Gene Summary

Gene:SKP1; S-phase kinase associated protein 1
Aliases: OCP2, p19A, EMC19, SKP1A, OCP-II, TCEB1L
Summary:This gene encodes a component of SCF complexes, which are composed of this protein, cullin 1, a ring-box protein, and one member of the F-box family of proteins. This protein binds directly to the F-box motif found in F-box proteins. SCF complexes are involved in the regulated ubiquitination of specific protein substrates, which targets them for degradation by the proteosome. Specific F-box proteins recognize different target protein(s), and many specific SCF substrates have been identified including regulators of cell cycle progression and development. Studies have also characterized the protein as an RNA polymerase II elongation factor. Alternative splicing of this gene results in two transcript variants. A related pseudogene has been identified on chromosome 7. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:S-phase kinase-associated protein 1
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (19)
Pathways:What pathways are this gene/protein implicaed in?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SKP1 (cancer-related)

Liu F, Zou Y, Wang F, et al.
Genet Test Mol Biomarkers. 2019; 23(6):409-417 [PubMed] Related Publications

Khan M, Muzumdar D, Shiras A
Attenuation of Tumor Suppressive Function of FBXO16 Ubiquitin Ligase Activates Wnt Signaling In Glioblastoma.
Neoplasia. 2019; 21(1):106-116 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) is one of the most aggressive and lethal types of brain tumor. Despite the advancements in conventional or targeted therapies, median survival of GBM patients is less than 12 months. Amongst various signaling pathways aberrantly activated in glioma, active Wnt/β-catenin signaling pathway is one of the crucial oncogenic players. β-catenin, an important mediator of Wnt signaling pathway, gets phosphorylated by GSK3β complex. Phosphorylated β-catenin is specifically recognized by β-Trcp1, a F-box/WD40-repeat protein and with the help of Skp1 it plays a central role in recruiting phosphorylated β-catenin for degradation. In GBM, expression of β-TrCP1 and its affinity for β catenin is reported to be very low. Hence, we investigated whether any other members of the E3 ubiquitin ligase family could be involved in degradation of nuclear β-catenin. We here report that FBXO16, a component of SCF E3 ubiquitin ligase complex, is an interacting protein partner for β-catenin and mediates its degradation. Next, we show that FBXO16 functions as a tumor suppressor in GBM. Under normal growth conditions, FBXO16 proteasomally degrades β-catenin in a GSK-3β independent manner. Specifically, the C-terminal region of FBXO16 targets the nuclear β-catenin for degradation and inhibits TCF4/LEF1 dependent Wnt signaling pathway. The nuclear fraction of β-catenin undergoes K-48 linked poly-ubiquitination in presence of FBXO16. In summary, we show that due to low expression of FBXO16, the β-catenin is not targeted in glioma cells leading to its nuclear accumulation resulting in active Wnt signaling. Activated Wnt signaling potentiates the glioma cells toward a highly proliferative and malignant state.

Wang X, Zhang T, Zhang S, Shan J
Prognostic values of F-box members in breast cancer: an online database analysis and literature review.
Biosci Rep. 2019; 39(1) [PubMed] Free Access to Full Article Related Publications

Urick ME, Bell DW
In vitro effects of FBXW7 mutation in serous endometrial cancer: Increased levels of potentially druggable proteins and sensitivity to SI-2 and dinaciclib.
Mol Carcinog. 2018; 57(11):1445-1457 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Serous endometrial cancers (ECs) are clinically aggressive tumors that frequently harbor somatic mutations in FBXW7 (F-box and WD repeat domain-containing 7). The FBXW7 tumor suppressor is part of a SCF (complex of SKP1, Cullin 1, F-box protein) ubiquitin ligase complex which controls the degradation of numerous substrates that, if not properly regulated, can contribute to the initiation or progression of tumorigenesis. Despite reports that up to 30% of serous ECs include somatic mutations in FBXW7, the molecular effects of mutated FBXW7 in ECs have not been determined. Here, we used transient transfection and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) editing in serous EC cell lines to interrogate the molecular effects of six recurrent FBXW7 mutations. We show that FBXW7 mutations lead to increased Cyclin E1, steroid receptor coactivator 3 (SRC-3), c-MYC, Rictor, glycogen synthase kinase 3 (GSK3), P70S6 kinase, and protein kinase B (AKT) phosphorylated protein levels in serous EC cells. Furthermore, we demonstrate that CRISPR-edited FBXW7-mutant ARK1 serous EC cells exhibit increased sensitivity to SI-2 (a SRC inhibitor) and dinaciclib (a cyclin dependent kinase (CDK) inhibitor) compared to parental ARK1 cells. Collectively, our findings reveal biochemical effects of FBXW7 mutations in the context of EC and provide in vitro evidence of sensitivity to targeted inhibitors.

Li H, Wang F, Fei Y, et al.
Aberrantly expressed genes and miRNAs in human hypopharyngeal squamous cell carcinoma based on RNA‑sequencing analysis.
Oncol Rep. 2018; 40(2):647-658 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
The aim of the present study was to investigate the key genes, miRNAs and pathways in hypopharyngeal squamous cell carcinoma (HPSCC) and to elucidate the mechanisms underlying HPSCC development. The gene and microRNA (miRNA) expression profiles of HPSCC tissues and adjacent normal tissues from three subjects were obtained. Differentially expressed genes (DEGs) and differentially expressed miRNAs were identified in HPSCC. Functional annotation and protein‑protein interaction (PPI) network were conducted to elucidate the biological functions of DEGs. A total of 160 DEGs (16 upregulated and 144 downregulated genes) and 79 differentially expressed miRNAs (48 upregulated and 31 downregulated miRNAs) were identified in HPSCC. The deregulated genes were significantly involved in spliceosome, cell cycle and RNA degradation. In the PPI network, S‑phase kinase associated protein 1 (SKP1), non‑POU domain containing octamer binding (NONO) and zinc activated ion channel (ZACN) were identified as hub proteins. On the whole, the present study may help to gain a comprehensive understanding of tumorigenesis in HPSCC and provide valuable information for early diagnosis and drug design of HPSCC in future research.

Wang K, Qu X, Liu S, et al.
Identification of aberrantly expressed F-box proteins in squamous-cell lung carcinoma.
J Cancer Res Clin Oncol. 2018; 144(8):1509-1521 [PubMed] Related Publications
PURPOSE: F-box proteins, as components of the Skp1-Cullin 1-F-box protein (SCF) E3 ubiquitin ligase, can specifically bind to substrates and regulate multiple tumor behaviors. However, the role of F-box proteins in squamous-cell lung carcinoma (SqCLC) has not been established.
METHODS: We identified the differentially expressed F-box protein-encoding genes in SqCLC by analyzing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Prognosis data were evaluated using the Kaplan-Meier (KM) plotter website. The FBXO5 and FBXO45 mRNA levels were analyzed by real time RT-PCR. The impact of the inhibition of these genes with si-RNA on apoptosis and migration was also investigated.
RESULTS: The FBXO45 and FBXO5 genes were significantly up-regulated in SqCLC compared with normal lung (p values = 0.002 and 0.025, respectively). FBXO45 was significantly elevated in each tumorigenic step, including dysplasia, in situ and SqCLC. The RT-PCR analysis results showed that FBXO5 and FBXO45 were elevated in cancer tissues (p values = 0.024 and 0.004, respectively). Overexpression of FBXO5 and FBXO45 was associated with shorter overall survival (OS) in the SqCLC patients from the K-M plotter database [FBXO5 HR: 1.53 (1.03-2.28), p = 0.036]; [FBXO45 HR: 1.47 (1.03-2.08), p = 0.030]. The GO and KEGG pathway analysis showed that FBXO5 and FBXO45 were associated with cell cycle and adhesion, respectively. Knockdown of FBXO5 leads to increased apoptosis, while knockdown of FBXO45 facilitates the process of epithelial-mesenchymal transition (EMT).
CONCLUSIONS: Our results provide evidence that FBXO45 and FBXO5 may play a key role in tumorigenesis and prognosis of SqCLC.

Alfano L, Caporaso A, Altieri A, et al.
NONO ubiquitination is mediated by FBW7 and GSK3 β via a degron lost upon chromosomal rearrangement in cancer.
J Cell Physiol. 2018; 233(5):4338-4344 [PubMed] Related Publications
NONO is an RNA-binding protein involved in transcription, mRNA splicing, DNA repair, and checkpoint activation in response to UV radiation. NONO expression has been found altered in several tumor types, including prostate, colon, breast, melanoma, and in papillary renal carcinoma, in which an X chromosome inversion generates a NONO-TFE3 fusion protein. Upon such rearrangement, NONO loses its C-terminal domain. Through bioinformatics analysis, we identified a putative degron motif, known to be recognized by the Skp1-Cul1-F-box-protein (SCF) complex. Here, we evaluated how this domain could affect NONO protein biology. We showed that NONO interacts with the nuclear FBW7α isoform and its ubiquitination is regulated following modulation of the GSK3β kinase. Mutation of T428A/T432A within the degron impaired polyubiquitination upon FBW7α and GSK3β overexpression. Overall, our data suggest that NONO is likely subjected to proteasome-mediated degradation and add NONO to the list of proteins targeted by FBW7, which is itself often deregulated in cancer.

Qie S, Majumder M, Mackiewicz K, et al.
Fbxo4-mediated degradation of Fxr1 suppresses tumorigenesis in head and neck squamous cell carcinoma.
Nat Commun. 2017; 8(1):1534 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
The Fbxo4 tumour suppressor is a component of an Skp1-Cul1-F-box E3 ligase for which two substrates are known. Here we show purification of SCF

Wang JY, Liu GZ, Wilmott JS, et al.
Skp2-Mediated Stabilization of MTH1 Promotes Survival of Melanoma Cells upon Oxidative Stress.
Cancer Res. 2017; 77(22):6226-6239 [PubMed] Related Publications
MTH1 helps prevent misincorporation of ROS-damaged dNTPs into genomic DNA; however, there is little understanding of how MTH1 itself is regulated. Here, we report that MTH1 is regulated by polyubiquitination mediated by the E3 ligase Skp2. In melanoma cells, MTH1 was upregulated commonly mainly due to its improved stability caused by K63-linked polyubiquitination. Although Skp2 along with other components of the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex was physically associated with MTH1, blocking the SCF function ablated MTH1 ubiquitination and expression. Conversely, overexpressing Skp2-elevated levels of MTH1 associated with an increase in its K63-linked ubiquitination. In melanoma cell lines and patient specimens, we observed a positive correlation of Skp2 and MTH1 expression. Mechanistic investigations showed that Skp2 limited DNA damage and apoptosis triggered by oxidative stress and that MAPK upregulated Skp2 and MTH1 to render cells more resistant to such stress. Collectively, our findings identify Skp2-mediated K63-linked polyubiquitination as a critical regulatory mechanism responsible for MTH1 upregulation in melanoma, with potential implications to target the MAPK/Skp2/MTH1 pathway to improve its treatment.

Galper J, Rayner SL, Hogan AL, et al.
Cyclin F: A component of an E3 ubiquitin ligase complex with roles in neurodegeneration and cancer.
Int J Biochem Cell Biol. 2017; 89:216-220 [PubMed] Related Publications
Cyclin F, encoded by CCNF, is the substrate recognition component of the Skp1-Cul1-F-box E3 ubiquitin ligase complex, SCF

Kuchay S, Giorgi C, Simoneschi D, et al.
PTEN counteracts FBXL2 to promote IP3R3- and Ca
Nature. 2017; 546(7659):554-558 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
In response to environmental cues that promote IP3 (inositol 1,4,5-trisphosphate) generation, IP3 receptors (IP3Rs) located on the endoplasmic reticulum allow the 'quasisynaptical' feeding of calcium to the mitochondria to promote oxidative phosphorylation. However, persistent Ca

Zhai H, Shi Y, Chen X, et al.
CacyBP/SIP promotes the proliferation of colon cancer cells.
PLoS One. 2017; 12(2):e0169959 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.

Malek E, Abdel-Malek MA, Jagannathan S, et al.
Pharmacogenomics and chemical library screens reveal a novel SCF
Leukemia. 2017; 31(3):645-653 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
While clinical benefit of the proteasome inhibitor (PI) bortezomib (BTZ) for multiple myeloma (MM) patients remains unchallenged, dose-limiting toxicities and drug resistance limit the long-term utility. The E3 ubiquitin ligase Skp1-Cullin-1-Skp2 (SCF

Suryo Rahmanto A, Savov V, Brunner A, et al.
FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma.
EMBO J. 2016; 35(20):2192-2212 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
SOX9 is a master transcription factor that regulates development and stem cell programs. However, its potential oncogenic activity and regulatory mechanisms that control SOX9 protein stability are poorly understood. Here, we show that SOX9 is a substrate of FBW7, a tumor suppressor, and a SCF (SKP1/CUL1/F-box)-type ubiquitin ligase. FBW7 recognizes a conserved degron surrounding threonine 236 (T236) in SOX9 that is phosphorylated by GSK3 kinase and consequently degraded by SCF

Tumor Profiling: Adding Proteomics to Genomics.
Cancer Discov. 2016; 6(8):OF5 [PubMed] Related Publications
Researchers have used mass spectrometry to conduct proteomic analyses of 77 genomically characterized breast tumors. Through this approach, they've uncovered functional consequences of somatic mutations. For instance, EGFR overexpression in basal-like breast cancer is potentially driven by the loss of two genes, SKP1 and CETN3, from the chromosome 5q deletion characteristic of this disease subtype.

Hernández-Ramírez LC, Martucci F, Morgan RM, et al.
Rapid Proteasomal Degradation of Mutant Proteins Is the Primary Mechanism Leading to Tumorigenesis in Patients With Missense AIP Mutations.
J Clin Endocrinol Metab. 2016; 101(8):3144-54 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
CONTEXT: The pathogenic effect of mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene (AIPmuts) in pituitary adenomas is incompletely understood. We have identified the primary mechanism of loss of function for missense AIPmuts.
OBJECTIVE: This study sought to analyze the mechanism/speed of protein turnover of wild-type and missense AIP variants, correlating protein half-life with clinical parameters.
DESIGN AND SETTING: Half-life and protein-protein interaction experiments and cross-sectional analysis of AIPmut positive patients' data were performed in a clinical academic research institution.
PATIENTS: Data were obtained from our cohort of pituitary adenoma patients and literature-reported cases.
INTERVENTIONS: Protein turnover of endogenous AIP in two cell lines and fifteen AIP variants overexpressed in HEK293 cells was analyzed via cycloheximide chase and proteasome inhibition. Glutathione-S-transferase pull-down and quantitative mass spectrometry identified proteins involved in AIP degradation; results were confirmed by coimmunoprecipitation and gene knockdown. Relevant clinical data was collected.
MAIN OUTCOME MEASURES: Half-life of wild-type and mutant AIP proteins and its correlation with clinical parameters.
RESULTS: Endogenous AIP half-life was similar in HEK293 and lymphoblastoid cells (43.5 and 32.7 h). AIP variants were divided into stable proteins (median, 77.7 h; interquartile range [IQR], 60.7-92.9 h), and those with short (median, 27 h; IQR, 21.6-28.7 h) or very short (median, 7.7 h; IQR, 5.6-10.5 h) half-life; proteasomal inhibition rescued the rapid degradation of mutant proteins. The experimental half-life significantly correlated with age at diagnosis of acromegaly/gigantism (r = 0.411; P = .002). The FBXO3-containing SKP1-CUL1-F-box protein complex was identified as the E3 ubiquitin-ligase recognizing AIP.
CONCLUSIONS: AIP is a stable protein, driven to ubiquitination by the SKP1-CUL1-F-box protein complex. Enhanced proteasomal degradation is a novel pathogenic mechanism for AIPmuts, with direct implications for the phenotype.

Mertins P, Mani DR, Ruggles KV, et al.
Proteogenomics connects somatic mutations to signalling in breast cancer.
Nature. 2016; 534(7605):55-62 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.

Yang Y, Lu Y, Wang L, et al.
Skp2 is associated with paclitaxel resistance in prostate cancer cells.
Oncol Rep. 2016; 36(1):559-66 [PubMed] Related Publications
Prostate cancer is the most commonly diagnosed tumor in men in the United States. Patients with hormone-refractory prostate cancer are often treated with paclitaxel, but most of them eventually develop drug resistance. S-phase kinase associated protein 2 (Skp2) is a component of the SCF (Skp1-Cullin1-F-box) type of E3 ubiquitin ligase complexes. In the present study, we investigated the role of Skp2 in paclitaxel-resistant DU145-TxR or PC-3-TxR cells by Skp2 silencing or using Skp2 inhibitors. We first confirmed that Skp2 expression is up-regulated in DU145-TxR or PC-3-TxR cells compared with their parental cells DU145 or PC-3, respectively. Knockdown of Skp2 or Skp2 inhibitor treatment in DU145-TxR or PC-3-TxR cells restored paclitaxel sensitivity. E-cadherin was decreased while Vimentin was increased in PC-3-TxR or DU145-TxR cells. In addition, p27 expression was inversely correlated with Skp2 expression in DU145-TxR or PC-3-TxR cells. Moreover, p27 was found to increase in both Skp2 silencing PC-3-TxR and DU145-TxR cells. These results suggest that Skp2 is associated with prostate cancer cell resistance to paclitaxel. Skp2 may be a potential therapeutic target for drug-resistant prostate cancer.

Kim SH, Ho JN, Jin H, et al.
Upregulated expression of BCL2, MCM7, and CCNE1 indicate cisplatin-resistance in the set of two human bladder cancer cell lines: T24 cisplatin sensitive and T24R2 cisplatin resistant bladder cancer cell lines.
Investig Clin Urol. 2016; 57(1):63-72 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
PURPOSE: The mechanism of resistance to cisplatin during treatment of bladder cancer (BC) has been a subject of intense investigation in clinical research. This study aims to identify candidate genes associated with resistance to cisplatin, in order to understand the resistance mechanism of BC cells to the drug, by combining the use of microarray profiling, quantitative reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses.
MATERIALS AND METHODS: The cisplatin sensitive human BC cell line (T24) and the cisplatin resistant BC cell line, T24R2, were used for microarray analysis to determine the differential expression of genes that are significant in cisplatin resistance. Candidate upregulated genes belonging to three well-known cancer-related KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (p53 tumor suppressor, apoptosis, and cell cycle) were selected from the microarray data. These candidate genes, differentially expressed in T24 and T24R2, were then confirmed by quantitative RT-PCR and western blot. A fold change ≥2 with a p-value <0.05 was considered significant.
RESULTS: A total of 18 significantly upregulated genes were detected in the three selected cancer-related pathways in both microarray and RT-PCR analyses. These genes were PRKAR2A, PRKAR2B, CYCS, BCL2, BIRC3, DFFB, CASP6, CDK6, CCNE1, STEAP3, MCM7, ORC2, ORC5, ANAPC1, and ANAPC7, CDC7, CDC27, and SKP1. Western blot analyses also confirmed the upregulation of BCL2, MCM7, and CCNE1 at the protein level, indicating their crucial association with cisplatin resistance.
CONCLUSIONS: The BCL2, MCM7, and CCNE1 genes might play distinctive roles in cisplatin resistance in BC.

Zheng N, Wang Z, Wei W
Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins.
Int J Biochem Cell Biol. 2016; 73:99-110 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.

Wu WJ, Shi J, Hu G, et al.
Wnt/β-catenin signaling inhibits FBXW7 expression by upregulation of microRNA-770 in hepatocellular carcinoma.
Tumour Biol. 2016; 37(5):6045-51 [PubMed] Related Publications
FBXW7 (F-box and WD repeat domain-containing 7) is the F-box protein component of a Skp1-Cul1-F-box protein-type (SCF-type) ubiquitin ligase. Previous studies have shown that FBXW7 serves as a tumor suppressor and is frequently downregulated in many types of human neoplasms. However, the molecular mechanisms for its downregulation remain poorly understood. Hyperactivation of Wnt/β-catenin signaling pathway is viewed as crucial for tumorigenesis, including hepatocellular carcinoma (HCC). In the present study, we show that protein levels, but not message RNA, of FBXW7 were suppressed by Wnt3a treatment or transfection of a constitutively activated β-catenin in HCC cells. Besides, microRNA-770 was identified as an important downstream target of Wnt/β-catenin signaling, to inhibit FBXW7 expression through targeting its 3'-untranslated region. Thus, our results suggest a previously unknown Wnt/β catenin-miR-770-FBXW7 molecular network in the HCC development.

Kitagawa K, Kitagawa M
The SCF-type E3 Ubiquitin Ligases as Cancer Targets.
Curr Cancer Drug Targets. 2016; 16(2):119-29 [PubMed] Related Publications
The ubiquitin system controls protein stability and function. F-box proteins form SCF (SKP1-Cullin1-F-box protein)-type ubiquitin (E3) ligases to selectively target their substrates for degradation via the ubiquitin-proteasome pathway. Here, we review F-box proteins associated with cancer development. S-phase kinase-associated protein 2 (SKP2) (also known as FBXL1) is often overexpressed in human cancers, and functions as an oncogenic E3 ligase to degrade tumor suppressor gene products. Moreover, F-box/WD repeat-containing protein 7 (FBXW7) (also known as Fbw7) is often mutated in human cancers and functions as a tumor suppressive E3 ligase targeting oncogenic proteins for degradation. SKP2 is a potential drug target for cancer therapy and FBXW7 is useful in determining patient diagnosis, prognosis, and drug sensitivity. In this review, we also discuss other F-box proteins involved in cancer-associated cellular processes such as cell cycle control, epigenetic regulation, epithelial mesenchymal transition, apoptosis/survival, drug resistance, and DNA-damage responses.

Wu ZH, Pfeffer LM
MicroRNA regulation of F-box proteins and its role in cancer.
Semin Cancer Biol. 2016; 36:80-7 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment.

Heo J, Eki R, Abbas T
Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis.
Semin Cancer Biol. 2016; 36:33-51 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.

Randle SJ, Laman H
F-box protein interactions with the hallmark pathways in cancer.
Semin Cancer Biol. 2016; 36:3-17 [PubMed] Related Publications
F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention.

Uddin S, Bhat AA, Krishnankutty R, et al.
Involvement of F-BOX proteins in progression and development of human malignancies.
Semin Cancer Biol. 2016; 36:18-32 [PubMed] Related Publications
The Ubiquitin Proteasome System (UPS) is a core regulator with various protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) which work together in a coordinated fashion to ensure the appropriate and efficient proteolysis of target substrates. E3 ubiquitin ligases are essential components of the UPS machinery, working with E1 and E2 enzymes to bind substrates and assist the transport of ubiquitin molecules onto the target protein. As the UPS controls the degradation of several oncogenes and tumor suppressors, dysregulation of this pathway leads to several human malignancies. A major category of E3 Ub ligases, the SCF (Skp-Cullin-F-box) complex, is composed of four principal components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein (FBP). FBPs are the substrate recognition components of SCF complexes and function as adaptors that bring substrates into physical proximity with the rest of the SCF. Besides acting as a component of SCF complexes, FBPs are involved in DNA replication, transcription, cell differentiation and cell death. This review will highlight the recent literature on three well characterized FBPs SKP2, Fbw7, and beta-TRCP. In particular, we will focus on the involvement of these deregulated FBPs in the progression and development of various human cancers. We will also highlight some novel substrates recently identified for these FBPs.

Jiang ZH, Dong XW, Shen YC, et al.
DNA damage regulates ARID1A stability via SCF ubiquitin ligase in gastric cancer cells.
Eur Rev Med Pharmacol Sci. 2015; 19(17):3194-200 [PubMed] Related Publications
OBJECTIVE: The gene product of the AT-rich interactive domain 1A (SWI-like) gene (ARID1A) is a member of the SWI/SNF adenosine triphosphate-dependent chromatin-remodeling complexes, which plays an essential role in controlling gene expression and is also involved in cancer development. ARID1A is frequently mutated in a wild variety of cancers and function as a tumor suppressor in several kinds of cancers. ARID1A was down-regulated in gastric cancer, and associated poor patient prognosis. However, how ARID1A protein is regulated in gastric cancer remains largely unknown.
MATERIALS AND METHODS: Here, we show that ARID1A protein is rapidly ubiquitinated and degradated in gastric cancer cells in response to DNA damage treatment.
RESULTS: Using genetic and pharmacologic Cullin inactivation coupled with in vitro ubiquitination assay, we demonstrate that ARID1A is a substrate of the Cullin-SKP1-F-box protein (SCF) complexes. Moreover, gastric cancer cells with forced expression of ARID1A showed an increased sensitivity to DNA damage reagents. Thus, our data uncovered a previous unknown posttranscriptional regulation of ARID1A by SCF E3 ligase in gastric cancer cells in DNA damage response.
CONCLUSIONS: These findings suggest ARID1A might be a promising drug target in gastric cancer treatment.

Tebay LE, Robertson H, Durant ST, et al.
Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease.
Free Radic Biol Med. 2015; 88(Pt B):108-146 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
UNLABELLED: Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and
NAD(P)H: quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.

Bochis OV, Irimie A, Pichler M, Berindan-Neagoe I
The role of Skp2 and its substrate CDKN1B (p27) in colorectal cancer.
J Gastrointestin Liver Dis. 2015; 24(2):225-34 [PubMed] Related Publications
Colorectal cancer is one of the most frequent cancers worldwide, having the fourth mortality rate among cancers in both sexes. Numerous studies are investigating the signalling pathways and different factors involved in the development and progression of colorectal cancer. It has recently been shown that the S-phase kinase-associated protein 2 (Skp2) overexpression plays an important role in the pathogenesis of colorectal cancer. We review the role of Skp2 and its ubiquitin-proteasome pathway in colorectal cancer. The F-box protein Skp2, a component of the SCF (Skp1-Cullin 1-F-box) E3 ubiquitin-ligase complex, has been shown to regulate cellular proliferation, cancer progression and metastasis by targeting several cell cycle regulators for ubiquitination and subsequent 26S proteasome degradation. The best known protein substrate of the Skp2 is the cyclin-dependent kinase inhibitor 1B (CDKN1B), also known as p27Kip1. Overexpression of Skp2 and loss of CDKN1B (p27) was strongly associated with aggressive tumor behavior and poor clinical outcome in a variety of cancers, including colorectal cancer. An efficient interaction between Skp2 and CDKN1B (p27) requires the presence of an essential activator of the SCF-Skp2 complex, the cyclin-dependent kinase subunit 1 (Cks1) cofactor. Alterations in the Skp2, Cks1 and CDKN1B (p27) expression have major effects on colorectal carcinogenesis and may serve as an important and independent prognostic marker. Furthermore, we highlight that Skp2 may be a promising therapeutic target for colorectal cancer, and development of Skp2 inhibitors would have a great impact on colorectal cancer therapy.

Wan J, Zhu J, Li G, Zhang Z
Radiosensitization of Human Colorectal Cancer Cells by MLN4924: An Inhibitor of NEDD8-Activating Enzyme.
Technol Cancer Res Treat. 2016; 15(4):527-34 [PubMed] Related Publications
Colorectal cancer is the third most frequently diagnosed cancer and the combination of radiation with capecitabine has been shown to achieve only 15% to 25% of pathologic complete response. This study aimed to investigate the effect of MLN4924, a potent small molecule inhibitor of SKP1-Cullin-F-box proteins E3 ubiquitin ligases, as a novel radiosensitizing agent in colorectal cancer cells. Indeed, we found that MLN4924 effectively sensitized colorectal cancer cells to radiation with a sensitivity-enhancement ratio of 1.61 for HT-29 cells and 1.35 for HCT-116 cells. Mechanistically, MLN4924 significantly enhanced radiation-induced G2/M arrest, apoptosis, and DNA damage response through accumulation of p27. Knockdown of p27 via small interfering RNA partially inhibited MLN4924-induced radiosensitization, indicating a causal role played by p27. Our study suggested that MLN4924 could be further developed as a novel radiosensitizing agent against colorectal cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SKP1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999