytic inhibitor G0/G1 switch gene 2 (G0S2) is upregulated in radioresistant GSCs and elevated in clinical GBM. GBM patients with high G0S2 expression had significantly shorter overall survival compared with those with low expression of G0S2. Using genetic approaches targeting G0S2 in glioma cells and GSCs, we found that knockdown of G0S2 promoted lipid droplet turnover, inhibited GSC radioresistance, and extended survival of xenograft tumor mice with or without IR. In contrast, overexpression of G0S2 promoted glioma cell radiation resistance. Mechanistically, high expression of G0S2 reduced lipid droplet turnover and thereby attenuated E3 ligase RNF168-mediated 53BP1 ubiquitination through activated the mechanistic target of rapamycin (mTOR)-ribosomal S6 kinase (S6K) signaling and increased 53BP1 protein stability in response to IR, leading to enhanced DNA repair and glioma radioresistance.
CONCLUSIONS: Our findings uncover a new function for lipolytic inhibitor G0S2 as an important regulator for GSC radioresistance, suggesting G0S2 as a potential therapeutic target for treating gliomas.

Liu C, Zheng Y, Tang J, et al.
Stimulation of DC-CIK with PADI4 Protein Can Significantly Elevate the Therapeutic Efficiency in Esophageal Cancer.
J Immunol Res. 2019; 2019:6587570 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
Background: PADI4 has extensive expression in many tumors. This study applied PADI4 as a tumor marker to stimulate DC- (dendritic cell-) CIK (cytokine-induced killer), an immunotherapy approach.
Methods: A PADI4 expression plasmid was transfected into EC-originating ECA-109 cells. PADI4 gene was also inserted into a prokaryotic expression vector to produce recombinant protein. Lysate from PADI4-overexpressing cells or the purified recombinant PADI4 protein was used to load DCs, and the cells were then coincubated with CIK cells. DC and CIK cell phenotypes were determined using flow cytometry. The proliferation and viability of CIK cells were analyzed using trypan blue staining. The cytotoxic effect of DC-CIK cells on cultured ECA-109 cells was determined using CCK8 assays. Tumor-bearing mice were prepared by injection of ECA-109 cells. DC-CIK cells stimulated with lysate from PADI4-overexpressing cells or the PADI4 recombinant protein were injected into the tumor-bearing mice. The tumor growth was measured with magnetic resonance imaging (MRI).
Results: Following incubation with lysate from PADI4-overexpressing cells, the ratio of CD40
Conclusion: This study demonstrates that stimulation of DC-CIK cells with PADI4 significantly suppressed tumor growth in tumor-bearing mice by promoting DC maturation, CIK cell proliferation, and cytotoxicity. PADI4 may be a potential tumor marker that could be used to improve the therapeutic efficiency of DC-CIK cells.

Rudin CM, Poirier JT, Byers LA, et al.
Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data.
Nat Rev Cancer. 2019; 19(5):289-297 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
Small cell lung cancer (SCLC) is an exceptionally lethal malignancy for which more effective therapies are urgently needed. Several lines of evidence, from SCLC primary human tumours, patient-derived xenografts, cancer cell lines and genetically engineered mouse models, appear to be converging on a new model of SCLC subtypes defined by differential expression of four key transcription regulators: achaete-scute homologue 1 (ASCL1; also known as ASH1), neurogenic differentiation factor 1 (NeuroD1), yes-associated protein 1 (YAP1) and POU class 2 homeobox 3 (POU2F3). In this Perspectives article, we review and synthesize these recent lines of evidence and propose a working nomenclature for SCLC subtypes defined by relative expression of these four factors. Defining the unique therapeutic vulnerabilities of these subtypes of SCLC should help to focus and accelerate therapeutic research, leading to rationally targeted approaches that may ultimately improve clinical outcomes for patients with this disease.

Minlikeeva AN, Cannioto R, Jensen A, et al.
Joint exposure to smoking, excessive weight, and physical inactivity and survival of ovarian cancer patients, evidence from the Ovarian Cancer Association Consortium.
Cancer Causes Control. 2019; 30(5):537-547 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
PURPOSE: Previous epidemiologic studies have shown that smoking, obesity, and physical inactivity are associated with poor survival following a diagnosis of ovarian cancer. Yet, the combined relationship of these unfavorable lifestyle factors on ovarian cancer survival has not been sufficiently investigated.
METHODS: Using data pooled from 13 studies, we examined the associations between combined exposures to smoking, overweight/obesity weight, and physical inactivity and overall survival (OS) as well as progression-free survival (PFS) among women diagnosed with invasive epithelial ovarian carcinoma (n = 7,022). Using age- and stage-adjusted Cox proportional hazards regression models, we estimated hazard ratios (HRs) and 95% confidence intervals (CIs) associated with joint exposure to these factors.
RESULTS: Combined exposure to current smoking, overweight/obesity, and physical inactivity prior to diagnosis was associated with a significantly increased risk of mortality compared to women who never smoked, had normal body mass index (BMI), and were physically active (HR = 1.37; 95% CI 1.10-1.70). The association for a joint exposure to these factors exceeded that of each exposure individually. In fact, exposure to both current smoking and overweight/obesity, and current smoking and physical inactivity was also associated with increased risk of death (HR = 1.28; 95% CI 1.08-1.52, and HR = 1.26; 95% CI 1.04-1.54, respectively). The associations were of a similar magnitude when former smoking was assessed in combination with the other exposures and when excessive weight was limited to obesity only. No significant associations were observed between joint exposure to any of these factors and PFS.
CONCLUSIONS: Joint exposure to smoking, excessive weight, and physical inactivity may negatively impact survival of ovarian cancer patients. These results suggest the importance of examining the combined effect of lifestyle factors on ovarian cancer patients' survival.

Lawrenson K, Song F, Hazelett DJ, et al.
Genome-wide association studies identify susceptibility loci for epithelial ovarian cancer in east Asian women.
Gynecol Oncol. 2019; 153(2):343-355 [PubMed] Related Publications
OBJECTIVE: Genome-wide association studies (GWASs) for epithelial ovarian cancer (EOC) have focused largely on populations of European ancestry. We aimed to identify common germline variants associated with EOC risk in Asian women.
METHODS: Genotyping was performed as part of the OncoArray project. Samples with >60% Asian ancestry were included in the analysis. Genotyping was performed on 533,631 SNPs in 3238 Asian subjects diagnosed with invasive or borderline EOC and 4083 unaffected controls. After imputation, genotypes were available for 11,595,112 SNPs to identify associations.
RESULTS: At chromosome 6p25.2, SNP rs7748275 was associated with risk of serous EOC (odds ratio [OR] = 1.34, P = 8.7 × 10
CONCLUSION: While some risk loci were shared between East Asian and European populations, others were population-specific, indicating that the landscape of EOC risk in Asian women has both shared and unique features compared to women of European ancestry.

Wong KY, Fan C, Tanioka M, et al.
I-Boost: an integrative boosting approach for predicting survival time with multiple genomics platforms.
Genome Biol. 2019; 20(1):52 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
We propose a statistical boosting method, termed I-Boost, to integrate multiple types of high-dimensional genomics data with clinical data for predicting survival time. I-Boost provides substantially higher prediction accuracy than existing methods. By applying I-Boost to The Cancer Genome Atlas, we show that the integration of multiple genomics platforms with clinical variables improves the prediction of survival time over the use of clinical variables alone; gene expression values are typically more prognostic of survival time than other genomics data types; and gene modules/signatures are at least as prognostic as the collection of individual gene expression data.

Alzubi MA, Turner TH, Olex AL, et al.
Separation of breast cancer and organ microenvironment transcriptomes in metastases.
Breast Cancer Res. 2019; 21(1):36 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND: The seed and soil hypothesis was proposed over a century ago to describe why cancer cells (seeds) grow in certain organs (soil). Since then, the genetic properties that define the cancer cells have been heavily investigated; however, genomic mediators within the organ microenvironment that mediate successful metastatic growth are less understood. These studies sought to identify cancer- and organ-specific genomic programs that mediate metastasis.
METHODS: In these studies, a set of 14 human breast cancer patient-derived xenograft (PDX) metastasis models was developed and then tested for metastatic tropism with two approaches: spontaneous metastases from mammary tumors and intravenous injection of PDX cells. The transcriptomes of the cancer cells when growing as tumors or metastases were separated from the transcriptomes of the microenvironment via species-specific separation of the genomes. Drug treatment of PDX spheroids was performed to determine if genes activated in metastases may identify targetable mediators of viability.
RESULTS: The experimental approaches that generated metastases in PDX models were identified. RNA sequencing of 134 tumors, metastases, and normal non-metastatic organs identified cancer- and organ-specific genomic properties that mediated metastasis. A common genomic response of the liver microenvironment was found to occur in reaction to the invading PDX cells. Genes within the cancer cells were found to be either transiently regulated by the microenvironment or permanently altered due to clonal selection of metastatic sublines. Gene Set Enrichment Analyses identified more than 400 gene signatures that were commonly activated in metastases across basal-like PDXs. A Src signaling signature was found to be extensively upregulated in metastases, and Src inhibitors were found to be cytotoxic to PDX spheroids.
CONCLUSIONS: These studies identified that during the growth of breast cancer metastases, there were genomic changes that occurred within both the cancer cells and the organ microenvironment. We hypothesize that pathways upregulated in metastases are mediators of viability and that simultaneously targeting changes within different cancer cell pathways and/or different tissue compartments may be needed for inhibition of disease progression.

Lundberg A, Lindström LS, Li J, et al.
The long-term prognostic and predictive capacity of cyclin D1 gene amplification in 2305 breast tumours.
Breast Cancer Res. 2019; 21(1):34 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND: Use of cyclin D1 (CCND1) gene amplification as a breast cancer biomarker has been hampered by conflicting assessments of the relationship between cyclin D1 protein levels and patient survival. Here, we aimed to clarify its prognostic and treatment predictive potential through comprehensive long-term survival analyses.
METHODS: CCND1 amplification was assessed using SNP arrays from two cohorts of 1965 and 340 patients with matching gene expression array and clinical follow-up data of over 15 years. Kaplan-Meier and multivariable Cox regression analyses were used to determine survival differences between CCND1 amplified vs. non-amplified tumours in clinically relevant patient sets, within PAM50 subtypes and within treatment-specific subgroups. Boxplots and differential gene expression analyses were performed to assess differences between amplified vs. non-amplified tumours within PAM50 subtypes.
RESULTS: When combining both cohorts, worse survival was found for patients with CCND1-amplified tumours in luminal A (HR = 1.68; 95% CI, 1.15-2.46), luminal B (1.37; 1.01-1.86) and ER+/LN-/HER2- (1.66; 1.14-2.41) subgroups. In gene expression analysis, CCND1-amplified luminal A tumours showed increased proliferation (P < 0.001) and decreased progesterone (P = 0.002) levels along with a large overlap in differentially expressed genes when comparing luminal A and B-amplified vs. non-amplified tumours.
CONCLUSIONS: Our results indicate that CCND1 amplification is associated with worse 15-year survival in ER+/LN-/HER2-, luminal A and luminal B patients. Moreover, luminal A CCND1-amplified tumours display gene expression changes consistent with a more aggressive phenotype. These novel findings highlight the potential of CCND1 to identify patients that could benefit from long-term treatment strategies.

Huang AC, Orlowski RJ, Xu X, et al.
A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma.
Nat Med. 2019; 25(3):454-461 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
Immunologic responses to anti-PD-1 therapy in melanoma patients occur rapidly with pharmacodynamic T cell responses detectable in blood by 3 weeks. It is unclear, however, whether these early blood-based observations translate to the tumor microenvironment. We conducted a study of neoadjuvant/adjuvant anti-PD-1 therapy in stage III/IV melanoma. We hypothesized that immune reinvigoration in the tumor would be detectable at 3 weeks and that this response would correlate with disease-free survival. We identified a rapid and potent anti-tumor response, with 8 of 27 patients experiencing a complete or major pathological response after a single dose of anti-PD-1, all of whom remain disease free. These rapid pathologic and clinical responses were associated with accumulation of exhausted CD8 T cells in the tumor at 3 weeks, with reinvigoration in the blood observed as early as 1 week. Transcriptional analysis demonstrated a pretreatment immune signature (neoadjuvant response signature) that was associated with clinical benefit. In contrast, patients with disease recurrence displayed mechanisms of resistance including immune suppression, mutational escape, and/or tumor evolution. Neoadjuvant anti-PD-1 treatment is effective in high-risk resectable stage III/IV melanoma. Pathological response and immunological analyses after a single neoadjuvant dose can be used to predict clinical outcome and to dissect underlying mechanisms in checkpoint blockade.

Blum AE, Venkitachalam S, Ravillah D, et al.
Systems Biology Analyses Show Hyperactivation of Transforming Growth Factor-β and JNK Signaling Pathways in Esophageal Cancer.
Gastroenterology. 2019; 156(6):1761-1774 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND & AIMS: Esophageal adenocarcinoma (EAC) is resistant to standard chemoradiation treatments, and few targeted therapies are available. We used large-scale tissue profiling and pharmacogenetic analyses to identify deregulated signaling pathways in EAC tissues that might be targeted to slow tumor growth or progression.
METHODS: We collected 397 biopsy specimens from patients with EAC and nonmalignant Barrett's esophagus (BE), with or without dysplasia. We performed RNA-sequencing analyses and used systems biology approaches to identify pathways that are differentially activated in EAC vs nonmalignant dysplastic tissues; pathway activities were confirmed with immunohistochemistry and quantitative real-time polymerase chain reaction analyses of signaling components in patient tissue samples. Human EAC (FLO-1 and EsoAd1), dysplastic BE (CP-B, CP-C, CP-D), and nondysplastic BE (CP-A) cells were incubated with pharmacologic inhibitors or transfected with small interfering RNAs. We measured effects on proliferation, colony formation, migration, and/or growth of xenograft tumors in nude mice.
RESULTS: Comparisons of EAC vs nondysplastic BE tissues showed hyperactivation of transforming growth factor-β (TGFB) and/or Jun N-terminal kinase (JNK) signaling pathways in more than 80% of EAC samples. Immunohistochemical analyses showed increased nuclear localization of phosphorylated JUN and SMAD proteins in EAC tumor tissues compared with nonmalignant tissues. Genes regulated by the TGFB and JNK pathway were overexpressed specifically in EAC and dysplastic BE. Pharmacologic inhibition or knockdown of TGFB or JNK signaling components in EAC cells (FLO-1 or EsoAd1) significantly reduced cell proliferation, colony formation, cell migration, and/or growth of xenograft tumors in mice in a SMAD4-independent manner. Inhibition of the TGFB pathway in BE cell lines reduced the proliferation of dysplastic, but not nondysplastic, cells.
CONCLUSIONS: In a transcriptome analysis of EAC and nondysplastic BE tissues, we found the TGFB and JNK signaling pathways to be hyperactivated in EACs and the genes regulated by these pathways to be overexpressed in EAC and dysplastic BE. Inhibiting these pathways in EAC cells reduces their proliferation, migration, and formation of xenograft tumors. Strategies to block the TGFB and JNK signaling pathways might be developed for treatment of EAC.

Ren J, Du Y, Li S, et al.
Robust network-based regularization and variable selection for high-dimensional genomic data in cancer prognosis.
Genet Epidemiol. 2019; 43(3):276-291 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
In cancer genomic studies, an important objective is to identify prognostic markers associated with patients' survival. Network-based regularization has achieved success in variable selections for high-dimensional cancer genomic data, because of its ability to incorporate the correlations among genomic features. However, as survival time data usually follow skewed distributions, and are contaminated by outliers, network-constrained regularization that does not take the robustness into account leads to false identifications of network structure and biased estimation of patients' survival. In this study, we develop a novel robust network-based variable selection method under the accelerated failure time model. Extensive simulation studies show the advantage of the proposed method over the alternative methods. Two case studies of lung cancer datasets with high-dimensional gene expression measurements demonstrate that the proposed approach has identified markers with important implications.

Cloughesy TF, Mochizuki AY, Orpilla JR, et al.
Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma.
Nat Med. 2019; 25(3):477-486 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. The Ivy Foundation Early Phase Clinical Trials Consortium conducted a randomized, multi-institution clinical trial to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone. Neoadjuvant PD-1 blockade was associated with upregulation of T cell- and interferon-γ-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhances both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor.

Skaro M, Nanda N, Gauthier C, et al.
Prevalence of Germline Mutations Associated With Cancer Risk in Patients With Intraductal Papillary Mucinous Neoplasms.
Gastroenterology. 2019; 156(6):1905-1913 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND & AIMS: Many patients with pancreatic adenocarcinoma carry germline mutations associated with increased risk of cancer. It is not clear whether patients with intraductal papillary mucinous neoplasms (IPMNs), which are precursors to some pancreatic cancers, also carry these mutations. We assessed the prevalence of germline mutations associated with cancer risk in patients with histologically confirmed IPMN.
METHODS: We obtained nontumor tissue samples from 315 patients with surgically resected IPMNs from 1997 through 2017, and we sequenced 94 genes with variants associated with cancer risk. Mutations associated with increased risk of cancer were identified and compared with individuals from the Exome Aggregation Consortium.
RESULTS: We identified 23 patients with a germline mutation associated with cancer risk (7.3%; 95% confidence interval, 4.9-10.8). Nine patients had a germline mutation associated with pancreatic cancer susceptibility (2.9%; 95% confidence interval, 1.4-5.4). More patients with IPMNs carried germline mutations in ATM (P < .0001), PTCH1 (P < .0001), and SUFU (P < .0001) compared with controls. Patients with IPMNs and germline mutations associated with pancreatic cancer were more like to have concurrent invasive pancreatic carcinoma compared with patients with IPMNs without these mutations (P < .0320).
CONCLUSIONS: In sequence analyses of 315 patients with surgically resected IPMNs, we found that almost 3% to carry mutations associated with pancreatic cancer risk. More patients with IPMNs and germline mutations associated with pancreatic cancer had concurrent invasive pancreatic carcinoma compared with patients with IPMNs without these mutations. Genetic analysis of patients with IPMNs might identify those at greatest risk for cancer.

Wu M, Miska J, Xiao T, et al.
Race influences survival in glioblastoma patients with KPS ≥ 80 and associates with genetic markers of retinoic acid metabolism.
J Neurooncol. 2019; 142(2):375-384 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
PURPOSE: To study whether the clinical outcome and molecular biology of gliomas in African-American patients fundamentally differ from those occurring in Whites.
METHODS: The clinical information and molecular profiles (including gene expression array, non-silent somatic mutation, DNA methylation and protein expression) were downloaded from The Cancer genome atlas (TCGA). Electronic medical records were abstracted from Northwestern Medicine Enterprise Data Warehouse (NMEDW) for analysis as well. Grade II-IV Glioma patients were all included.
RESULTS: 931 Whites and 64 African-American glioma patients from TCGA were analyzed. African-American with Karnofsky performance score (KPS) ≥ 80 have significantly lower risk of death than similar white Grade IV Glioblastoma (GBM) patients [HR (95% CI) = 0.47 (0.23, 0.98), P = 0.0444, C-index = 0.68]. Therefore, we further compared gene expression profiles between African-American GBM patients and Whites with KPS ≥ 80. Extrapolation of genes significantly associated with increased African-American patient survival revealed a set of 13 genes with a possible role in this association, including elevated expression of genes previously identified as increased in African-American breast and colon cancer patients (e.g. CRYBB2). Furthermore, gene set enrichment analysis revealed retinoic acid (RA) metabolism as a pathway significantly upregulated in African-American GBM patients who survive longer than Whites (Z-score = - 2.10, Adjusted P-value = 0.0449).
CONCLUSIONS: African Americans have prolonged survival with glioma which is influenced only by initial KPS score. Genes previously associated with both racial disparities in cancer and pathways associated with RA metabolism may play an important role in glioma etiology. In the future exploration of these genes and pathways may inform novel therapies for this incurable disease.

Smid M, Wilting SM, Uhr K, et al.
The circular RNome of primary breast cancer.
Genome Res. 2019; 29(3):356-366 [PubMed] Article available free on PMC after 01/09/2019 Related Publications
Circular RNAs (circRNAs) are a class of RNAs that is under increasing scrutiny, although their functional roles are debated. We analyzed RNA-seq data of 348 primary breast cancers and developed a method to identify circRNAs that does not rely on unmapped reads or known splice junctions. We identified 95,843 circRNAs, of which 20,441 were found recurrently. Of the circRNAs that match exon boundaries of the same gene, 668 showed a poor or even negative (

Hurley RM, Wahner Hendrickson AE, Visscher DW, et al.
53BP1 as a potential predictor of response in PARP inhibitor-treated homologous recombination-deficient ovarian cancer.
Gynecol Oncol. 2019; 153(1):127-134 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
OBJECTIVE: Poly(ADP-ribose) polymerase (PARP) inhibitors have shown substantial activity in homologous recombination- (HR-) deficient ovarian cancer and are undergoing testing in other HR-deficient tumors. For reasons that are incompletely understood, not all patients with HR-deficient cancers respond to these agents. Preclinical studies have demonstrated that changes in alternative DNA repair pathways affect PARP inhibitor (PARPi) sensitivity in ovarian cancer models. This has not previously been assessed in the clinical setting.
METHODS: Clonogenic and plasmid-based HR repair assays were performed to compare BRCA1-mutant COV362 ovarian cancer cells with or without 53BP1 gene deletion. Archival biopsies from ovarian cancer patients in the phase I, open-label clinical trial of PARPi ABT-767 were stained for PARP1, RAD51, 53BP1 and multiple components of the nonhomologous end-joining (NHEJ) DNA repair pathway. Modified histochemistry- (H-) scores were determined for each repair protein in each sample. HRD score was determined from tumor DNA.
RESULTS: 53BP1 deletion increased HR in BRCA1-mutant COV362 cells and decreased PARPi sensitivity in vitro. In 36 women with relapsed ovarian cancer, responses to the PARPi ABT-767 were observed exclusively in cancers with HR deficiency. In this subset, 7 of 18 patients (39%) had objective responses. The actual HRD score did not further correlate with change from baseline tumor volume (r = 0.050; p = 0.87). However, in the HR-deficient subset, decreased 53BP1 H-score was associated with decreased antitumor efficacy of ABT-767 (r = -0.69, p = 0.004).
CONCLUSION: Differences in complementary repair pathways, particularly 53BP1, correlate with PARPi response of HR-deficient ovarian cancers.

Yan J, Zhao Q, Gabrusiewicz K, et al.
FGL2 promotes tumor progression in the CNS by suppressing CD103
Nat Commun. 2019; 10(1):448 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Few studies implicate immunoregulatory gene expression in tumor cells in arbitrating brain tumor progression. Here we show that fibrinogen-like protein 2 (FGL2) is highly expressed in glioma stem cells and primary glioblastoma (GBM) cells. FGL2 knockout in tumor cells did not affect tumor-cell proliferation in vitro or tumor progression in immunodeficient mice but completely impaired GBM progression in immune-competent mice. This impairment was reversed in mice with a defect in dendritic cells (DCs) or CD103

Jiang X, Finucane HK, Schumacher FR, et al.
Shared heritability and functional enrichment across six solid cancers.
Nat Commun. 2019; 10(1):431 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r

Miller AM, Shah RH, Pentsova EI, et al.
Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid.
Nature. 2019; 565(7741):654-658 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Diffuse gliomas are the most common malignant brain tumours in adults and include glioblastomas and World Health Organization (WHO) grade II and grade III tumours (sometimes referred to as lower-grade gliomas). Genetic tumour profiling is used to classify disease and guide therapy

Zhao Y, Cao J, Melamed A, et al.
Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma.
Proc Natl Acad Sci U S A. 2019; 116(6):2210-2219 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
In ovarian cancer patients, tumor fibrosis and angiotensin-driven fibrogenic signaling have been shown to inversely correlate with survival. We sought to enhance drug delivery and therapeutic efficacy by remodeling the dense extracellular matrix in two orthotopic human ovarian carcinoma xenograft models. We hypothesized that targeting the angiotensin signaling axis with losartan, an approved angiotensin system inhibitor, could reduce extracellular matrix content and the associated "solid stress," leading to better anticancer therapeutic effect. We report here four translatable findings: (

Chen XJ, Zhang WN, Chen B, et al.
Homoharringtonine deregulates
Proc Natl Acad Sci U S A. 2019; 116(6):2220-2225 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Homoharringtonine (HHT), a known protein synthesis inhibitor, has an anti-myeloid leukemia effect and potentiates the therapeutic efficacy of anthracycline/cytarabine induction regimens for acute myelogenous leukemia (AML) with favorable and intermediate prognoses, especially in the t(8;21) subtype. Here we provide evidence showing that HHT inhibits the activity of leukemia-initiating cells (Lin

Guo H, Ci X, Ahmed M, et al.
ONECUT2 is a driver of neuroendocrine prostate cancer.
Nat Commun. 2019; 10(1):278 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Neuroendocrine prostate cancer (NEPC), a lethal form of the disease, is characterized by loss of androgen receptor (AR) signaling during neuroendocrine transdifferentiation, which results in resistance to AR-targeted therapy. Clinically, genomically and epigenetically, NEPC resembles other types of poorly differentiated neuroendocrine tumors (NETs). Through pan-NET analyses, we identified ONECUT2 as a candidate master transcriptional regulator of poorly differentiated NETs. ONECUT2 ectopic expression in prostate adenocarcinoma synergizes with hypoxia to suppress androgen signaling and induce neuroendocrine plasticity. ONEUCT2 drives tumor aggressiveness in NEPC, partially through regulating hypoxia signaling and tumor hypoxia. Specifically, ONECUT2 activates SMAD3, which regulates hypoxia signaling through modulating HIF1α chromatin-binding, leading NEPC to exhibit higher degrees of hypoxia compared to prostate adenocarcinomas. Treatment with hypoxia-activated prodrug TH-302 potently reduces NEPC tumor growth. Collectively, these results highlight the synergy between ONECUT2 and hypoxia in driving NEPC, and emphasize the potential of hypoxia-directed therapy for NEPC patients.

Capello M, Vykoukal JV, Katayama H, et al.
Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity.
Nat Commun. 2019; 10(1):254 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Although B cell response is frequently found in cancer, there is little evidence that it alters tumor development or progression. The process through which tumor-associated antigens trigger humoral response is not well delineated. We investigate the repertoire of antigens associated with humoral immune response in pancreatic ductal adenocarcinoma (PDAC) using in-depth proteomic profiling of immunoglobulin-bound proteins from PDAC patient plasmas and identify tumor antigens that induce antibody response together with exosome hallmark proteins. Additional profiling of PDAC cell-derived exosomes reveals significant overlap in their protein content with immunoglobulin-bound proteins in PDAC plasmas, and significant autoantibody reactivity is observed between PDAC cell-derived exosomes and patient plasmas compared to healthy controls. Importantly, PDAC-derived exosomes induce a dose-dependent inhibition of PDAC serum-mediated complement-dependent cytotoxicity towards cancer cells. In summary, we provide evidence that exosomes display a large repertoire of tumor antigens that induce autoantibodies and exert a decoy function against complement-mediated cytotoxicity.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD40 (TNFRSF5), Cancer Genetics Web: http://www.cancer-genetics.org/TNFRSF5.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999