FOXO4

Gene Summary

Gene:FOXO4; forkhead box O4
Aliases: AFX, AFX1, MLLT7
Location:Xq13.1
Summary:This gene encodes a member of the O class of winged helix/forkhead transcription factor family. Proteins encoded by this class are regulated by factors involved in growth and differentiation indicating they play a role in these processes. A translocation involving this gene on chromosome X and the homolog of the Drosophila trithorax gene, encoding a DNA binding protein, located on chromosome 11 is associated with leukemia. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:forkhead box protein O4
Source:NCBIAccessed: 29 August, 2019

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Signal Transduction
  • Oligonucleotide Array Sequence Analysis
  • Neoplasm Metastasis
  • RTPCR
  • Bone Cancer
  • Forkhead Box Protein O3
  • Lung Cancer
  • Tumor Hypoxia
  • Translocation
  • Biomarkers, Tumor
  • Prostate Cancer
  • Phosphatidylinositol 3-Kinases
  • Lymphatic Metastasis
  • Transcriptional Activation
  • Immunohistochemistry
  • Neoplasm Invasiveness
  • Vimentin
  • Messenger RNA
  • Oncogene Fusion Proteins
  • Molecular Sequence Data
  • Phosphorylation
  • Liver Cancer
  • Forkhead Transcription Factors
  • Forkhead Box Protein O1
  • X Chromosome
  • Transcription Factors
  • siRNA
  • Gene Expression Profiling
  • Base Sequence
  • Non-Small Cell Lung Cancer
  • Apoptosis
  • Cell Differentiation
  • Cell Proliferation
  • YY1 Transcription Factor
  • AKT1
  • Tumor Suppressor Proteins
  • Neoplastic Cell Transformation
  • MicroRNAs
  • Cancer Gene Expression Regulation
  • Ewing's Sarcoma
  • Bladder Cancer
  • Up-Regulation
  • Single Nucleotide Polymorphism
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FOXO4 (cancer-related)

Liu B, Tan Z, Jiang Y, et al.
Correlation between the expression of miR150 and FOXO4 and the local recurrence and metastasis of nasopharyngeal carcinoma after intensive radiotherapy.
J BUON. 2018 Nov-Dec; 23(6):1671-1678 [PubMed] Related Publications
PURPOSE: To investigate the relationship between the expression of miR150 and FOXO4 in nasopharyngeal carcinoma (NPC) and the local recurrence and metastasis after intensive radiotherapy.
METHODS: 94 patients with NPC were selected in Hunan Provincial People's Hospital from May 2011 to May 2013. All patients received intensive radiotherapy. Thirty healthy controls were also included. The expression levels of miR150 and FOXO4 mRNA in blood lymphocytes were detected by RT-PCR. All patients with NPC were followed up for 36 months. Blood was drawn from patients to analyze the expression of miR150 and FOXO4. MiR150 inhibitor was used to treat NPC cells, and FOXO4 overexpression cell lines were established. Transwell invasion assay was performed to investigate the effects of miR150 expression inhibition and FOXO4 overexpression on cell invasion. Protein levels were detected by western blot.
RESULTS: Compared with healthy controls, the levels of miR150 mRNA in NPC patients were significantly increased, while FOXO4 mRNA levels were significantly decreased (p<0.05). The levels of miR150 and FOXO4 were significantly correlated with distant metastasis and tumor recurrence (p<0.05). High expression level of miR150 or low expression level of FOXO4 significantly shortened the overall survival (OS) of patients (p<0.05). Cox's proportional hazards model showed that miR150 and FOXO4 were potential independent risk factors for NPC (p<0.05). The level of miR150 in patients with tumor recurrence was significantly higher than that in patients without tumor recurrence, while the level of FOXO4 in patients with tumor recurrence was lower than that patients without tumor recurrence (p<0.05). MiR150 expression inhibition or FOXO4 overexpression significantly reduced the invasion abilities of CNE1 and CNE2 cells and protein levels of matrix metalloproteinase2 (MMP2) and MMP9 (p<0.05).
CONCLUSION: MiR150 and FOXO4 are closely related to the metastasis and recurrence of NPC, and are independent prognostic factors for NPC. MiR150 and FOXO4 are of clinical significance in predicting NPC prognosis.

Bashanfer SAA, Saleem M, Heidenreich O, et al.
Disruption of MAPK1 expression in the ERK signalling pathway and the RUNX1‑RUNX1T1 fusion gene attenuate the differentiation and proliferation and induces the growth arrest in t(8;21) leukaemia cells.
Oncol Rep. 2019; 41(3):2027-2040 [PubMed] Related Publications
The t(8;21) translocation is one of the most frequent chromosome abnormalities associated with acute myeloid leukaemia (AML). This abberation deregulates numerous molecular pathways including the ERK signalling pathway among others. Therefore, the aim of the present study was to investigate the gene expression patterns following siRNA‑mediated suppression of RUNX1‑RUNX1T1 and MAPK1 in Kasumi‑1 and SKNO‑1 cells and to determine the differentially expressed genes in enriched biological pathways. BeadChip microarray and gene ontology analysis revealed that RUNX1‑RUNX1T1 and MAPK1 suppression reduced the proliferation rate of the t(8;21) cells with deregulated expression of several classical positive regulator genes that are otherwise known to enhance cell proliferation. RUNX1‑RUNX1T1 suppression exerted an anti‑apoptotic effect through the overexpression of BCL2, BIRC3 and CFLAR genes, while MAPK1 suppression induced apopotosis in t(8;21) cells by the apoptotic mitochondrial changes stimulated by the activity of upregulated TP53 and TNFSF10, and downregulated JUN gene. RUNX1‑RUNX1T1 suppression supported myeloid differentiation by the differential expression of CEBPA, CEBPE, ID2, JMJD6, IKZF1, CBFB, KIT and CDK6, while MAPK1 depletion inhibited the differentiation of t(8;21) cells by elevated expression of ADA and downregulation of JUN. RUNX1‑RUNX1T1 and MAPK1 depletion induced cell cycle arrest at the G0/G1 phase. Accumulation of cells in the G1 phase was largely the result of downregulated expression of TBRG4, CCNE2, FOXO4, CDK6, ING4, IL8, MAD2L1 and CCNG2 in the case of RUNX1‑RUNX1T1 depletion and increased expression of RASSF1, FBXO6, DADD45A and P53 in the case of MAPK1 depletion. Taken together, the current results demonstrate that MAPK1 promotes myeloid cell proliferation and differentiation simultaneously by cell cycle progression while suppresing apoptosis.

Yu C, Chen DQ, Liu HX, et al.
Rosmarinic acid reduces the resistance of gastric carcinoma cells to 5-fluorouracil by downregulating FOXO4-targeting miR-6785-5p.
Biomed Pharmacother. 2019; 109:2327-2334 [PubMed] Related Publications
OBJECTIVE: Chemoresistance has been a major problem in cancer chemotherapy. The present study aimed to investigate the effect of Rosmarinic acid (RA) on chemoresistance to 5-Fu and its molecular mechanism in gastric carcinoma.
METHODS: CCK8 cell proliferation and apoptosis assay were used to evaluate the effect of RA on chemoresistance to 5-Fu in GC cells. RNA microarray was used to identify miRNA involved. Expression level of miRNA in GC cells was determined by RT-PCR. Down- or up-regulating of miRNA in the GC cells was performed by transfection of RNA interference or expression vectors in the GC cells. Double luciferase reporter assay was used to verify miRNA target genes. Expression of P-glycoprotein and Bax was analyzed with Western blot.
RESULTS: RA treated SGC7901/5-Fu cells showed significant increased chemosensitivity to 5-Fu. The IC50 of 5-Fu was significantly reduced in RA treated SGC7901/5-Fu cells (70.43 ± 1.06 μg/mL) compared to untreated SGC7901/5-Fu cells (208.6 ± 1.09 μg/mL) (P < 0.05). Apoptosis rate was significantly increased in RA+5-Fu treated SGC7901/5-Fu cells compared to 5-FU treatment alone (P < 0.01). Two miRNAs, namely miR-642a-3p and miR-6785-5p, were identified to be involved in the chemo-sensitizing effect of RA in the SGC7901/5-Fu cells. RA treated SGC7901/5-Fu cells showed reduced expression levels of miR-642a-3p and miR-6785-5p compared to untreated SGC7901/5-Fu cells (P < 0.05). Down- or up-regulation of miR-6785-5p increased or reduced chemosensitivity of gastric carcinoma cells to 5-Fu, respectively. RA treated SGC7901/5-Fu and the SGC7901/5-Fu-Si cells showed significantly increased FOXO4 expression (P < 0.01). Double luciferase reporter assay confirmed miR-6785-5p directly targets FOXO4 to regulate its expression. RA significantly reduced P-gp expression and increased Bax expression in SGC7901/5-Fu and the SGC7901/5-Fu-Si cells (P < 0.05).
CONCLUSION: RA enhances chemosensitivity of resistant gastric carcinoma SGC7901 cells to 5-Fu by downregulating miR-6785-5p and miR-642a-3p and increasing FOXO4 expression. These study suggest the potential for RA as a multidrug resistance-reversing agent in GC.

Bian L, Zhi X, Ma L, et al.
Hsa_circRNA_103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p / FOXO4 axis.
Biochem Biophys Res Commun. 2018; 505(2):346-352 [PubMed] Related Publications
Circular RNAs(circRNAs) are a class of non-coding RNAs that are widely expressed in a variety of cell species. The role they play in cancers is poorly understood, especially in colorectal cancer (CRC). Hsa_circRNA_103809 (hsa_circ_0072088, circZFR)has been demonstrated to be lowly expressed in colorectal cancer tissues and is associated with stage and lymph node metastasis of cancer tissues. Real-time quantitative PCR (qRT-PCR) was used to verify the relationship of hsa_circRNA_103809 between colorectal cancer and paired adjacent tissue in clinical tissue samples. Then, the proliferative capacity, migration ability, cell cycle, and apoptosis were measured using wound-healing assay, CCK8, transwell assay, flow cytometry, and the like, when hsa_circRNA_103809 expression in SW620 and COCA-2. The qRT-PCR, western bolt and other experiments verify that the expression of hsa_circRNA_103809 can regulate the expression of miR-532-3P and FOXO4. Hsa_circRNA_103809 was found to be significantly down regulated in CRC tissues and cell lines and compared with paired adjacent non-tumorous tissues and normal FHC cells. Hsa_circRNA_103809 participates in the regulation of biological functions through the miR-532-3P/FOXO4 axis in the CRC. Hsa_circRNA_103809 may be a potential novel gene target for the diagnosis and treatment of CRC.

Jiang S, Yang Z, Di S, et al.
Novel role of forkhead box O 4 transcription factor in cancer: Bringing out the good or the bad.
Semin Cancer Biol. 2018; 50:1-12 [PubMed] Related Publications
Forkhead box O (FOXO) family has recently been highlighted as important transcriptional regulators associated with many diverse carcinomas. Although redundant functionality between FOXO family members with cancer is known, regulatory ability of FOXO4 for tumorigenesis and tumor metastasis is still on the way. FOXO4 significantly regulates cell cycle, resists oxidative stress, and responses to hypoxia. FOXO4 alteration is closely linked to the progression of human cancer. In this review, we introduce the regulation of FOXO4 in physiological and pathological conditions. Particularly, the pathophysiological processes and molecular pathways regulated by FOXO4 in the development and progression of cancer are also summarized. Moreover, whether FOXO4 acts as a tumor-suppressor or pro-tumoral factor in tumors and the potential directions of future FOXO4 research are discussed. The information reviewed here may assist in the experimental design and increase the potential of FOXO4 as a therapeutic target for cancer.

Lai K, Harwood CA, Purdie KJ, et al.
Genomic analysis of atypical fibroxanthoma.
PLoS One. 2017; 12(11):e0188272 [PubMed] Free Access to Full Article Related Publications
Atypical fibroxanthoma (AFX), is a rare type of skin cancer affecting older individuals with sun damaged skin. Since there is limited genomic information about AFX, our study seeks to improve the understanding of AFX through whole-exome and RNA sequencing of 8 matched tumor-normal samples. AFX is a highly mutated malignancy with recurrent mutations in a number of genes, including COL11A1, ERBB4, CSMD3, and FAT1. The majority of mutations identified were UV signature (C>T in dipyrimidines). We observed deletion of chromosomal segments on chr9p and chr13q, including tumor suppressor genes such as KANK1 and CDKN2A, but no gene fusions were found. Gene expression profiling revealed several biological pathways that are upregulated in AFX, including tumor associated macrophage response, GPCR signaling, and epithelial to mesenchymal transition (EMT). To further investigate the presence of EMT in AFX, we conducted a gene expression meta-analysis that incorporated RNA-seq data from dermal fibroblasts and keratinocytes. Ours is the first study to employ high throughput sequencing for molecular profiling of AFX. These data provide valuable insights to inform models of carcinogenesis and additional research towards tumor-directed therapy.

Li Q, Huang H, He Z, et al.
Regulatory effects of antitumor agent matrine on FOXO and PI3K-AKT pathway in castration-resistant prostate cancer cells.
Sci China Life Sci. 2018; 61(5):550-558 [PubMed] Related Publications
We previously demonstrated that matrine could inhibit the proliferating, migrating, as well as invading processes of both PC-3 and DU145 cells. However, the underlying molecular mechanisms have not yet been clearly defined. In this study, using various techniques such as high throughput sequencing technology, bioinformatics, quantitative real-time PCR, and immunoblot analysis, we aimed to understand whether matrine serves as a novel regulator of FOXO and PI3K-AKT signaling pathway. DU145 and PC-3 cell lines were cultured for 24 h in vitro. Cells were treated with either matrine or control serum for 48 h, followed by extraction of total RNA. The RNA was sequenced using HiSeq 2500 high-throughput sequencing platform (Illumina). A gene library was established and quality analysis of read data carried out. Integrated database from the website DAVID was used to analyze Gene Ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway of differential genes was used for pathway analysis, screening for fold differences of more than two times. The FOXO and PI3K-AKT signaling pathways were screened, and expression levels of mRNA and core protein detected by real-time PCR and immunoblotting, respectively. High throughput sequencing and GO analysis revealed that differentially expressed genes before and after treatment played an important role in cell metabolic process, growth process, anatomical structure formation, cellular component organization, and biological regulation. KEGG signal pathway analysis revealed that FOXO and PI3K-AKT signal pathways had a significant difference between before and after matrine-treated androgen-independent prostate cancer cells PC-3 and DU145. Real-time PCR showed that matrine treatment led to a significant increase in the expression levels of FOXO1A, FOXO3A, FOXO4, and FOXO6 in DU145 and PC-3 cells (P<0.01 or P<0.05), whereas the PI3K expression levels decreased (P<0.01). Similarly, immunoblotting revealed a significant increase (P<0.05) in the expression levels of FOXO1A FOXO3A, FOXO4, and FOXO6 in both PC-3 and DU145 cells, whereas PI3K expression levels decreased (P<0.05). Matrine had a broad regulating effect on the mRNA expression profiles of both PC-3 and DU145 cells. Matrine may inhibit cell proliferation, migration, as well as invasion, and induce apoptosis in both PC-3 and DU145 cells through FOXO and PI3K-AKT signaling pathways. Matrine could therefore be used as a complementary drug to present chemotherapeutic agents, for treating androgen-independent prostate cancer.

Yang Y, Blee AM, Wang D, et al.
Loss of FOXO1 Cooperates with TMPRSS2-ERG Overexpression to Promote Prostate Tumorigenesis and Cell Invasion.
Cancer Res. 2017; 77(23):6524-6537 [PubMed] Free Access to Full Article Related Publications
E26 transformation-specific transcription factor ERG is aberrantly overexpressed in approximately 50% of all human prostate cancer due to

Wang Y, Tang K, Zhao J, et al.
FOXO4 expression is associated with the occurrence and outcome of seizures: An RNA-sequencing analysis of low-grade gliomas.
Seizure. 2017; 52:41-45 [PubMed] Related Publications
PURPOSE: Epileptic seizures account for most of the initial symptoms in patients with low-grade gliomas (LGGs). Nevertheless, the molecular mechanisms of tumor-associated seizures remain unclear. This study investigated the genetic changes associated with the occurrence and outcome of seizures in patients with LGGs.
METHODS: The clinical characteristics and gene profile data of 86 patients with LGGs were collected from the Chinese Glioma Genome Atlas database. Gene expression was analyzed based on whole-genome RNA sequencing. The genes with significantly different expressions between patients with and without seizures were identified. Additionally, the Engel Epilepsy Surgery Outcome Scale was applied to evaluate the seizure outcomes at 6 months after tumor resection.
RESULTS: In patients with LGGs, the expression of Forkhead Box O4 (FOXO4) was significantly different between the seizure and non-seizure groups, and high FOXO4 expression was found to be associated with a low risk of seizure occurrences (p=0.026). This result was validated by using the clinical information and RNA sequence data from The Cancer Genome Atlas database (p=0.005). FOXO4 was additionally identified as a predictor of seizure outcomes in patients with LGGs at 6 months after tumor resection (p=0.018).
CONCLUSIONS: The results of our genomic analysis suggest that low FOXO4 expression is a significant risk factor for epileptic seizures in patients with LGGs and is associated with the seizure outcome. FOXO4 may be a potential therapeutic target for tumor-associated epilepsy.

Zhang F, Virshup DM, Cheong JK
Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis.
Oncogene. 2018; 37(3):363-376 [PubMed] Free Access to Full Article Related Publications
Evasion of forkhead box O (FOXO) family of longevity-related transcription factors-mediated growth suppression is necessary to promote cancer development. Since somatic alterations or mutations and transcriptional dysregulation of the FOXO genes are infrequent in human cancers, it remains unclear how these tumour suppressors are eliminated from cancer cells. The protein stability of FOXO3A is regulated by Casein Kinase 1 alpha (CK1α) in an oncogenic RAS-specific manner, but whether this mode of regulation extends to related FOXO family members is unknown. Here we report that CK1α similarly destabilizes FOXO4 in RAS-mutant cells by phosphorylation at serines 265/268. The CK1α-dependent phosphoregulation of FOXO4 is primed, in part, by the PI3K/AKT effector axis of oncogenic RAS signalling. In addition, mutant RAS coordinately elevates proteasome subunit expression and proteolytic activity to eradicate nuclear FOXO4 proteins from RAS-mutant cancer cells. Importantly, dual inhibition of CK1α and the proteasome synergistically inhibited the growth of multiple RAS-mutant human cancer cell lines of diverse tissue origin by blockade of nuclear FOXO4 degradation and induction of caspase-dependent apoptosis. Our findings challenge the current paradigm that nuclear export regulates the proteolysis of FOXO3A/4 tumour suppressors in the context of cancer and illustrates how oncogenic RAS-mediated degradation of FOXOs, via post-translational mechanisms, blocks these important tumour suppressors.

Kim CG, Lee H, Gupta N, et al.
Role of Forkhead Box Class O proteins in cancer progression and metastasis.
Semin Cancer Biol. 2018; 50:142-151 [PubMed] Free Access to Full Article Related Publications
It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis.

Yang H, Cao T, Gao L, et al.
The incidence and distribution characteristics of MLL rearrangements in Chinese acute myeloid leukemia patients by multiplex nested RT-PCR.
Technol Health Care. 2017; 25(S1):259-265 [PubMed] Related Publications
Occurrence of MLL (Mixed Lineage Leukemia) gene rearrangements indicates poor prognosis in acute myeloid leukemia (AML) patients. This is the first study to report the positive rate and distribution characteristics of MLL rearrangements in AML patients in north China. We used multiplex nested real time PCR (RT-PCR) to screen for incidence of 11 MLL rearrangements in 433 AML patients. Eleven MLL rearrangements included (MLL-PTD, MLL-AF9, MLL-ELL, MLL-AF10, MLL-AF17, MLL-AF6, MLL-ENL, MLL-AF1Q, MLL-CBP, MLL-AF1P, MLL-AFX1). There were 68 AML patients with MLL rearrangements, and the positive rate was 15.7%. MLL-PTD (4.84%) was detected in 21 patients, MLL-AF9 in 15, (3.46%), MLL-ELL in 10 (2.31%), MLL-AF10 in 8 (1.85%), MLL-AF1Q in 2 (0.46%), 3 cases each of MLL-AF17, MLL-AF6, MLL-ENL (0.69% each), a and single case each of MLL-CBP, MLL-AF1P, and MLL-AFX1 (0.23% each). The highest rate of MLL rearrangements was found in 24 patients with M5 subtype AML, occurring in 24 cases (35.3%). MLL rearrangements occurred in 21 patients with M2 subtype AML (30.9%), and in 10 patients with M4 subtype AML (14.7%). Screening fusion genes by multiplex nested RT-PCR is a convenient, fast, economical, and accurate method for diagnosis and predicting prognosis of AML.

Antonescu CR, Owosho AA, Zhang L, et al.
Sarcomas With CIC-rearrangements Are a Distinct Pathologic Entity With Aggressive Outcome: A Clinicopathologic and Molecular Study of 115 Cases.
Am J Surg Pathol. 2017; 41(7):941-949 [PubMed] Free Access to Full Article Related Publications
CIC-DUX4 gene fusion, resulting from either a t(4;19) or t(10;19) translocation, is the most common genetic abnormality detected in EWSR1-negative small blue round cell tumors. Following their discovery it was debated if these tumors should be classified as variants of Ewing sarcoma (ie, atypical Ewing sarcoma) or as a stand-alone pathologic entity. As such the WHO classification temporarily grouped the CIC-rearranged tumors under undifferentiated sarcomas with round cell phenotype, until further clinical evidence was available. However, most studies reported so far include small series with limited follow-up information, which preclude a more definitive assessment. The present work investigates the clinicopathologic features of a large cohort of sarcomas with CIC gene rearrangement, to define their clinical presentation, morphologic spectrum, and outcome. Our study further examines the overall survival of the CIC-positive cohort compared with a control group of EWSR1-rearranged Ewing sarcoma matched for age and stage. The study cohort included 115 patients, with a mean age of 32 years and a slight male predominance. Most tumors occurred in the soft tissue (86%), predominantly deep-seated and equally divided among trunk and extremity, followed by visceral locations (12%) and rarely in the bone (3%). Microscopically, most tumors showed round to ovoid cytomorphology but half of the cases showed also focal areas of spindling and epithelioid/rhabdoid phenotype, with frequent myxoid stromal changes. Variable CD99 reactivity was seen in 84% cases, with a diffuse pattern only in 23% of cases, whereas nuclear WT1 was seen in 92%. A CIC-DUX4 fusion was detected in 57% of cases, with either DUX4 on 4q35 (35%) or on 10q26 in 25 (22%) cases. No FOXO4 gene rearrangements were present in 39 cases tested. Clinical follow-up was available in 57 patients, with a 5-year survival of 43%, which was significantly lower than the 77% 5-year survival in the control Ewing sarcoma group (P=0.002). Our findings show that CIC-DUX4 sarcomas occur most commonly in young adults within the somatic soft tissues, having a wide spectrum of morphology including round, epithelioid and spindle cells, and associated with an aggressive clinical course, with an inferior overall survival compared with Ewing sarcoma. The results support the classification of CIC-rearranged tumors as an independent molecular and clinical subset of small blue round cell tumors distinct from Ewing sarcoma.

Sugita S, Hasegawa T
Practical use and utility of fluorescence in situ hybridization in the pathological diagnosis of soft tissue and bone tumors.
J Orthop Sci. 2017; 22(4):601-612 [PubMed] Related Publications
During routine pathological examination, fluorescence in situ hybridization (FISH) plays a significant role in the genetic analysis of samples. FISH can detect genetic abnormalities such as chromosomal translocations, gene amplifications, and deletions in formalin-fixed, paraffin-embedded (FFPE) specimens. Due to its practical advantages, FISH is already used in many pathology laboratories. It is especially useful for the diagnosis of translocation-related sarcomas (TRSs), which comprise about 25% of soft tissue sarcomas. Because TRSs have specific chimeric genes derived from characteristic chromosomal translocations, their diagnosis would not be possible without FISH. FISH significantly contributes to the genetic confirmation of TRS. Analysis using next-generation sequencing (NGS), the latest powerful method for comprehensive genomic analysis, has recently revealed many kinds of chromosomal translocations in various TRSs. We often use experimental results to create custom probes for FISH and have applied NOCA2 split probes and CIC split, CIC-FOXO4 fusion probes to the pathological diagnosis of soft tissue angiofibroma and CIC-rearranged sarcoma, respectively. Some chimeric fusions detected by NGS induce the expression of related proteins and their detection using immunohistochemistry is beneficial for pathological diagnosis. We previously identified characteristic FOSB expression in pseudomyogenic hemangioendothelioma (PHE) with a specific SERPINE1-FOSB fusion, revealing the usefulness of FOSB immunohistochemistry in the differential diagnosis of PHE and its mimics. Finally, we participated in a central review of a clinical trial of trabectedin monotherapy. We guaranteed an accurate diagnosis by using FISH and genetic confirmation to select appropriate TRS patients and thereby confirm the accuracy of the patient enrollment of the clinical trial. FISH is an essential tool for the pathological diagnosis of soft tissue and bone tumors. It can detect various genetic abnormalities in an "in situ" fashion using FFPE specimens on glass slides during routine examination. It is also an excellent tool for translating the latest experimental findings to practical use in routine pathological diagnosis. Further instrumental improvements in FISH will help it to become the universal method for the genetic analysis of pathological diagnoses.

Weiss A, Vanchinathan V, Kwon EJ
Aberrant tyrosinase expression in an atypical fibroxanthoma: A case report.
J Cutan Pathol. 2017; 44(5):467-469 [PubMed] Related Publications
Atypical fibroxanthoma (AFX) is a histologic mimicker of a variety of spindle cell neoplasms, and careful microscopic and immunohistochemical evaluation is critical in establishing the correct diagnosis. Here we report the histologic and immunohistochemical work up of a 1 cm nodule involving the left dorsal hand of a 66-year-old patient. Light microscopy revealed fascicles of spindled and pleomorphic cells within the dermis showing increased mitotic activity occurring in the background of sun-damaged skin. There were numerous multinucleated cells with hyperchromatic nuclei and ample finely vacuolated or foamy cytoplasms. There was strong and diffuse CD10 and patchy CD68 expression among the spindled cells and multinucleated cells. The neoplastic cells did not show immunoreactivity against S100, p75-NGFR, HMB-45 or a panel of keratinocytic, vascular and smooth muscle markers. Tyrosinase and Melan-A were not expressed within the spindle cell component of this neoplasm; however, there was tyrosinase expression among numerous multinucleated giant cells. Melan-A expression was also observed among rare multinucleated giant cells. Tyrosinase expression has not previously been reported in AFX.

Su W, Li S, Chen X, et al.
GABARAPL1 suppresses metastasis by counteracting PI3K/Akt pathway in prostate cancer.
Oncotarget. 2017; 8(3):4449-4459 [PubMed] Free Access to Full Article Related Publications
Metastasis remains the primary cause of prostate cancer (CaP)-related death. Using a genome wide shRNA screen, we identified GABARAPL1 as a potential CaP metastasis suppressor. GABARAPL1 mRNA levels inversely correlate with the invasive potential of a panel of human CaP cell lines. Lower mRNA levels correlate with higher Gleason scores in clinical CaP tumor samples. Moreover, Kaplan-Meier curves analysis showed that GABARAPL1 down-regulation in cancer tissues is associated with decreased disease-free survival in CaP patients. Knockdown of GABARAPL1 in human LNCaP cells results in increased invasion in vitro and lymph node metastasis in vivo. Vice versa, ectopic expression of GABARAPL1 decreases the invasiveness of CWR22Rv1 cells. Our previous in vitro shRNA screening identified FOXO4, a PI3K/Akt-inactivating downstream target, as a potential CaP metastasis suppressor. We show here that silencing FOXOs leads to reduced GABARAPL1 expression and enhanced invasion in LNCaP cells. Transfection of constitutively-activated Akt (myr-Akt) increased the invasion of LNCaP cells, which is associated with the inactivation of FOXOs and decreased GABARAPL1 expression. Indeed, forced expression of GABARAPL1 reversed the increased invasiveness of LNCaP/myr-Akt cells. Finally, immunohistochemistry analysis shows that Akt phosphorylation is negatively correlated with GABARAPL1 expression in human CaP tissues. Taken together, our data indicate that the suppression of FOXOs-GABARAPL1 signaling by Akt is an important mechanism for CaP progression and metastasis.

Choy B, Hyjek E, Montag AG, et al.
High prevalence of MiTF staining in undifferentiated pleomorphic sarcoma: caution in the use of melanocytic markers in sarcoma.
Histopathology. 2017; 70(5):734-745 [PubMed] Related Publications
AIMS: The diagnosis of undifferentiated pleomorphic sarcoma (UPS) may be challenging, as other lesions with undifferentiated spindle cell morphology must be excluded, including melanoma. Microphthalmia-associated transcription factor (MiTF) stains naevi and epithelioid melanomas, as well as some mesenchymal neoplasms. The aim of this study was to evaluate the prevalence of MiTF and melanocytic markers in UPS and a subset of atypical fibroxanthoma (AFX).
METHODS AND RESULTS: MiTF, SOX10, Melan-A, HMB45 and S100 immunostaining was performed on resection specimens from 19 UPSs and five AFXs. Next-generation sequencing of 50 genes was performed in UPSs to exclude dedifferentiated melanoma. In 17 of 19 UPSs (89%), tumour cells showed nuclear positivity for MiTF that was not eliminated by casein block. Three showed focal nuclear staining for HMB45, which was eliminated by casein block. One showed focal nuclear vacuole staining for S100 with red but not brown chromogen. None expressed SOX10 or Melan-A. Mutational analysis of 15 UPSs with adequate DNA showed no mutations within hotspot regions of BRAF, KIT, or NRAS. Four of five AFXs (80%) stained with MiTF; other markers were negative.
CONCLUSION: There is a high prevalence of nuclear MiTF expression in UPSs (89%) and AFXs (80%). Rare UPSs showed non-specific nuclear HMB45 or S100 staining. These findings argue against using MiTF in isolation to differentiate between UPS or AFX and melanoma, and caution in interpreting focal staining for a single additional melanocytic marker. Casein block may eliminate non-specific staining. MiTF should be used to support a diagnosis of melanoma only if multiple melanocytic markers are positive.

Ryu KJ, Park C, Hong M, et al.
FOXO4 expression is related to stem cell-like properties and resistance to treatment in diffuse large B-cell lymphoma.
Oncotarget. 2017; 8(2):2466-2476 [PubMed] Free Access to Full Article Related Publications
Cancer stem cells are proposed to be responsible for resistance to chemotherapeutic agents, including doxorubicin. As phenylbutyrate enhances cancer stem cell properties, we analyzed surviving lymphoma cells after treatment with doxorubicin and phenylbutyrate. Human B-cell lymphoma cell lines, including Toledo, BJAB, Daudi, and Raji were incubated with IC90 concentrations of doxorubicin (300 nM) or phenylbutyrate (8 mM). After 48 h, live cells were sorted and analyzed for their resistance to treatment by examining gene expression profiles using cDNA microarray and biological characteristics. A small fraction of lymphoma cells that survived after drug application showed higher expression of stem cell markers (NANOG, and SOX2) and superior ability of self-renewal and sphere formation, compared to untreated control cells (P < 0.05). Gene expression analysis disclosed elevated expression of 41 genes, including FOXO4, in the four lymphoma cell lines that survived drug treatment. Overexpression of FOXO4 was evident in lymphoma cells surviving after phenylbutyrate treatment and refractory patient-derived lymphoma cells. Induction of FOXO4 expression promoted self-renewal whereas its knockdown led to diminished expression of stem cell markers and colony-forming ability of lymphoma cells. Immunohistochemical staining for FOXO4 in tumor tissue of diffuse large B-cell lymphoma revealed nuclear localization and significant association with poor prognosis. In conclusion, lymphoma cells resistant to treatment exhibit stem cell-like properties and enhanced FOXO4 expression. The presence of FOXO4-expressing cells in tumor tissue and their association with poor survival supports a role of FOXO4 in promoting stem cell properties resulting in poor outcomes.

Kumar S, Batra A, Kanthaje S, et al.
Crosstalk between microRNA-122 and FOX family genes in HepG2 cells.
Exp Biol Med (Maywood). 2017; 242(4):436-440 [PubMed] Free Access to Full Article Related Publications
MicroRNA-122 (miR-122) is liver specific and plays an important role in physiology as well as diseases including hepatocellular carcinoma (HCC). Downregulation of miR-122 in HCC modulates apoptosis. Similarly, the putative targets of miR-122, the forkhead box (FOX) family genes also play an important role in the regulation of apoptosis. Hence, an interplay between miR-122 and FOX family genes has been explored in this study. Initially, an augmentation of apoptosis was noticed in HepG2 cells after transfection with miR-122. Further, the predicted miR-122 targets, the FOX family genes ( FOXM1b, FOXP1, and FOXO4) were selected via in silico analysis based on their role in apoptosis. We checked the expression of all these genes at transcript level after the transfection of miR-122 and found that the relative expression of FOXP1 and FOXM1b was significantly downregulated (p < 0.005) and that of FOXO4 was upregulated (p < 0.005). Thus, the finding indicates deregulation of these FOX genes as a result of miR-122 augmentation might be involved in the modulation of apoptosis.

Franz F, Weidinger C, Krause K, et al.
The Transcriptional Regulation of FOXO Genes in Thyrocytes.
Horm Metab Res. 2016; 48(9):601-6 [PubMed] Related Publications
FOXO transcription factors are key regulators of DNA damage repair, proliferation and apoptosis in thyrocytes. Thyroid malignancies show impaired FOXO function. In this study, we investigated the transcriptional regulation of FOXO isoforms in thyroid epithelial cells. mRNA expression of FOXO isoforms (FOXO1, 3 and 4) was determined in FRTL-5 cells stimulated with different growth factors and H2O2. Furthermore, the impact of PI3K/AKT signalling on FOXO transcription was investigated in PI3K p110α mutant FRTL-5 cells and regulatory dependence of FOXO transcription on FOXO was studied in FRTL-5 cells with hFOXO3 overexpression. Finally, mRNA expression levels of FOXO isoforms were determined in human epithelial thyroid tumours. Growth factor deprivation induced transcription of FOXO1, 3 and 4, whereas insulin stimulation decreased FOXO1 and FOXO4 transcription in FRTL-5 cells. Inhibition of the PI3K/AKT cascade amplified FOXO1 and FOXO4 expression. In contrast, H2O2 and TSH did not influence FOXO transcription in thyrocytes. Overexpression of PI3K p110α inhibited FOXO3 and induced FOXO4 transcription. In human thyroid tumours, FOXO1 and FOXO3 mRNA levels were significantly downregulated in papillary thyroid carcinoma when compared to normal tissues. In contrast, follicular thyroid carcinomas showed significant upregulation of FOXO4 mRNA.In this paper, we demonstrate an influence of PI3K signalling on FOXO transcription in thyrocytes. Moreover, we show that thyroid cancers exhibit alterations in FOXO transcription besides the previously reported alterations in posttranslational FOXO3 regulation. These findings may add to the concept of targeting the PI3K pathway in advanced thyroid cancers.

Li J, Jiang Z, Han F, et al.
FOXO4 and FOXD3 are predictive of prognosis in gastric carcinoma patients.
Oncotarget. 2016; 7(18):25585-92 [PubMed] Free Access to Full Article Related Publications
Forkhead box (FOX) transcription factor family plays an important role in cancer growth and metastasis. This study aimed to determine the predictive ability of FOX genes in gastric carcinoma. A total of 360 patients with gastric from The Cancer Genome Atlas (TCGA) cohorts were collected in this study. The expression profile of FOX family were obtained from the TCGA RNAseq database. Clinicopathological characteristics, including age, gender, tumor node metastasis (TNM), tumor grade, and overall survival were collected. Univariate and multivariate Cox proportional hazards model were used to assess the risk factors for survival, and the results were further validated in in-house cohort. In the TCGA cohort, FOXO4 (HR = 0.613, 95%CI 0.452-0.832) and FOXD3 (HR = 1.704, 95%CI 1.212-2.397) were shown independently predictive of overall survival in gastric cancer after Cox proportional hazards analysis. The finding was validated in our in-house cohort, which demonstrated that both FOXO4 and FOXD3 were independent predictors for overall survival (FOXO4 high, HR: 0.445, 95%CI 0.277-0.715, P = 0.001, FOXD3 high, HR: 1.927, 95%CI 1.212-3.063, P = 0.006) and disease free survival (FOXO4 high, HR: 0.628, 95%CI 0.420-0.935, P = 0.022, FOXD3 high, HR: 1.698, 95%CI 1.136-2.540, P = 0.010).Collectively, FOX family paly critical roles in gastric cancer, and FOXO4 and FOXD3 were identified as independent prognostic factors for survival outcomes of gastric cancer. Further functional study is needed to understand more about FOX family in gastric cancer.

Helbig D, Ihle MA, Pütz K, et al.
Oncogene and therapeutic target analyses in atypical fibroxanthomas and pleomorphic dermal sarcomas.
Oncotarget. 2016; 7(16):21763-74 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Until now, almost nothing is known about the tumorigenesis of atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS). Our hypothesis is that AFX is the non-infiltrating precursor lesion of PDS.
MATERIALS AND METHODS: We performed the world-wide most comprehensive immunohistochemical and mutational analysis in well-defined AFX (n=5) and PDS (n=5).
RESULTS: In NGS-based mutation analyses of selected regions by a 17 hotspot gene panel of 102 amplicons we could detect TP53 mutations in all PDS as well as in the only analyzed AFX and PDS of the same patient. Besides, we detected mutations in the CDKN2A, HRAS, KNSTRN and PIK3CA genes.Performing immunohistochemistry for CTNNB1, KIT, CDK4, c-MYC, CTLA-4, CCND1, EGFR, EPCAM, ERBB2, IMP3, INI-1, MKI67, MDM2, MET, p40, TP53, PD-L1 and SOX2 overexpression of TP53, CCND1 and CDK4 was seen in AFX as well as in PDS. IMP3 was upregulated in 2 AFX (weak staining) and 4 PDS (strong staining).FISH analyses for the genes FGFR1, FGFR2 and FGFR3 revealed negative results in all tumors.
CONCLUSIONS: UV-induced TP53 mutations as well as CCND1/CDK4 changes seem to play essential roles in tumorigenesis of PDS. Furthermore, we found some more interesting mutated genes in other oncogene pathways (activating mutations of HRAS and PIK3CA). All AFX and PDS investigated immunohistochemically presented with similar oncogene expression profiles (TP53, CCND1, CDK4 overexpression) and the single case with an AFX and PDS showed complete identical TP53 and PIK3CA mutation profiles in both tumors. This reinforces our hypothesis that AFX is the non-infiltrating precursor lesion of PDS.

Zhang T, Zhang X, Shi W, et al.
The DNA damage repair protein Ku70 regulates tumor cell and hepatic carcinogenesis by interacting with FOXO4.
Pathol Res Pract. 2016; 212(3):153-61 [PubMed] Related Publications
The capability for DNA double-strand breaks (DSBs) repair is crucial for chromatin dramatic changes and DNA damage in normal and tumor cells. We have investigated the clinicopathological significance of DNA repair gene Ku70 expression in hepatocellular carcinoma. We demonstrated that Ku70 expression was significantly increased in HCC, and the high expression levels were significantly correlated with gender, maximal tumor size, HBsAg status, tumor nodule number, distant metastasis and Ki-67 expression by clinicopathological analysis. The Kaplan-Meier survival curves revealed that increasing Ku70 expression was associated with poor prognosis in HCC patients. Ku70 expression was an independent prognostic marker of overall HCC patient survival in a multivariate analysis. In addition, through serum starvation and refeeding, we found that Ku70 was lowly expressed in serum-starved Huh7 and HepG2 HCC cells, and was progressively increased after serum-additioning. Furthermore, knockdown of Ku70 inhibited cell proliferation accompanying an increase in p27(kip1) levels through interacting with FOXO4. These findings provide a rational framework for the progression of HCC and could be a potential molecular therapy by targeting the Ku70-FOXO4 interaction.

Tian W, Liu J, Pei B, et al.
Identification of miRNAs and differentially expressed genes in early phase non-small cell lung cancer.
Oncol Rep. 2016; 35(4):2171-6 [PubMed] Related Publications
To explore the potential therapeutic targets of early‑stage non-small cell lung cancer (NSCLC), gene microarray analysis was conducted. The microarray data of NSCLC in stage IA, IB, IIA, and IIB (GSE50081), were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in IB vs. IA, IIA vs. IB, IIB vs. IIA were screened out via R. ToppGene Suite was used to get the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the DEGs. The GeneCoDis3 database and Cytoscape software were used to construct the transcriptional regulatory network. In total, 25, 17 and 14 DEGs were identified in IB vs. IA, IIA vs. IB, IIB vs. IIA of NSCLC, respectively. Some GO terms and pathways (e.g., extracellular space, alveolar lamellar body, bioactivation via cytochrome P450 pathway) were found significantly enriched in DEGs. Genes S100P, ALOX15B, CCL11, NLRP2, SERPINA3, FoxO4 and hsa-miR-491 may play important roles in the development of early-stage NSCLC. Thus, by bioinformatics analysis the key genes and biological processes involving in the development of early-stage NSCLC could be established, providing more potential references for the therapeutic targets.

Wang W, Zhou PH, Hu W
Overexpression of FOXO4 induces apoptosis of clear-cell renal carcinoma cells through downregulation of Bim.
Mol Med Rep. 2016; 13(3):2229-34 [PubMed] Related Publications
Forkhead box O4 (FOXO4) has been reported to be a novel tumor suppressor gene in gastrointestinal cancers; however, its role in clear‑cell renal carcinoma cells (ccRCC) has remained largely elusive. The present study assessed the expression levels of FOXO4 in RCC tissues and cells. Furthermore, the effects of vector‑mediated overexpression of FOXO4 on the apoptotic rate of the 786‑0 and Caki‑1 cell lines and the role of Bim in this process were investigated. The results demonstrated that the protein and mRNA expression levels of FOXO4 were decreased in renal cancer tissues and cell lines compared with those in normal tissues and cell lines. FOXO4 overexpression significantly increased the apoptotic rate of ccRCC cells in vitro, along with increased protein expression levels of Bim, cleaved‑caspase 3, B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax) and cytochrome c, as well as a decrease in Bcl‑2 expression. Of note, the apoptotic effects of FOXO4 overexpression in 786‑0 cells were inhibited by small interfering RNA‑mediated knockdown of Bim. The results of the present study indicated that FOXO4 has an inhibitory effect in ccRCC, at least in part through inducing apoptosis via upregulation of Bim in the mitochondria-dependent pathway.

Li J, Hu L, Tian C, et al.
microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4.
BMC Mol Biol. 2015; 16:24 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Dysregulation of microRNA-150 (miR-150) is commonly observed in solid tumor and has been reported to be involved in multiple important biological processes, such as cell proliferation, apoptosis, and metastasis. Elevated miR-150 level was also detected in cervical carcinoma, whereas its function in cancer progression has not been studied yet.
METHODS: The expression of miRNA-150 in cervical carcinoma was compared with normal cervical tissue and using qRT-PCR. The effects of miR-150 on cell cycle and apoptosis, as well as the expression of cycle- and apoptosis-related genes, were determined using flow cytometry, TUNEL assay, qRT-PCR, and Western blot, respectively. The direct target of miR-150 was confirmed using 3' untranslated region (UTR) luciferase reporter assay.
RESULTS: miR-150 promotes cervical cancer cell survival and growth, while the inhibition of miR-150 suppresses these actions. miR-150 also induced the cell cycle progression from G1/G0 to S phase, resulting in an enhancement of growth. Several cell cycle- and apoptosis-related genes, CyclinD1, p27, BIM, and FASL were modulated by miR-150. Moreover, miR-150 directly reduced the expression of FOXO4, which regulates the expression of CyclinD1, p27, BIM, and FASL, by targeting its 3' UTR.
CONCLUSION: Taken together, our data demonstrated that elevated miR-150 targets FOXO4 expression and therefore regulates multiple genes expression, resulting in cervical cancer cell growth and survival.

Coomans de Brachène A, Demoulin JB
FOXO transcription factors in cancer development and therapy.
Cell Mol Life Sci. 2016; 73(6):1159-72 [PubMed] Related Publications
The forkhead box O (FOXO) transcription factors are considered as tumor suppressors that limit cell proliferation and induce apoptosis. FOXO gene alterations have been described in a limited number of human cancers, such as rhabdomyosarcoma, leukemia and lymphoma. In addition, FOXO proteins are inactivated by major oncogenic signals such as the phosphatidylinositol-3 kinase pathway and MAP kinases. Their expression is also repressed by micro-RNAs in multiple cancer types. FOXOs are mediators of the tumor response to various therapies. However, paradoxical roles of FOXOs in cancer progression were recently described. FOXOs contribute to the maintenance of leukemia-initiating cells in acute and chronic myeloid leukemia. These factors may also promote invasion and metastasis of subsets of colon and breast cancers. Resistance to treatment was also ascribed to FOXO activation in multiple cases, including targeted therapies. In this review, we discuss the complex role of FOXOs in cancer development and response to therapy.

Chen B, Bao Y, Chen X, et al.
Mir-664 promotes osteosarcoma cells proliferation via downregulating of FOXO4.
Biomed Pharmacother. 2015; 75:1-7 [PubMed] Related Publications
BACKGROUND: Uncontrol cell growth and proliferation is acknowledged to responsible for cancer-related deaths by disorganizing the balance of growth promotion and growth limitation. Aberrant expression of microRNA play essential roles in cancer development, leads to cell proliferation, growth and survival, and promotes the development of various human tumors, including osteosarcoma. Elucidating the molecular mechanism of this abnormality in osteosarcoma carcinogenesis may improve diagnostic and therapeutic strategies for this malignancy.
METHODS: The expression of miR-664 in osteosarcoma cell lines and osteosarcoma tissues was examined using real-time PCR. The effects of miR-664 on osteosarcoma cell proliferation were evaluated by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, colony formation and Anchorage-independent growth ability assay. The effect of miR-664 on FOXO4 was determine by luciferase assays and western blot assay.
RESULTS: The expression of miR-664 was markedly upregulated in osteosarcoma cell lines and tissues, and upregulation of miR-664 enhanced, whereas downregulation of miR-664 inhibited the proliferation of osteosarcoma cells in vivo. Furthermore, using bioinformatics and biological approaches, we showed that miR-664 directly targeted and suppressed the expression of tumor suppressors FOXO4.
CONCLUSIONS: Our findings suggest that miR-664 functions as an oncogene miRNA and has an important role in promoting human osteosarcoma cell proliferation by suppressing FOXO4 expression. These data suggests that miR-664 may represent a novel therapeutic target of microRNA-mediated suppression of cell proliferation in osteosarcoma.

Zhang T, Wan C, Shi W, et al.
The RNA-binding protein Sam68 regulates tumor cell viability and hepatic carcinogenesis by inhibiting the transcriptional activity of FOXOs.
J Mol Histol. 2015; 46(6):485-97 [PubMed] Related Publications
Src associated in mitosis (Sam68; 68 kDa) is a KH domain RNA-binding protein that belongs to the signal transduction and activation of RNA family, and has been implicated in the oncogenesis and progression of several human cancers. Our study aimed to investigated the clinicopathologic significance of Sam68 expression and its role in cell proliferation and the underlying molecular mechanism in hepatocellular carcinoma (HCC). We demonstrated that Sam68 expression was significantly increased in HCC and high expression of Sam68 was significantly associated with Edmondson grade, tumor size, tumor nodule number, HBsAg status and Ki-67 expression. The Kaplan-Meier survival curves showed that increased expression of Sam68 was correlated with poor prognosis in HCC patients and served as an independent prognostic marker of overall survival in a multivariable analysis. In addition, through serum starvation and refeeding assay, we demonstrated that Sam68 was lowly expressed in serum-starved HCC cells, and was progressively increased after serum-additioning. Furthermore, siRNA knockdown of endogenous Sam68 inhibited cell proliferation and tumourigenicity of HCC cells in vitro, through blocking the G1 to S phase transition. Moreover, we reported that the anti-proliferative effect of silencing Sam68 was accompanied with up-regulated expression of cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), enhanced transactivation of FOXO factors (FOXO4), and dysreuglation of Akt/GSK-3β signaling. Taken together, these findings provide a rational framework for the progression of HCC and thereby indicated that Sam68 might be a novel and useful prognostic marker and a potential target for human HCC treatment.

Zhou L, Shang Y, Jin Z, et al.
UHRF1 promotes proliferation of gastric cancer via mediating tumor suppressor gene hypermethylation.
Cancer Biol Ther. 2015; 16(8):1241-51 [PubMed] Free Access to Full Article Related Publications
Epigenetic changes play significant roles in cancer development. UHRF1, an epigenetic regulator, has been shown to be overexpressed and to coordinate tumor suppressor gene (TSG) silencing in several cancers. In a previous study, we found that UHRF1 promoted gastric cancer (GC) invasion and metastasis. However, the role and underlying mechanism of UHRF1 in GC carcinogenesis remain largely unknown. In the present study, we investigated UHRF1 expression and function in GC proliferation and explored its downstream regulatory mechanism. The results demonstrated that UHRF1 overexpression was an independent and significant predictor of GC prognosis. Downregulation of UHRF1 suppressed GC proliferation and growth in vitro and in vivo, and UHRF1 upregulation showed opposite effects. Furthermore, downregulation of UHRF1 reactivated 7 TSGs, including CDX2, CDKN2A, RUNX3, FOXO4, PPARG, BRCA1 and PML, via promoter demethylation. These results provide insight into the GC proliferation process, and suggest that targeting UHRF1 represents a new therapeutic approach to block GC development.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MLLT7, Cancer Genetics Web: http://www.cancer-genetics.org/MLLT7.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999