PKHD1

Gene Summary

Gene:PKHD1; PKHD1 ciliary IPT domain containing fibrocystin/polyductin
Aliases: FPC, FCYT, PKD4, ARPKD, TIGM1
Location:6p12.3-p12.2
Summary:The protein encoded by this gene is predicted to have a single transmembrane (TM)-spanning domain and multiple copies of an immunoglobulin-like plexin-transcription-factor domain. Alternative splicing results in two transcript variants encoding different isoforms. Other alternatively spliced transcripts have been described, but the full length sequences have not been determined. Several of these transcripts are predicted to encode truncated products which lack the TM and may be secreted. Mutations in this gene cause autosomal recessive polycystic kidney disease, also known as polycystic kidney and hepatic disease-1. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:fibrocystin
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Newborns
  • Heterozygote
  • Phenotype
  • Kidney Diseases, Cystic
  • Infant
  • Cysts
  • Polycystic Kidney Diseases
  • Differential Diagnosis
  • Receptor, erbB-2
  • Glucosidases
  • Ultrasonography
  • Signal Transduction
  • Tuberous Sclerosis
  • DNA Mutational Analysis
  • Cell Proliferation
  • Intracellular Signaling Peptides and Proteins
  • Tamoxifen
  • Disease Models, Animal
  • tuberous sclerosis complex 2 protein
  • cdc25 Phosphatases
  • Kidney
  • Genetic Predisposition
  • Kidney Cancer
  • Pedigree
  • Knockout Mice
  • Sequence Homology
  • Liver
  • Liver Diseases
  • Renal Cell Carcinoma
  • Polycystic Kidney, Autosomal Dominant
  • Membrane Proteins
  • Polycystic Kidney, Autosomal Recessive
  • Childhood Cancer
  • Ubiquitin-Protein Ligases
  • Genotype
  • Multiple Abnormalities
  • Colorectal Cancer
  • TRPP Cation Channels
  • Genetic Markers
  • Mutation
  • Chromosome 6
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PKHD1 (cancer-related)

Thutkawkorapin J, Lindblom A, Tham E
Exome sequencing in 51 early onset non-familial CRC cases.
Mol Genet Genomic Med. 2019; 7(5):e605 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) cases with an age of onset <40 years suggests a germline genetic cause. In total, 51 simplex cases were included to test the hypothesis of CRC as a mendelian trait caused by either heterozygous autosomal dominant or bi-allelic autosomal recessive pathogenic variants.
METHODS: The cohort was whole exome sequenced (WES) at 100× coverage. Both a dominant- and recessive model were used for searching predisposing genetic factors. In addition, we assayed recessive variants of potential moderate risk that were enriched in our young-onset CRC cohort. Variants were filtered using a candidate cancer gene list or by selecting variants more likely to be pathogenic based on variant type (e.g., loss-of-function) or allele frequency.
RESULTS: We identified one pathogenic variant in PTEN in a patient subsequently confirmed to have a hereditary hamartoma tumor syndrome (Cowden syndrome) and one patient with a pathogenic heterozygous variant in PMS2 that was originally not identified by WES due to low quality reads resulting from pseudogenes. In addition, we identified three heterozygous candidate missense variants in known cancer susceptibility genes (BMPR1A, BRIP1, and SRC), three truncating variants in possibly novel cancer genes (CLSPN, SEC24B, SSH2) and four candidate missense variants in ACACA, NR2C2, INPP4A, and DIDO1. We also identify five possible autosomal recessive candidate genes: ATP10B, PKHD1, UGGT2, MYH13, TFF3.
CONCLUSION: Two clear pathogenic variants were identified in patients that had not been identified clinically. Thus, the chance of detecting a hereditary cancer syndrome in patients with CRC at young age but without family history is 2/51 (4%) and therefore the clinical benefit of genetic testing in this patient group is low. Of note, using stringent filtering, we have identified a total of ten candidate heterozygous variants and five possibly biallelic autosomal recessive candidate genes that warrant further study.

Lee JH, Ahn BK, Baik SS, Lee KH
Comprehensive Analysis of Somatic Mutations in Colorectal Cancer With Peritoneal Metastasis.
In Vivo. 2019 Mar-Apr; 33(2):447-452 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: To analyze for genetic mutations which may presage peritoneal metastasis by using targeted next-generation sequencing (NGS).
MATERIALS AND METHODS: Formalin-fixed, paraffin-embedded primary tumor specimens were obtained from 10 patients with small obstructing colorectal cancer and peritoneal metastasis (group A) and five with large non-obstructing colorectal cancer and no recurrence (group B). DNA was extracted for the sequencing of 409 cancer genes. The distribution of genetic mutations was compared between the two groups to find genetic mutations related to peritoneal metastasis.
RESULTS: When the samples were sorted based on similarity of gene expression by hierarchical clustering analysis, the samples were well divided between the two study groups. Mutations in AT-rich interactive domain-containing protein 1A (ARID1A), polycystic kidney and hepatic disease 1 (PKHD1), ubiquitin-protein ligase E3 component n-recognin 5 (UBR5), paired box 5 (PAX5), tumor protein p53 (TP53), additional sex combs like 1 (ASXL1) and androgen receptor (AR) genes were detected more frequently in group A.
CONCLUSION: A number of somatic mutations presumed to be relevant to colorectal cancer with peritoneal metastasis were identified in our study by NGS.

Ohmoto A, Yachida S, Morizane C
Genomic Features and Clinical Management of Patients with Hereditary Pancreatic Cancer Syndromes and Familial Pancreatic Cancer.
Int J Mol Sci. 2019; 20(3) [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer (PC) is one of the most devastating malignancies; it has a 5-year survival rate of only 9%, and novel treatment strategies are urgently needed. While most PC cases occur sporadically, PC associated with hereditary syndromes or familial PC (FPC; defined as an individual having two or more first-degree relatives diagnosed with PC) accounts for about 10% of cases. Hereditary cancer syndromes associated with increased risk for PC include Peutz-Jeghers syndrome, hereditary pancreatitis, familial atypical multiple mole melanoma, familial adenomatous polyposis, Lynch syndrome and hereditary breast and ovarian cancer syndrome. Next-generation sequencing of FPC patients has uncovered new susceptibility genes such as

Costa RA, Seuánez HN
Investigation of major genetic alterations in neuroblastoma.
Mol Biol Rep. 2018; 45(3):287-295 [PubMed] Related Publications
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. This malignancy shows a wide spectrum of clinical outcome and its prognosis is conditioned by manifold biological and genetic factors. We investigated the tumor genetic profile and clinical data of 29 patients with NB by multiplex ligation-dependent probe amplification (MLPA) to assess therapeutic risk. In 18 of these tumors, MYCN status was assessed by fluorescence in situ hybridization (FISH). Copy number variation was also determined for confirming MLPA findings in two 6p loci. We found 2p, 7q and 17q gains, and 1p and 11q losses as the most frequent chromosome alterations in this cohort. FISH confirmed all cases of MYCN amplification detected by MLPA. In view of unexpected 6p imbalance, copy number variation of two 6p loci was assessed for validating MLPA findings. Based on clinical data and genetic profiles, patients were stratified in pretreatment risk groups according to international consensus. MLPA proved to be effective for detecting multiple genetic alterations in all chromosome regions as requested by the International Neuroblastoma Risk Group (INRG) for therapeutic stratification. Moreover, this technique proved to be cost effective, reliable, only requiring standard PCR equipment, and attractive for routine analysis. However, the observed 6p imbalances made PKHD1 and DCDC2 inadequate for control loci. This must be considered when designing commercial MLPA kits for NB. Finally, four patients showed a normal MLPA profile, suggesting that NB might have a more complex genetic pattern than the one assessed by presently available MLPA kits.

Nevler A, Muller AJ, Cozzitorto JA, et al.
A Sub-Type of Familial Pancreatic Cancer: Evidence and Implications of Loss-of-Function Polymorphisms in Indoleamine-2,3-Dioxygenase-2.
J Am Coll Surg. 2018; 226(4):596-603 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Variation in an individual's genetic status can impact the development of pancreatic ductal adenocarcinoma; however, the majority of familial pancreatic cancers (FPC) cannot yet be attributed to a specific inherited mutation. We present data suggesting a correlation between loss-of-function single nucleotide polymorphisms (SNPs) in an immune regulator gene, indoleamine-2,3-dioxygenase-2 (IDO2), and an increased risk of FPC.
STUDY DESIGN: Germline DNA from patients who underwent resection for pancreatic ductal adenocarcinoma (n = 79) was sequenced for the IDO2 SNPs R248W and Y359Stop. Genotypes resulting in inactivation of IDO2 (Y325X homozygous, R248W homozygous) were labeled as homozygous, and the other genotypes were grouped as wild-type or heterozygous. Genotype distributions of each SNP were analyzed for Hardy-Weinberg deviation. A genotype frequency set from the 1000 Genomes Project (n = 99) was used as a genetic control for genotype distribution comparisons.
RESULTS: A significant 2-fold increase in the overall prevalence of the Y359Stop homozygous genotype compared with the expected Hardy-Weinberg equilibrium was noted (p < 0.05). Familial pancreatic cancer was noted in 15 cases (19%) and comparison of the FPC cohort set to the genetic control set showed a 3-fold increase in Y359Stop homozygous rates (p = 0.054). Overall in our cohort, the homozygous genotype group was associated with increased risk of FPC (odds ratio 5.4; 95% CI 1.6 to 17.6; p < 0.01). Sex, age at diagnosis, and history of tobacco use were not found to be significantly associated with FPC.
CONCLUSIONS: Our preliminary data suggest a strong association between the IDO2 inactivating Y359Stop SNP and an increased risk of FPC when compared with the control group. Future studies will evaluate the value of IDO2 genotyping as a prognostic, early detection marker for pancreatic ductal adenocarcinoma and a predictive marker for novel immune checkpoint therapies.

Chen F, Roberts NJ, Klein AP
Inherited pancreatic cancer.
Chin Clin Oncol. 2017; 6(6):58 [PubMed] Free Access to Full Article Related Publications
Pancreatic cancers arise through a series of genetic events both inherited and acquired. Inherited genetic changes, both high penetrance and low penetrance, are an important component of pancreatic cancer risk, and may be used to characterize populations who will benefit from early detection. Furthermore, pancreatic cancer patients with inherited mutations may be particularly sensitive to certain targeted agents, providing an opportunity to personalized treatment. Family history of pancreatic cancer is one of the strongest risk factors for the disease, and is associated with an increased risk of caners at other sites, including but not limited to breast, ovarian and colorectal cancer. The goal of this chapter is to discuss the importance of family history of pancreatic cancer, and the known genes that account for a portion of the familial clustering of pancreatic cancer.

Drosos Y, Escobar D, Chiang MY, et al.
ATM-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer.
Sci Rep. 2017; 7(1):11144 [PubMed] Free Access to Full Article Related Publications
Germline mutations in ATM (encoding the DNA-damage signaling kinase, ataxia-telangiectasia-mutated) increase Familial Pancreatic Cancer (FPC) susceptibility, and ATM somatic mutations have been identified in resected human pancreatic tumors. Here we investigated how Atm contributes to pancreatic cancer by deleting this gene in a murine model of the disease expressing oncogenic Kras (Kras

Chaffee KG, Oberg AL, McWilliams RR, et al.
Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history.
Genet Med. 2018; 20(1):119-127 [PubMed] Free Access to Full Article Related Publications
PurposePanel-based genetic testing has identified increasing numbers of patients with pancreatic ductal adenocarcinoma (PDAC) who carry germ-line mutations. However, small sample sizes or number of genes evaluated limit prevalence estimates of these mutations. We estimated prevalence of mutations in PDAC patients with positive family history.MethodsWe sequenced 25 cancer susceptibility genes in lymphocyte DNA from 302 PDAC patients in the Mayo Clinic Biospecimen Resource for Pancreatic Research Registry. Kindreds containing at least two first-degree relatives with PDAC met criteria for familial pancreatic cancer (FPC), while the remaining were familial, but not FPC.ResultsThirty-six patients (12%) carried at least one deleterious mutation in one of 11 genes. Of FPC patients, 25/185 (14%) were carriers, while 11/117 (9%) non-FPC patients with family history were carriers. Deleterious mutations (n) identified in PDAC patients were BRCA2 (11), ATM (8), CDKN2A (4), CHEK2 (4), MUTYH/MYH (3 heterozygotes, not biallelic), BRCA1 (2), and 1 each in BARD1, MSH2, NBN, PALB2, and PMS2. Novel mutations were found in ATM, BARD1, and PMS2.ConclusionMultiple susceptibility gene testing in PDAC patients with family history of pancreatic cancer is warranted regardless of FPC status and will inform genetic risk counseling for families.

Holditch SJ, Schreiber CA, Harris PC, et al.
B-type natriuretic peptide overexpression ameliorates hepatorenal fibrocystic disease in a rat model of polycystic kidney disease.
Kidney Int. 2017; 92(3):657-668 [PubMed] Free Access to Full Article Related Publications
Polycystic kidney disease (PKD) involves progressive hepatorenal cyst expansion and fibrosis, frequently leading to end-stage renal disease. Increased vasopressin and cAMP signaling, dysregulated calcium homeostasis, and hypertension play major roles in PKD progression. The guanylyl cyclase A agonist, B-type natriuretic peptide (BNP), stimulates cGMP and shows anti-fibrotic, anti-hypertensive, and vasopressin-suppressive effects, potentially counteracting PKD pathogenesis. Here, we assessed the impacts of guanylyl cyclase A activation on PKD progression in a rat model of PKD. Sustained BNP production significantly reduced kidney weight, renal cystic indexes and fibrosis, in concert with suppressed hepatic cystogenesis in vivo. In vitro, BNP decreased cystic epithelial cell proliferation, suppressed fibrotic gene expression, and increased intracellular calcium. Together, our data demonstrate multifaceted effects of sustained activation of guanylyl cyclase A on polycystic kidney and liver disease. Thus, targeting the guanylyl cyclase A-cGMP axis may provide a novel therapeutic strategy for hepatorenal fibrocystic diseases.

Besse W, Dong K, Choi J, et al.
Isolated polycystic liver disease genes define effectors of polycystin-1 function.
J Clin Invest. 2017; 127(5):1772-1785 [PubMed] Free Access to Full Article Related Publications
Dominantly inherited isolated polycystic liver disease (PCLD) consists of liver cysts that are radiologically and pathologically identical to those seen in autosomal dominant polycystic kidney disease, but without clinically relevant kidney cysts. The causative genes are known for fewer than 40% of PCLD index cases. Here, we have used whole exome sequencing in a discovery cohort of 102 unrelated patients who were excluded for mutations in the 2 most common PCLD genes, PRKCSH and SEC63, to identify heterozygous loss-of-function mutations in 3 additional genes, ALG8, GANAB, and SEC61B. Similarly to PRKCSH and SEC63, these genes encode proteins that are integral to the protein biogenesis pathway in the endoplasmic reticulum. We inactivated these candidate genes in cell line models to show that loss of function of each results in defective maturation and trafficking of polycystin-1, the central determinant of cyst pathogenesis. Despite acting in a common pathway, each PCLD gene product demonstrated distinct effects on polycystin-1 biogenesis. We also found enrichment on a genome-wide basis of heterozygous mutations in the autosomal recessive polycystic kidney disease gene PKHD1, indicating that adult PKHD1 carriers can present with clinical PCLD. These findings define genetic and biochemical modulators of polycystin-1 function and provide a more complete definition of the spectrum of dominant human polycystic diseases.

Lai J, Modi L, Ramai D, Tortora M
Tuberous sclerosis complex and polycystic kidney disease contiguous gene syndrome with Moyamoya disease.
Pathol Res Pract. 2017; 213(4):410-415 [PubMed] Related Publications
Tuberous sclerosis complex (TSC) and autosomal dominant polycystic kidney disease (ADPKD) are two diseases sharing close genetic loci on chromosome 16. Due to contiguous gene syndrome, also known as contiguous gene deletion syndrome, the proximity of TSC2 and PKD1 genes increases the risk of co-deletion resulting in a shared clinical presentation. Furthermore, Moyamoya disease (MMD) is a rare vaso-occlusive disease in the circle of Willis. We present the first case of TSC2/PKD1 contiguous gene syndrome in a patient with MMD along with detailed histopathologic, radiologic, and cytogenetic analyses. We also highlight the clinical presentation and surgical complications in this case.

Jinawath N, Shiao MS, Norris A, et al.
Alterations of type II classical cadherin, cadherin-10 (CDH10), is associated with pancreatic ductal adenocarcinomas.
Genes Chromosomes Cancer. 2017; 56(5):427-435 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDAC), either sporadic or familial, has a dismal prognosis and finding candidate genes involved in development of the cancer is crucial for the patient care. First, we identified two patients with germline alterations in or adjacent to CDH10 by chromosome studies and sequencing analyses in 41 familial pancreatic cancer (FPC) cases. One patient had a balanced translocation between chromosome 5 and 20. The breakpoint on chromosome band 5p14.2 was ∼810 Kb upstream of CDH10, while that on chromosome arm 20p was in the pericentromeric region which might result in inactivation of one copy of the gene leading to reduced expression of CDH10. This interpretation was supported by loss of heterozygosity (LOH) seen in this region as determined by short tandem repeat analyses. Another patient had a single nucleotide variant in exon 12 (p.Arg688Gln) of CDH10. This amino acid was conserved among vertebrates and the mutation was predicted to have a pathogenic effect on the protein by several prediction algorithms. Next, we analyzed LOH status in the CDH10 region in sporadic PDAC and at least 24% of tumors had evidence of LOH. Immunohistochemical stains with CDH10 antibody showed a different staining pattern between normal pancreatic ducts and PDAC. Taken together, our data supports the notion that CDH10 is involved in sporadic pancreatic carcinogenesis, and might have a role in rare cases of FPC. Further functional studies are needed to elucidate the tumor suppressive role of CDH10 in pancreatic carcinogenesis.

Giri VN, Beebe-Dimmer JL
Familial prostate cancer.
Semin Oncol. 2016; 43(5):560-565 [PubMed] Related Publications
Prostate cancer is the most commonly diagnosed cancer among men in the United States as well as most Western countries. A significant proportion of men report having a positive family history of prostate cancer in a first-degree relative (father, brother, son), which is important in that family history is one of the only established risk factors for the disease and plays a role in decision-making for prostate cancer screening. Familial aggregation of prostate cancer is considered a surrogate marker of genetic susceptibility to developing the disease, but shared environment cannot be excluded as an explanation for clustering of cases among family members. Prostate cancer is both a clinically and genetically heterogeneous disease with inherited factors predicted to account for 40%-50% of cases, comprised of both rare highly to moderately penetrant gene variants, as well as common genetic variants of low penetrance. Most notably, HOXB13 and BRCA2 mutations have been consistently shown to increase prostate cancer risk, and are more commonly observed among patients diagnosed with early-onset disease. A recurrent mutation in HOXB13 has been shown to predispose to hereditary prostate cancer (HPC), and BRCA2 mutations to hereditary breast and ovarian cancer (HBOC). Genome-wide association studies (GWAS) have also identified approximately 100 loci that associate with modest (odds ratios <2.0) increases in prostate cancer risk, only some of which have been replicated in subsequent studies. Despite these efforts, genetic testing in prostate cancer lags behind other common tumors like breast and colorectal cancer. To date, National Comprehensive Cancer Network (NCCN) guidelines have highly selective criteria for BRCA1/2 testing for men with prostate cancer based on personal history and/or specific family cancer history. Tumor sequencing is also leading to the identification of germline mutations in prostate cancer patients, informing the scope of inheritance. Advances in genetic testing for inherited and familial prostate cancer (FPC) are needed to inform personalized cancer risk screening and treatment approaches.

Petersen GM
Familial pancreatic cancer.
Semin Oncol. 2016; 43(5):548-553 [PubMed] Free Access to Full Article Related Publications
Familial pancreatic cancer (FPC) includes those kindreds that contain at least two first-degree relatives with pancreatic ductal adenocarcinoma. At least 12 known hereditary syndromes or genes are associated with increased risk of developing pancreatic cancer, the foremost being BRCA2 and CDKN2A. Research into the identification of mutations in known cancer predisposition genes and through next-generation sequencing has revealed extensive heterogeneity. The development of genetic panel testing has enabled genetic risk assessment and predisposition testing to be routinely offered. Precision oncology has opened the possibility of "incidental" germline mutations that may have implications for family members. However, in both cases, evidence-based recommendations for managing patients and at-risk family members in light of genetic status remain emergent, with current practice based on expert opinion.

Konings IC, Harinck F, Poley JW, et al.
Prevalence and Progression of Pancreatic Cystic Precursor Lesions Differ Between Groups at High Risk of Developing Pancreatic Cancer.
Pancreas. 2017; 46(1):28-34 [PubMed] Related Publications
OBJECTIVES: The aim of this study was to compare the prevalence of cystic pancreatic lesions and their natural behavior in 2 distinct high-risk groups for developing pancreatic ductal adenocarcinoma (PDAC): (1) carriers of a mutation that predisposes to PDAC and (2) individuals without a known gene mutation but with a family history of PDAC (familial pancreatic cancer [FPC]).
METHODS: Pancreatic surveillance by annual magnetic resonance imaging and endoscopic ultrasound was performed in individuals with an estimated lifetime risk of developing PDAC of 10% or greater. Progression of a lesion was defined as growth 4 mm or greater or the development of worrisome features.
RESULTS: We included 186 individuals: 98 mutation carriers and 88 FPC individuals (mean follow-up, 51 months). Individuals with FPC were significantly more likely than mutation carriers to have a pancreatic cyst 10 mm or greater (16% vs 5%, P = 0.045). Pancreatic cysts detected in mutation carriers, however, were significantly more likely to progress than those in FPC individuals (16% vs 2%, P = 0.050).
CONCLUSIONS: This study provides evidence that the prevalence and growth characteristics of pancreatic cysts differ between distinct high-risk groups: individuals with FPC have a higher prevalence of pancreatic cysts 10 mm or greater, whereas cysts in mutation carriers are more likely to progress. These observations may help to develop more optimally tailored surveillance strategies in specific high-risk populations.

Takai E, Yachida S, Shimizu K, et al.
Germline mutations in Japanese familial pancreatic cancer patients.
Oncotarget. 2016; 7(45):74227-74235 [PubMed] Free Access to Full Article Related Publications
Clinicopathologic and genetic features of familial pancreatic cancer (FPC) in Asian countries remain largely unknown. The main purpose of this study was to determine the prevalence of FPC and to define causative FPC-predisposition genes in a Japanese cohort with pancreatic ductal adenocarcinoma (PDAC).We reviewed 1,197 patients with a pathologically proven PDAC and found that 88 (7.3%) were FPC patients who had at least one first-degree relative with PDAC. There were no significant differences between the FPC cases and sporadic cases in terms of gender, age, tumor location, stage, family history of any cancer except PDAC, and personal history of smoking, other cancers, diabetes mellitus and chronic pancreatitis. In the FPC patients, we then investigated the prevalence of germline mutations in 21 genes associated with hereditary predispositions for pancreatic, breast and ovarian cancers by means of the next-generation sequencing using a custom multiple-gene panel. We found that eight (14.5%) of the 54 FPC patients with available germline DNA carried deleterious mutations in BRCA2, PALB2, ATM, or MLH1. These results indicate that a significant fraction of patients with PDAC in Japan have a family history of pancreatic cancer, and some of them harbor deleterious causative mutations in known FPC predisposition genes.

Lener MR, Kashyap A, Kluźniak W, et al.
The Prevalence of Founder Mutations among Individuals from Families with Familial Pancreatic Cancer Syndrome.
Cancer Res Treat. 2017; 49(2):430-436 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Familial pancreatic cancer describes families with at least two first-degree relatives with pancreatic cancer that do not fulfil the criteria of other inherited tumor syndromes with increased risks of pancreatic cancer. Although much has been learned regarding the aggregation of pancreatic cancer in some families, the genetic basis for this familial aggregation is poorly understood. This study evaluated the prevalence of 10 Polish founder mutations in four genes among individuals from families with diagnosed familial pancreatic cancer syndrome and assessed their possible association with the familial pancreatic cancer (FPC) risk in Poland.
MATERIALS AND METHODS: In this study, 400 FPC individuals and 4,000 control subjects were genotyped for founder mutations in
RESULTS: A statistically significant association was observed between the 172_175delTTGT mutation of the
CONCLUSION: The founder mutations in the genes,

Vasen H, Ibrahim I, Ponce CG, et al.
Benefit of Surveillance for Pancreatic Cancer in High-Risk Individuals: Outcome of Long-Term Prospective Follow-Up Studies From Three European Expert Centers.
J Clin Oncol. 2016; 34(17):2010-9 [PubMed] Related Publications
PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Hereditary factors play a role in the development of PDAC in 3% to 5% of all patients. Surveillance of high-risk groups, may facilitate detection of PDAC at an early stage. The aim of this study was to assess whether surveillance aids detection of early-stage PDAC or precursor lesions (PRLs) and improves the prognosis.
PATIENTS AND METHODS: Screening outcomes were collected from three European centers that conduct prospective screening in high-risk groups including families with clustering of PDAC (familial pancreatic cancer [FPC]) or families with a gene defect that predisposes to PDAC. The surveillance program consisted of annual magnetic resonance imaging, magnetic resonance cholangiopancreatography, and/or endoscopic ultrasound.
RESULTS: Four hundred eleven asymptomatic individuals participated in the surveillance programs, including 178 CDKN2A mutation carriers, 214 individuals with FPC, and 19 BRCA1/2 or PALB2 mutation carriers. PDAC was detected in 13 (7.3%) of 178 CDKN2A mutation carriers. The resection rate was 75%, and the 5-year survival rate was 24%. Two CDKN2A mutation carriers (1%) underwent surgical resection for low-risk PRL. Two individuals (0.9%) in the FPC cohort had a pancreatic tumor, including one advanced PDAC and one early grade 2 neuroendocrine tumor. Thirteen individuals with FPC (6.1%) underwent surgical resection for a suspected PRL, but only four (1.9%) had high-risk lesions (ie, high-grade intraductal papillary mucinous neoplasms or grade 3 pancreatic intraepithelial neoplasms). One BRCA2 mutation carrier was found to have PDAC, and another BRCA2 mutation carrier and a PALB2 mutation carrier underwent surgery and were found to have low-risk PRL. No serious complications occurred as consequence of the program.
CONCLUSION: Surveillance of CDNK2A mutation carriers is relatively successful, detecting most PDACs at a resectable stage. The benefit of surveillance in families with FPC is less evident.

Jeon MJ, Chun SM, Kim D, et al.
Genomic Alterations of Anaplastic Thyroid Carcinoma Detected by Targeted Massive Parallel Sequencing in a BRAF(V600E) Mutation-Prevalent Area.
Thyroid. 2016; 26(5):683-90 [PubMed] Related Publications
BACKGROUND: Anaplastic thyroid carcinoma (ATC), the most aggressive type of thyroid cancer, has no effective therapy. Due to its dismal prognosis, it is vital to understand the genetic alterations of ATC and identify effective molecular targets. Targeted next-generation sequencing was performed to investigate the mutational profile of ATC using a massive parallel sequencing approach.
METHODS: DNA from formalin-fixed, paraffin-embedded archival samples of 11 ATCs and normal matched pairs were used. A total of 48 genetic alterations were identified by targeted exome sequencing. These alterations were validated by mass spectrometric genotyping and direct Sanger sequencing.
RESULTS: The most commonly mutated gene was BRAF, identified in 10 samples (91%), all showing the V600E point mutation. A KRAS point mutation was observed in the one sample (9%) without the BRAF(V600E) mutation. All 11 ATCs harbored BRAF or RAS mutations, reflecting the possibility that differentiated thyroid carcinomas progress to ATCs after the accumulation of mutations. A loss of function mutation of TP53 was observed in eight samples (73%), a PIK3CA mutation was observed in two samples (18%), and a frameshift mutation of PTEN was observed in one sample (9%). Twenty-eight novel mutated genes were found that had not previously been associated with ATC. Of these, loss of function mutations of NF2, KMT2D, and PKHD1 were repeatedly seen in three samples (27%), two samples (18%), and two samples (18%), respectively. Using direct Sanger sequencing, two samples (18%) were also found with a RASAL1 mutation. KMT2D and RASAL1 mutations were significantly associated with shorter ATC patient survival.
CONCLUSIONS: This comprehensive analysis of ATCs using targeted massive parallel sequencing identified several novel mutations in ATCs, such as loss of function mutations of NF2 or KMT2D. Future studies are needed to confirm the role of these novel mutations as independent drivers of ATC development.

Catts ZA, Baig MK, Milewski B, et al.
Statewide Retrospective Review of Familial Pancreatic Cancer in Delaware, and Frequency of Genetic Mutations in Pancreatic Cancer Kindreds.
Ann Surg Oncol. 2016; 23(5):1729-35 [PubMed] Related Publications
BACKGROUND: Considering the typical rapid progression and high mortality of pancreatic cancer (PC), early detection may lead to an improved outcome. To date, there is no safe, sensitive, and cost-effective screening strategy to detect PC. Currently, screening is focused on individuals at the highest risk of developing PC based on family history. A high-risk individual is defined as having two or more first-degree relatives with PC, or one first- or second-degree relative with PC with a confirmed mutation in a gene associated with PC. The BRCA2 gene is one of the most common genes linked to pancreatic-only cancer families; however, other hereditary cancer syndromes have also been associated with an increased risk for PC.
METHODS: We conducted a retrospective review of pedigrees of families with a pancreatic adenocarcinoma cancer diagnosis held in the statewide Ruth Ann Minner High Risk Family Cancer Registry at the Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, USA, from 2002 to 2013. The registry was queried based on how many first-, second-, or third-degree relatives of the proband were affected with PC, genetic testing status, and (if applicable) the results. These data were then categorized into families that meet familial PC (FPC) criteria, defined as two first-degree relatives with PC (FPC families), families that did not meet the FPC definition but had one first-degree relative affected with PC (first-degree families), and probands with PC (probands). Each family was counted only once in the analysis, even if multiple family members were tested.
RESULTS: Our analysis revealed that 175 of 597 families fitting any of the above criteria completed genetic testing. Of this cohort, 52 had pathogenic alterations with nine different genes implicated. Overall, 164 of the 175 families that fitted into any of the three categories previously identified had BRCA1 or BRCA2 testing, either by DNA sequencing or next-generation sequencing via a panel test that included BRCA1/2. BRCA1 pathogenic alterations were noted in 17/164 (10.4 %) and BRCA2 pathogenic alterations were noted in 23/164 (14.0 %). FPC families (n = 46) 42/46 of the FPC families underwent BRCA1/2 testing, and 11/42 (26 % [95 % CI 12.89-39.49]) had pathogenic alterations. Specifically, 4/42 = BRCA1 (9.5 %) and 7/42 = BRCA2 (16.7 %). Additionally, 16/46 of the FPC families underwent exclusively Lynch syndrome (LS) testing, and pathogenic mutations in a mismatch repair protein were identified in 2/16. Specifically, 1/16 = MLH1 (6.3 %) and 1/16 = MSH2 (3.6 %). Overall, a genetic mutation within any gene associated with an increased PC risk was found in 28 % of FPC families. First-degree families (n = 106) 99/106 of the families with one first-degree relative underwent BRCA1/2 testing, and 21/99 (21.2 % [95 % CI 13.16-29.27]) had pathogenic alterations. Specifically, 11/99 = BRCA1 (11.1 %) and 10/99 = BRCA2 (10.1 %). 32/99 first-degree families underwent exclusively LS testing, and pathogenic mutations were identified in 4/32. Specifically, 3/32 = MLH1 (9 %) and 1/32 = MSH6 (3 %). 25/99 of the families pursued panel testing, and pathogenic alterations in any gene were identified in 3/25. Specifically, the mutations were found in 1/25 = ATM (4 %), 1/25 = CHEK2 (4 %), and 1/25 = RAD51D (4 %). Affected probands (n = 23) Lastly, all 23 probands affected with PC pursued genetic testing. Of these, 11/23 were found to have pathogenic alterations. All 23 underwent BRCA1/2 testing, and pathogenic alterations were identified in 8/23 (35 % [95 % CI 15.32-54.25]), specifically 2/23 = BRCA1 (9 %), and 6/23 = BRCA2 (26 %). 10/23 patients underwent panel testing and pathogenic alterations were found in 3/10 (30 %) patients, of whom 1/10 = MSH6 (10 %), 1/10 = ATM (10 %), and 1/10 = TP53 (10 %).
CONCLUSIONS: This study demonstrates that a statewide high-risk family cancer registry is an important instrument in studying the risk of PC in families. Our analysis revealed 14 mutations associated with FPC, among which hereditary breast and ovarian cancer and LS were most prevalent. BRCA1 was found to have the same association with PC as BRCA2, which appears unique to our population. We plan to use our knowledge of these mutations in developing a PC screening program.

Hou Q, Chen K, Shan Z
The construction of cDNA library and the screening of related antigen of ascitic tumor cells of ovarian cancer.
Eur J Gynaecol Oncol. 2015; 36(5):590-4 [PubMed] Related Publications
OBJECTIVE: To construct the cDNA library of the ascites tumor cells of ovarian cancer, which can be used to screen the related antigen for the early diagnosis of ovarian cancer and therapeutic targets of immune treatment.
MATERIALS AND METHODS: Four cases of ovarian serous cystadenocarcinoma, two cases of ovarian mucinous cystadenocarcinoma, and two cases of ovarian endometrial carcinoma in patients with ascitic tumor cells which were used to construct the cDNA library. To screen the ovarian cancer antigen gene, evaluate the enzyme, and analyze nucleotide sequence, serological analysis of recombinant tumor cDNA expression libraries (SEREX) and suppression subtractive hybridization technique (SSH) techniques were utilized. The detection method of recombinant expression-based serological mini-arrays (SMARTA) was used to detect the ovarian cancer antigen and the positive reaction of 105 cases of ovarian cancer patients and 105 normal women's autoantibodies correspondingly in serum.
RESULTS: After two rounds of serologic screening and glycosides sequencing analysis, 59 candidates of ovarian cancer antigen gene fragments were finally identified, which corresponded to 50 genes. They were then divided into six categories: (1) the homologous genes which related to the known ovarian cancer genes, such as BARD 1 gene, etc; (2) the homologous genes which were associated with other tumors, such as TM4SFI gene, etc; (3) the genes which were expressed in a special organization, such as ILF3, FXR1 gene, etc; (4) the genes which were the same with some protein genes of special function, such as TIZ, ClD gene; (5) the homologous genes which possessed the same source with embryonic genes, such as PKHD1 gene, etc; (6) the remaining genes were the unknown genes without the homologous sequence in the gene pool, such as OV-189 genes.
CONCLUSION: SEREX technology combined with SSH method is an effective research strategy which can filter tumor antigen with high specific character; the corresponding autoantibodies of TM4SFl, ClD, TIZ, BARDI, FXRI, and OV-189 gene's recombinant antigen in serum can be regarded as the biomarkers which are used to diagnose ovarian cancer. The combination of multiple antigen detection can improve diagnostic efficiency.

Petersen GM
Familial Pancreatic Adenocarcinoma.
Hematol Oncol Clin North Am. 2015; 29(4):641-53 [PubMed] Free Access to Full Article Related Publications
Familial pancreatic cancer (FPC) kindreds have at least 2 first-degree relatives with pancreatic ductal adenocarcinoma. Studies of FPC have focused on the discovery of genetic cause and on the management of those at genetically high risk. Research reveals that a half dozen known hereditary syndromes or genes are associated with increased risk of developing pancreatic cancer, the most prominent of which are BRCA2 and CDKN2A. Genetic risk assessment and testing is already available. Owing to limited experience worldwide, guidance is often based on expert opinion, although all agree that research is needed to improve the shaping of options.

Mocci E, Guillen-Ponce C, Earl J, et al.
PanGen-Fam: Spanish registry of hereditary pancreatic cancer.
Eur J Cancer. 2015; 51(14):1911-7 [PubMed] Related Publications
PURPOSE: To describe the organisation of the registry and the preliminary results in terms of characteristics of high-risk pancreatic ductal adenocarcinoma (PDAC) families recruited to date and findings of the screening programme. To compare early onset sporadic cases (⩽50 years), sporadic cases (>50 years) and cases with family history of cancer, for PDAC possible risk factors.
METHODS/PATIENTS: Families with hereditary cancer syndromes predisposing to PDAC were recruited from two main sources: Spanish hospitals participating in PanGenEU, a pan-European multicentre case-control study, and their genetic counseling unit. Individuals at high-risk of PDAC were enrolled into a screening programme, consisting of Endoscopic ultrasound, computerised tomography, magnetic resonance imaging. Genetic testing of candidate genes was offered according to each patient's risk.
RESULTS: Among 577 consecutive PDAC cases, recruited via PanGenEU, 36 (6%) had ⩾2 first-degree relative with PDAC: Familial pancreatic cancer (FPC). So far PanGen-Fam has recruited 42 high-risk PDAC families; 25 (60%) had FPC. Five index cases with cancer were positive for BRCA2 and one for BRCA1 germline mutations. In the second year of prospective PDAC screening, one neuroendocrine tumour and a high-grade dysplasia lesion suspicious of carcinoma were diagnosed among 41 high-risk individuals. Furthermore EUS detected chronic-pancreatitis-like parenchymal changes in 15 patients.
CONCLUDING STATEMENT: The identification and recruitment of PDAC high-risk families into the PanGen-Fam registry provides an opportunity to detect early onset cancer and precursor pancreatic cancer lesions at a potentially curative stage and to increase the knowledge of the natural history of the disease.

Cramer MT, Guay-Woodford LM
Cystic kidney disease: a primer.
Adv Chronic Kidney Dis. 2015; 22(4):297-305 [PubMed] Related Publications
Renal cystic diseases encompass a broad group of disorders with variable phenotypic expression. Cystic disorders can present during infancy, childhood, or adulthood. Often, but not always, they can be distinguished by the clinical features including age at presentation, renal imaging characteristics, including cyst distribution, and the presence/distribution of extrarenal manifestations. It is important to take the clinical context into consideration when assessing renal cystic disease in children and adults. For example, solitary kidney cysts may be completely benign when they develop during adulthood but may represent early polycystic kidney disease when observed during childhood. In this review, we have categorized renal cystic disease according to inherited single-gene disorders, for example, autosomal recessive polycystic kidney disease; syndromic disorders associated with kidney cysts, for example, tuberous sclerosis complex; and nongenetic forms of renal cystic disease, for example, simple kidney cysts. We present an overview of the clinical characteristics, genetics (when appropriate), and molecular pathogenesis and the diagnostic evaluation and management of each renal cystic disease. We also provide an algorithm that distinguishes kidney cysts based on their clinical features and may serve as a helpful diagnostic tool for practitioners. A review of Autosomal Dominant Polycystic Disease was excluded as this disorder was reviewed in this journal in March 2010, volume 17, issue 2.

Masyuk TV, Masyuk AI, LaRusso NF
Therapeutic Targets in Polycystic Liver Disease.
Curr Drug Targets. 2017; 18(8):950-957 [PubMed] Free Access to Full Article Related Publications
Polycystic liver diseases (PLD) are a group of genetic disorders initiated by mutations in several PLD-related genes and characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. PLD co-exists with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Autosomal Recessive PKD as well as occurs alone (i.e., Autosomal Dominant Polycystic Liver Disease [ADPLD]). PLD associated with ADPKD and ARPKD belong to a group of disorders known as cholangiociliopathies since many disease-causative and disease-related proteins are expressed in primary cilia of cholangiocytes. Aberrant expression of these proteins in primary cilia affects their structures and functions promoting cystogenesis. Current medical therapies for PLD include symptomatic management and surgical interventions. To date, the only available drug treatment for PLD patients that halt disease progression and improve quality of life are somatostatin analogs. However, the modest clinical benefits, need for long-term maintenance therapy, and the high cost of treatment justify the necessity for more effective treatment options. Substantial evidence suggests that experimental manipulations with components of the signaling pathways that influence cyst development (e.g., cAMP, intracellular calcium, receptor tyrosine kinase, transient receptor potential cation channel subfamily V member 4 (TRPV4) channel, mechanistic target of rapamycin (mTOR), histone deacetylase (HDAC6), Cdc25A phosphatase, miRNAs and metalloproteinases) attenuate growth of hepatic cysts. Many of these targets have been evaluated in pre-clinical trials suggesting their value as potential new therapies. This review outlines the current clinical and preclinical treatment strategies for PLD.

Tao S, Kakade VR, Woodgett JR, et al.
Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease.
Kidney Int. 2015; 87(6):1164-75 [PubMed] Free Access to Full Article Related Publications
Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end-stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein kinases consists of GSK3α and GSK3β isoforms and has a crucial role in multiple cellular signaling pathways. We previously found that GSK3β, a regulator of cell proliferation, is also crucial for cAMP generation and vasopressin-mediated urine concentration by the kidneys. However, the role of GSK3β in the pathogenesis of PKDs is not known. Here we found that GSK3β expression and activity were markedly upregulated and associated with cyst-lining epithelia in the kidneys of mice and humans with PKD. Renal collecting duct-specific gene knockout of GSK3β or pharmacological inhibition of GSK3 effectively slowed down the progression of PKD in mouse models of autosomal recessive or autosomal dominant PKD. GSK3 inactivation inhibited cAMP generation and cell proliferation resulting in reduced cyst expansion, improved renal function, and extended life span. GSK3β inhibition also reduced pERK, c-Myc, and cyclin-D1, known mitogens in proliferation of cystic epithelial cells. Thus, GSK3β has a novel functional role in PKD pathophysiology, and its inhibition may be therapeutically useful to slow down cyst expansion and progression of PKD.

Humphris JL, Johns AL, Simpson SH, et al.
Clinical and pathologic features of familial pancreatic cancer.
Cancer. 2014; 120(23):3669-75 [PubMed] Related Publications
BACKGROUND: Inherited predisposition to pancreatic cancer contributes significantly to its incidence and presents an opportunity for the development of early detection strategies. The genetic basis of predisposition remains unexplained in a high proportion of patients with familial PC (FPC).
METHODS: Clinicopathologic features were assessed in a cohort of 766 patients who had been diagnosed with pancreatic ductal adenocarcinoma (PC). Patients were classified with FPC if they had ≥1 affected first-degree relatives; otherwise, they were classified with sporadic PC (SPC).
RESULTS: The prevalence of FPC in this cohort was 8.9%. In FPC families with an affected parent-child pair, 71% in the subsequent generation were 12.3 years younger at diagnosis. Patients with FPC had more first-degree relatives who had an extrapancreatic malignancy (EPM) (42.6% vs 21.2; P<.0001), particularly melanoma and endometrial cancer, but not a personal history of EPM. Patients with SPC were more likely to be active smokers, have higher cumulative tobacco exposure, and have fewer multifocal precursor lesions, but these were not associated with differences in survival. Long-standing diabetes mellitus (>2 years) was associated with poor survival in both groups.
CONCLUSIONS: FPC represents 9% of PC, and the risk of malignancy in kindred does not appear to be confined to the pancreas. Patients with FPC have more precursor lesions and include fewer active smokers, but other clinicopathologic factors and outcome are similar to those in patients with SPC. Furthermore, some FPC kindreds may exhibit anticipation. A better understanding of the clinical features of PC will facilitate efforts to uncover novel susceptibility genes and the development of early detection strategies.

Norris AL, Roberts NJ, Jones S, et al.
Familial and sporadic pancreatic cancer share the same molecular pathogenesis.
Fam Cancer. 2015; 14(1):95-103 [PubMed] Free Access to Full Article Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is nearly uniformly lethal, with a median overall survival in 2014 of only 6 months. The genetic progression of sporadic PDAC (SPC) is well established, with common somatic alterations in KRAS, p16/CDKN2A, TP53, and SMAD4/DPC4. Up to 10 % of all PDAC cases occur in families with two or more affected first-degree relatives (familial pancreatic cancer, FPC), but these cases do not appear to present at an obviously earlier age of onset. This is unusual because most familial cancer syndrome patients present at a substantially younger age than that of corresponding sporadic cases. Here we collated the reported age of onset for FPC and SPC from the literature. We then used an integrated approach including whole exomic sequencing, whole genome sequencing, RNA sequencing, and high density SNP microarrays to study a cohort of FPC cell lines and corresponding germline samples. We show that the four major SPC driver genes are also consistently altered in FPC and that each of the four detection strategies was able to detect the mutations in these genes, with one exception. We conclude that FPC undergoes a similar somatic molecular pathogenesis as SPC, and that the same gene targets can be used for early detection and minimal residual disease testing in FPC patients.

Ghiorzo P
Genetic predisposition to pancreatic cancer.
World J Gastroenterol. 2014; 20(31):10778-89 [PubMed] Free Access to Full Article Related Publications
Pancreatic adenocarcinoma (PC) is the most deadly of the common cancers. Owing to its rapid progression and almost certain fatal outcome, identifying individuals at risk and detecting early lesions are crucial to improve outcome. Genetic risk factors are believed to play a major role. Approximately 10% of PC is estimated to have familial inheritance. Several germline mutations have been found to be involved in hereditary forms of PC, including both familial PC (FPC) and PC as one of the manifestations of a hereditary cancer syndrome or other hereditary conditions. Although most of the susceptibility genes for FPC have yet to be identified, next-generation sequencing studies are likely to provide important insights. The risk of PC in FPC is sufficiently high to recommend screening of high-risk individuals; thus, defining such individuals appropriately is the key. Candidate genes have been described and patients considered for screening programs under research protocols should first be tested for presence of germline mutations in the BRCA2, PALB2 and ATM genes. In specific PC populations, including in Italy, hereditary cancer predisposition genes such as CDKN2A also explain a considerable fraction of FPC.

Mastoraki A, Chatzimavridou-Grigoriadou V, Chatzipetrou V, et al.
Familial pancreatic cancer: challenging diagnostic approach and therapeutic management.
J Gastrointest Cancer. 2014; 45(3):256-61 [PubMed] Related Publications
BACKGROUND: Familial predisposition characterizes up to 10% of the patients with pancreatic cancer (PC). Although many syndromes have been associated with an increased risk for PC, familial pancreatic cancer (FPC) accounts for the majority of hereditary cases. FPC is defined by families with at least a pair of first-degree relatives (FDRs) who have been diagnosed with PC and do not fulfill the criteria of other inherited tumor syndromes.
METHODS AND RESULTS: Genetic counseling is of great importance to estimate the prevalence and recommend further molecular testing. Regarding the screening program for individuals with increased risk for PC, a consortium summit stated that candidates for screening are FDRs of patients with PC from a familial kindred with at least two affected FDRs, patients with Peutz-Jeghers syndrome and p16, BRCA2, and hereditary nonpolyposis colorectal cancer (HNPCC) mutation carriers. It was also agreed that initial screening should include endoscopic ultrasonography (EUS) and/or magnetic resonance imaging (MRI)/magnetic resonance cholangiopancreatography (MRCP) instead of computed tomography (CT) or endoscopic retrograde cholangiopancreatography (ERCP).
CONCLUSIONS: However, the optimal age of initial screening remains undefined. Furthermore, a multidisciplinary assessment is required to determine whether surgical interventions should be performed at high-volume specialty centers. The aim of this study is to collect all the recent information considering the genetic basis, screening protocols, and treatment of FPC in order to provide an update on the current contemporary concepts of therapeutic management of the disease.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PKHD1, Cancer Genetics Web: http://www.cancer-genetics.org/PKHD1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999