IRF7

Gene Summary

Gene:IRF7; interferon regulatory factor 7
Aliases: IMD39, IRF-7, IRF7A, IRF7B, IRF7C, IRF7H, IRF-7H
Location:11p15.5
Summary:IRF7 encodes interferon regulatory factor 7, a member of the interferon regulatory transcription factor (IRF) family. IRF7 has been shown to play a role in the transcriptional activation of virus-inducible cellular genes, including interferon beta chain genes. Inducible expression of IRF7 is largely restricted to lymphoid tissue. Multiple IRF7 transcript variants have been identified, although the functional consequences of these have not yet been established. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:interferon regulatory factor 7
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (43)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cancer Gene Expression Regulation
  • DNA Methylation
  • Interferons
  • Down-Regulation
  • T-Lymphocytes
  • fms-Like Tyrosine Kinase 3
  • CpG Islands
  • Oligonucleotide Array Sequence Analysis
  • Lung Cancer
  • Molecular Sequence Data
  • Neoplasm Metastasis
  • Epigenetics
  • Apoptosis
  • Radiation Tolerance
  • Breast Cancer
  • Bladder Cancer
  • Neoplasm Proteins
  • Gene Expression Profiling
  • Chromosome 11
  • Colorectal Cancer
  • MicroRNAs
  • Proto-Oncogene Proteins
  • RNA Interference
  • Interferon-beta
  • Polymerase Chain Reaction
  • Cell Proliferation
  • Gene Silencing
  • Transcriptional Activation
  • Tumor Suppressor Proteins
  • Interferon Regulatory Factors
  • DNA-Binding Proteins
  • Ubiquitination
  • Mice, Inbred NOD
  • Signal Transduction
  • Messenger RNA
  • Interferon Regulatory Factor-7
  • Promoter Regions
  • siRNA
  • Interferon-alpha
  • RTPCR
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IRF7 (cancer-related)

Tang XD, Zhang DD, Jia L, et al.
lncRNA AFAP1-AS1 Promotes Migration and Invasion of Non-Small Cell Lung Cancer via Up-Regulating IRF7 and the RIG-I-Like Receptor Signaling Pathway.
Cell Physiol Biochem. 2018; 50(1):179-195 [PubMed] Related Publications
BACKGROUND/AIMS: Accumulating evidence has highlighted the importance of long non-coding RNAs (lncRNAs) as competing endogenous RNAs (ceRNAs) in tumor biology. Among others, actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) has been associated with non-small cell lung cancer (NSCLC). However, it remains unclear how AFAP1-AS1 participates in the development and progression of NSCLC.
METHODS: The peripheral blood samples were collected from patients with NSCLC. White blood cell subsets were classified and levels of interleukin (IL)-10, IL-12 and IFN-γ in serum were measured. We then identified its target gene of AFAP1-AS1 via bioinformatics methods. NSCLC cell line with the highest expression of AFAP1-AS1, i.e. H1975 was selected for in vitro experiments. A series of inhibitor, vector and siRNA were employed to validate the regulatory mechanisms of AFAP1-AS1 in the development and progression of NSCLC. Cell proliferation was detected by MTT assay and EdU staining. Cell migration and invasion, and cell cycle and apoptosis were measured by transwell assay and flow cytometry, respectively.
RESULTS: A high expression of AFAP1-AS1 was identified in NSCLC, alongside with a reduced level of IL-12 and increased levels of IL-10 and interferon (IFN)-γ. Aberrant expressions of AFAP1-AS1 were associated with pathological grade, TNM staging and metastatic potential of NSCLC. AFAP1-AS1 could activate interferon regulatory factor (IRF)7, the retinoid-inducible protein (RIG)-I-like receptor signaling pathway and Bcl-2 in vitro. Over-expression of AFAP1-AS1 promoted NSCLC cell proliferation, invasion and migration while inhibiting cell apoptosis.
CONCLUSION: lncRNA AFAP1-AS1 promotes migration and invasion of non-small cell lung cancer via up-regulating IRF7 and the RIG-I-like receptor signaling pathway.

Dery KJ, Silver C, Yang L, Shively JE
Interferon regulatory factor 1 and a variant of heterogeneous nuclear ribonucleoprotein L coordinately silence the gene for adhesion protein CEACAM1.
J Biol Chem. 2018; 293(24):9277-9291 [PubMed] Free Access to Full Article Related Publications
The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the

Matsumura T, Hida S, Kitazawa M, et al.
Fascin1 suppresses RIG-I-like receptor signaling and interferon-β production by associating with IκB kinase ϵ (IKKϵ) in colon cancer.
J Biol Chem. 2018; 293(17):6326-6336 [PubMed] Free Access to Full Article Related Publications
Fascin1 is an actin-bundling protein involved in cancer cell migration and has recently been shown also to have roles in virus-mediated immune cell responses. Because viral infection has been shown to activate immune cells and to induce interferon-β expression in human cancer cells, we evaluated the effects of fascin1 on virus-dependent signaling via the membrane- and actin-associated protein RIG-I (retinoic acid-inducible gene I) in colon cancer cells. We knocked down fascin1 expression with shRNA retrovirally transduced into a DLD-1 colon cancer and L929 fibroblast-like cell lines and used luciferase reporter assays and co-immunoprecipitation to identify fascin1 targets. We found that intracellular poly(I·C) transfection to mimic viral infection enhances the RIG-I/MDA5 (melanoma differentiation-associated gene 5)-mediated dimerization of interferon regulatory factor 3 (IRF-3). The transfection also significantly increased the expression levels of IRF-7, interferon-β, and interferon-inducible cytokine IP-10 in fascin1-deleted cells compared with controls while significantly suppressing cell growth, migration, and invasion. We also found that fascin1 constitutively interacts with IκB kinase ϵ (IKKϵ) in the RIG-I signaling pathway. In summary, we have identified fascin1 as a suppressor of the RIG-I signaling pathway associating with IκB kinase ϵ in DLD-1 colon cancer cells to suppress immune responses to viral infection.

Mathew NR, Baumgartner F, Braun L, et al.
Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells.
Nat Med. 2018; 24(3):282-291 [PubMed] Free Access to Full Article Related Publications
Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD

Lai Q, Wang H, Li A, et al.
Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells.
Oncogene. 2018; 37(17):2302-2312 [PubMed] Related Publications
IFN-γ-induced PD-L1 expression represents the existence of tumor-specific T cells, which predicts high-response rate to anti-PD-1/L1 therapy, but loss-of-function of IFN signals (e.g., JAK mutation) induces adaptive immune resistance in patients with low-response rate. Interferon regulatory factors (IRF) are frequently epigenetic silenced in carcinogenesis, while the role of methylation in anti-PD-1/L1 therapy remains unclear. We here investigated the methylation status of IFN-γ related genes IRF1/8 and IFN-α/β-related genes IRF3/7 in lung cancer tissues and found that only highly methylated IRF1 and 7 negatively correlated to cd274 (coding PD-L1) expression, similar to JAK mutation. Interestingly, decitibine (DAC) as methylation inhibitor could hypomethylate IRF1/7 to restore PD-L1 level. Meanwhile, IRF7 enhanced constitutive PD-L1 expression, which was independent of IFN-γ though directly promote transcription of PD-L1, leading to abrogating cytotoxic T lymphocytes (CTLs) generation which could be restored by anti-PD-L1 antibody, or siRNA-IRF7. The supplement of DAC to anti-PD-1 therapy in vivo improve the efficiency of anti-tumor with less methylated IRF1/7, more interferon-related genes expression (e.g., CXCL9) and IFN-γ/CD8+ T-cells infiltrations, suggesting that additional treatment of DAC could rescue the ability to response to IFN in lung cancer patients with anti-PD-1/L1 therapy resistance.

Lu L, Zhu F, Zhang M, et al.
Gene regulation and suppression of type I interferon signaling by STAT3 in diffuse large B cell lymphoma.
Proc Natl Acad Sci U S A. 2018; 115(3):E498-E505 [PubMed] Free Access to Full Article Related Publications
STAT3 is constitutively activated in many cancers and regulates gene expression to promote cancer cell survival, proliferation, invasion, and migration. In diffuse large B cell lymphoma (DLBCL), activation of STAT3 and its kinase JAK1 is caused by autocrine production of IL-6 and IL-10 in the activated B cell-like subtype (ABC). However, the gene regulatory mechanisms underlying the pathogenesis of this aggressive lymphoma by STAT3 are not well characterized. Here we performed genome-wide analysis and identified 2,251 STAT3 direct target genes, which involve B cell activation, survival, proliferation, differentiation, and migration. Whole-transcriptome profiling revealed that STAT3 acts as both a transcriptional activator and a suppressor, with a comparable number of up- and down-regulated genes. STAT3 regulates multiple oncogenic signaling pathways, including NF-κB, a cell-cycle checkpoint, PI3K/AKT/mTORC1, and STAT3 itself. In addition, STAT3 negatively regulates the lethal type I IFN signaling pathway by inhibiting expression of

Kumari P, Saha I, Narayanan A, et al.
Essential role of HCMV deubiquitinase in promoting oncogenesis by targeting anti-viral innate immune signaling pathways.
Cell Death Dis. 2017; 8(10):e3078 [PubMed] Free Access to Full Article Related Publications
Cancer is a multifactorial disease and virus-mediated carcinogenesis is one of the crucial factors, which is poorly understood. Human cytomegalovirus (HCMV) is a herpesvirus and its components have been evidenced to be associated with cancer of different tissue origin. However, its role in cancer remains unknown. Here, we identified a conserved herpesviral tegument protein known as pUL48 of HCMV, encoding deubiquitinase enzyme, as having a key role in carcinogenesis. We show using deubiquitinase sufficient- and deficient-HCMV that HCMV deubiquitinase is a key in inducing enhanced cellular metabolic activity through upregulation of several anti-apoptotic genes and downregulation of several pro-apoptotic genes expression. Furthermore, HCMV deubiquitinase acquires pro-tumor functions by inhibiting PRR-mediated type I interferon via deubiquitination of TRAF6, TRAF3, IRAK1, IRF7 and STING. Taken together, our results suggest that HCMV infection may promote oncogenesis by inhibiting innate immunity of the host.

Wang R, Wei B, Wei J, et al.
Cysteine-rich 61-associated gene expression profile alterations in human glioma cells.
Mol Med Rep. 2017; 16(4):5561-5567 [PubMed] Related Publications
The present study aimed to investigate gene expression profile alterations associated with cysteine‑rich 61 (CYR61) expression in human glioma cells. The GSE29384 dataset, downloaded from the Gene Expression Omnibus, includes three LN229 human glioma cell samples expressing CYR61 induced by doxycycline (Dox group), and three control samples not exposed to doxycycline (Nodox group). Differentially expressed genes (DEGs) between the Dox and Nodox groups were identified with cutoffs of |log2 fold change (FC)|>0.5 and P<0.05. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for DEGs were performed. Protein‑protein interaction (PPI) network and module analyses were performed to identify the most important genes. Transcription factors (TFs) were obtained by detecting the TF binding sites of DEGs using a Whole Genome rVISTA online tool. A total of 258 DEGs, including 230 (89%) upregulated and 28 (11%) downregulated DEGs were identified in glioma cells expressing CYR61 compared to cells without CYR61 expression. The majority of upregulated DEGs, including interferon (IFN)B1, interferon‑induced (IFI)44 and interferon regulatory factor (IRF)7, were associated with immune, defense and virus responses, and cytokine‑cytokine receptor interaction signaling pathways. Signal transducer and activator of transcription 1 (STAT1) and DEAD‑box helicase 58 (DDX58) were observed to have high connection degrees in the PPI network. A total of seven TFs of the DEGs, including interferon consensus sequence‑binding protein and IFN‑stimulated gene factor‑3 were additionally detected. In conclusion, IFNB1, genes encoding IFN‑induced proteins (IFI16, IFI27, IFI44 and IFITM1), IRFs (IRF1, IRF7 and IRF9), STAT1 and DDX58 were demonstrated to be associated with CYR61 expression in glioma cells; thus, they may be critical for maintaining the role of CYR61 during cancer progression.

Fragale A, Romagnoli G, Licursi V, et al.
Antitumor Effects of Epidrug/IFNα Combination Driven by Modulated Gene Signatures in Both Colorectal Cancer and Dendritic Cells.
Cancer Immunol Res. 2017; 5(7):604-616 [PubMed] Related Publications
Colorectal cancer results from the progressive accumulation of genetic and epigenetic alterations. IFN signaling defects play an important role in the carcinogenesis process, in which the inability of IFN transcription regulatory factors (IRF) to access regulatory sequences in IFN-stimulated genes (ISG) in tumors and in immune cells may be pivotal. We reported that low-dose combination of two FDA-approved epidrugs, azacytidine (A) and romidepsin (R), with IFNα2 (ARI) hampers the aggressiveness of both colorectal cancer metastatic and stem cells

Goto H, Kariya R, Kudo E, et al.
Restoring PU.1 induces apoptosis and modulates viral transactivation via interferon-stimulated genes in primary effusion lymphoma.
Oncogene. 2017; 36(37):5252-5262 [PubMed] Related Publications
Primary effusion lymphoma (PEL), which is an aggressive subgroup of B-cell lymphoma associated with Kaposi sarcoma-associated herpes virus/human herpes virus-8, is refractory to the standard treatment, and exhibits a poor survival. Although PU.1 is downregulated in PEL, the potential role of its reduction remains to be elucidated. In this investigation, we analyzed the DNA methylation of PU.1 cis-regulatory elements in PEL and the effect of restoring PU.1 on PEL cells. The mRNA level of PU.1 was downregulated in PEL cells. The methylated promoter and enhancer regions of the PU.1 gene were detected in PEL cells. Suppression of cell growth and apoptosis were caused by the restoration of PU.1 in PEL cells. A microarray analysis revealed that interferon-stimulated genes (ISGs) including pro-apoptotic ISGs were strongly increased in BCBL-1 cells after the induction of PU.1. Reporter assays showed that PU.1 transactivated pro-apoptotic ISG promoters, such as the XAF1, OAS1 and TRAIL promoters. Mutations at the PU.1 binding sequences suppressed its transactivation. We confirmed the binding of PU.1 to the XAF1, OAS1 and TRAIL promoters in a chromatin immunoprecipitation assay. PU.1 suppressed ORF57 activation by inducing IRF7. The reinduction of PU.1 reduced formation of ascites and lymphoma cell infiltration of distant organs in PEL xenograft model mice. Collectively, PU.1 has a role in tumor suppression in PEL and its down-regulation is associated with PEL development. Restoring PU.1 with demethylation agents may be a novel therapeutic approach for PEL.

Ueno N, Nishimura N, Ueno S, et al.
PU.1 acts as tumor suppressor for myeloma cells through direct transcriptional repression of IRF4.
Oncogene. 2017; 36(31):4481-4497 [PubMed] Related Publications
We previously reported that PU.1 is downregulated in the majority of myeloma cell lines and primary myeloma cells of certain myeloma patients, and conditional expression of PU.1 in such myeloma cell lines induced cell cycle arrest and apoptosis. We found downregulation of IRF4 protein in the U266 myeloma cell line following induction of PU.1. Previous studies reported that knockdown of IRF4 in myeloma cell lines induces apoptosis, prompting us to further investigate the role of IRF4 downregulation in PU.1-induced cell cycle arrest and apoptosis in myeloma cells. PU.1 induced downregulation of IRF4 at the protein level, cell cycle arrest and apoptosis in six myeloma cell lines. Chromatin immunoprecipitation (ChIP) revealed that PU.1 directly binds to the IRF4 promoter, whereas a reporter assay showed that PU.1 may suppress IRF4 promoter activity. Stable expression of IRF4 in myeloma cells expressing PU.1 partially rescued the cells from apoptosis induced by PU.1. As it was reported that IRF4 directly binds to the IRF7 promoter and downregulates its expression in activated B cell-like subtype of diffuse large B cell lymphoma cells, we performed ChIP assays and found that IRF4 directly binds the IRF7 promoter in myeloma cells. It is known that IRF7 positively upregulates interferon-β (IFNβ) and induces apoptosis in many cell types. Binding of IRF4 to the IRF7 promoter decreased following PU.1 induction, accompanied by downregulation of IRF4 protein expression. Knockdown of IRF7 protected PU.1-expressing myeloma cells from apoptosis. Furthermore, IFNβ, which is a downstream target of IRF7, was upregulated in myeloma cells along with IRF7 after PU.1 induction. Finally, we evaluated the mRNA expression levels of PU.1, IRF4 and IRF7 in primary myeloma cells from patients and found that PU.1 and IRF7 were strongly downregulated in contrast to the high expression levels of IRF4. These data strongly suggest that PU.1-induced apoptosis in myeloma cells is associated with IRF4 downregulation and subsequent IRF7 upregulation.

Yang Q, Li X, Chen H, et al.
IRF7 regulates the development of granulocytic myeloid-derived suppressor cells through S100A9 transrepression in cancer.
Oncogene. 2017; 36(21):2969-2980 [PubMed] Related Publications
Accumulation of myeloid-derived suppressor cells (MDSCs) is one of the major obstacles against achieving appropriate anti-tumor immune responses and successful tumor immunotherapy. Granulocytic MDSCs (G-MDSCs) are common in tumor-bearing hosts. However, the mechanisms regulating the development of MDSCs, especially G-MDSCs, remain poorly understood. In this report, we showed that interferon regulatory factor 7 (IRF7) plays an important role in the development of G-MDSCs, but not monocytic MDSCs. IRF7 deficiency caused significant elevation of G-MDSCs, and therefore enhanced tumor growth and metastasis in mice. IRF7 deletion did not affect the suppressive activity of G-MDSCs. Mechanistic studies showed that S100A9, a negative regulator of myeloid cell differentiation, was transrepressed by the IRF7 protein. S100A9 knockdown almost completely abrogated the effects of IRF7 deletion on G-MDSC development and tumor metastasis. Importantly, IRF7 expression levels negatively correlated with the G-MDSC frequency and tumor metastasis, as well as S100A9 expression, in cancer patients. In summary, our study demonstrated that IRF7 represents a novel regulator of G-MDSC development in cancer, which may have predictive value for tumor progression.

Touati N, Tryfonidis K, Caramia F, et al.
Correlation between severe infection and breast cancer metastases in the EORTC 10994/BIG 1-00 trial: Investigating innate immunity as a tumour suppressor in breast cancer.
Eur J Cancer. 2017; 72:95-102 [PubMed] Related Publications
BACKGROUND: Breast cancer cells which express an innate immune signature regulated by interferon regulatory factor 7 (IRF7) have reduced metastatic potential. Infections can induce interferon signalling and may activate an anti-tumour immune response. We investigated whether 'severe infection' can be a clinical surrogate of this phenomenon and/or the presence of high levels of the IRF7 signature at diagnosis before neo-adjuvant chemotherapy (NACT) is associated with a reduced distant relapse risk, specifically in bones.
METHODS: Clinical data of the European Organisation for Research and Treatment of Cancer 10994/BIG 1-00 phase III trial which randomised 1856 patients treated with NACT between 2001 and 2006, were used. Severe infection was febrile neutropenia or any other grade III-IV infective adverse event during NACT. The IRF7 signature was calculated from gene expression data available for 160 patients on a pre-NACT biopsy. Cox models for distant relapse-free interval (DRFI) investigated the effect of the severe infection and IRF7. Fine and Gray models studied the occurrence of bone metastases as first distant relapse.
RESULTS: Median follow-up was 4.8 years. No association between severe infection and DFRI was observed in the entire population (n = 1615 eligible patients) hazard ratio [(HR] = 0.99, 90% CI, confidence interval [CI] = 0.81-1.20). For IRF7 (N = 160), a trend towards an association with DRFI was observed (HR = 0.89 for a 50 unit increase, 90% CI = 0.78-1.02, p = 0.081). Higher levels of the IRF7 signature were significantly associated with a decreased bone metastases risk: (HR = 0.76 for a 50 unit increase, 95% CI, 0.62-0.94, p = 0.012).
CONCLUSIONS: In this study it was shown that severe infection during NACT was not associated with decreased DRFI while high expression of the IRF7 gene signature was significantly associated with reduced bone relapse. This result may be useful for future adjuvant bisphosphonate/denosumab use.

Wang L, Wang Y, Zhao J, et al.
The Linear Ubiquitin Assembly Complex Modulates Latent Membrane Protein 1 Activation of NF-κB and Interferon Regulatory Factor 7.
J Virol. 2017; 91(4) [PubMed] Free Access to Full Article Related Publications
Recently, linear ubiquitin assembly complex (LUBAC)-mediated linear ubiquitination has come into focus due to its emerging role in activation of NF-κB in different biological contexts. However, the role of LUBAC in LMP1 signaling leading to NF-κB and interferon regulatory factor 7 (IRF7) activation has not been investigated. We show here that RNF31, the key component of LUBAC, interacts with LMP1 and IRF7 in Epstein-Barr virus (EBV)-transformed cells and that LUBAC stimulates linear ubiquitination of NEMO and IRF7. Consequently, LUBAC is required for LMP1 signaling to full activation of NF-κB but inhibits LMP1-stimulated IRF7 transcriptional activity. The protein levels of RNF31 and LMP1 are correlated in EBV-transformed cells. Knockdown of RNF31 in EBV-transformed IB4 cells by RNA interference negatively regulates the expression of the genes downstream of LMP1 signaling and results in a decrease of cell proliferation. These lines of evidence indicate that LUBAC-mediated linear ubiquitination plays crucial roles in regulating LMP1 signaling and functions.
IMPORTANCE: We show here that LUBAC-mediated linear ubiquitination is required for LMP1 activation of NF-κB but inhibits LMP1-mediated IRF7 activation. Our findings provide novel mechanisms underlying EBV-mediated oncogenesis and may have a broad impact on IRF7-mediated immune responses.

Sun W, Ma X, Shen J, et al.
Bioinformatics analysis of differentially expressed pathways related to the metastatic characteristics of osteosarcoma.
Int J Mol Med. 2016; 38(2):466-74 [PubMed] Free Access to Full Article Related Publications
In this study, gene expression data of osteosarcoma (OSA) were analyzed to identify metastasis-related biological pathways. Four gene expression data sets (GSE21257, GSE9508, GSE49003 and GSE66673) were downloaded from Gene Expression Omnibus (GEO). An analysis of differentially expressed genes (DEGs) was performed using the Significance Analysis of Microarray (SAM) method. Gene expression levels were converted into scores of pathways by the Functional Analysis of Individual Microarray Expression (FAIME) algorithm and the differentially expressed pathways (DEPs) were then disclosed by a t-test. The distinguishing and prediction ability of the DEPs for metastatic and non-metastatic OSA was further confirmed using the principal component analysis (PCA) method and 3 gene expression data sets (GSE9508, GSE49003 and GSE66673) based on the support vector machines (SVM) model. A total of 616 downregulated and 681 upregulated genes were identified in the data set, GSE21257. The DEGs could not be used to distinguish metastatic OSA from non-metastatic OSA, as shown by PCA. Thus, an analysis of DEPs was further performed, resulting in 14 DEPs, such as NRAS signaling, Toll-like receptor (TLR) signaling, matrix metalloproteinase (MMP) regulation of cytokines and tumor necrosis factor receptor-associated factor (TRAF)-mediated interferon regulatory factor 7 (IRF7) activation. Cluster analysis indicated that these pathways could be used to distinguish between metastatic OSA from non-metastatic OSA. The prediction accuracy was 91, 66.7 and 87.5% for the data sets, GSE9508, GSE49003 and GSE66673, respectively. The results of PCA further validated that the DEPs could be used to distinguish metastatic OSA from non-metastatic OSA. On the whole, several DEPs were identified in metastatic OSA compared with non-metastatic OSA. Further studies on these pathways and relevant genes may help to enhance our understanding of the molecular mechanisms underlying metastasis and may thus aid in the development of novel therapies.

Yuen CK, Chan CP, Fung SY, et al.
Suppression of Type I Interferon Production by Human T-Cell Leukemia Virus Type 1 Oncoprotein Tax through Inhibition of IRF3 Phosphorylation.
J Virol. 2016; 90(8):3902-3912 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-β was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3.In vitrokinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL.
IMPORTANCE: Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy.

Li Y, Huang R, Wang L, et al.
microRNA-762 promotes breast cancer cell proliferation and invasion by targeting IRF7 expression.
Cell Prolif. 2015; 48(6):643-9 [PubMed] Related Publications
OBJECTIVES: miRNAs play crucial roles in human tumourigenesis. This study was performed to measure expression and function of miR-762 in breast cancer.
MATERIALS AND METHODS: Expression of miR-762 in breast tissues and cell lines (SK-BR-3, DA-MB-435s, MCF-7 and MDA-MB-231, HBL-100) was measured by using real-time RT-PCR. We restored expression of miR-762 in MCF-7 cells to measure its functional roles. Luciferase assays were performed to reveal the target gene of miR-762.
RESULTS: Expression of miR-762 was high in both breast cancer cell lines and specimens, and its overexpression increased breast cancer cell proliferation and invasion. Interferon regulatory factor 7 (IRF7) is a direct target of miR-762 and overexpression of miR-762 reduced expression of IRF7. Moreover, IRF7 was repressed, its levels inversely correlated to miR-762 expression. IRF7 rescued miR-762-induced cell invasion and proliferation.
CONCLUSIONS: These results demonstrate that miR-762 tumour effect was achieved by targeting IRF7 in human breast cancer specimens.

Kochupurakkal BS, Wang ZC, Hua T, et al.
RelA-Induced Interferon Response Negatively Regulates Proliferation.
PLoS One. 2015; 10(10):e0140243 [PubMed] Free Access to Full Article Related Publications
Both oncogenic and tumor-suppressor activities are attributed to the Nuclear Factor kappa B (NF-kB) pathway. Moreover, NF-kB may positively or negatively regulate proliferation. The molecular determinants of these opposing roles of NF-kB are unclear. Using primary human mammary epithelial cells (HMEC) as a model, we show that increased RelA levels and consequent increase in basal transcriptional activity of RelA induces IRF1, a target gene. Induced IRF1 upregulates STAT1 and IRF7, and in consort, these factors induce the expression of interferon response genes. Activation of the interferon pathway down-regulates CDK4 and up-regulates p27 resulting in Rb hypo-phosphorylation and cell cycle arrest. Stimulation of HMEC with IFN-γ elicits similar phenotypic and molecular changes suggesting that basal activity of RelA and IFN-γ converge on IRF1 to regulate proliferation. The anti-proliferative RelA-IRF1-CDK4 signaling axis is retained in ER+/HER2- breast tumors analyzed by The Cancer Genome Atlas (TCGA). Using immuno-histochemical analysis of breast tumors, we confirm the negative correlation between RelA levels and proliferation rate in ER+/HER2- breast tumors. These findings attribute an anti-proliferative tumor-suppressor role to basal RelA activity. Inactivation of Rb, down-regulation of RelA or IRF1, or upregulation of CDK4 or IRF2 rescues the RelA-IRF1-CDK4 induced proliferation arrest in HMEC and are points of disruption in aggressive tumors. Activity of the RelA-IRF1-CDK4 axis may explain favorable response to CDK4/6 inhibition observed in patients with ER+ Rb competent tumors.

Fűri I, Kalmár A, Wichmann B, et al.
Cell Free DNA of Tumor Origin Induces a 'Metastatic' Expression Profile in HT-29 Cancer Cell Line.
PLoS One. 2015; 10(7):e0131699 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial cells in malignant conditions release DNA into the extracellular compartment. Cell free DNA of tumor origin may act as a ligand of DNA sensing mechanisms and mediate changes in epithelial-stromal interactions.
AIMS: To evaluate and compare the potential autocrine and paracrine regulatory effect of normal and malignant epithelial cell-related DNA on TLR9 and STING mediated pathways in HT-29 human colorectal adenocarcinoma cells and normal fibroblasts.
MATERIALS AND METHODS: DNA isolated from normal and tumorous colonic epithelia of fresh frozen surgically removed tissue samples was used for 24 and 6 hour treatment of HT-29 colon carcinoma and HDF-α fibroblast cells. Whole genome mRNA expression analysis and qRT-PCR was performed for the elements/members of TLR9 signaling pathway. Immunocytochemistry was performed for epithelial markers (i.e. CK20 and E-cadherin), DNA methyltransferase 3a (DNMT3a) and NFκB (for treated HDFα cells).
RESULTS: Administration of tumor derived DNA on HT29 cells resulted in significant (p<0.05) mRNA level alteration in 118 genes (logFc≥1, p≤0.05), including overexpression of metallothionein genes (i.e. MT1H, MT1X, MT1P2, MT2A), metastasis-associated genes (i.e. TACSTD2, MACC1, MALAT1), tumor biomarker (CEACAM5), metabolic genes (i.e. INSIG1, LIPG), messenger molecule genes (i.e. DAPP, CREB3L2). Increased protein levels of CK20, E-cadherin, and DNMT3a was observed after tumor DNA treatment in HT-29 cells. Healthy DNA treatment affected mRNA expression of 613 genes (logFc≥1, p≤0.05), including increased expression of key adaptor molecules of TLR9 pathway (e.g. MYD88, IRAK2, NFκB, IL8, IL-1β), STING pathway (ADAR, IRF7, CXCL10, CASP1) and the FGF2 gene.
CONCLUSIONS: DNA from tumorous colon epithelium, but not from the normal epithelial cells acts as a pro-metastatic factor to HT-29 cells through the overexpression of pro-metastatic genes through TLR9/MYD88 independent pathway. In contrast, DNA derived from healthy colonic epithelium induced TLR9 and STING signaling pathway in normal fibroblasts.

Hagner PR, Man HW, Fontanillo C, et al.
CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL.
Blood. 2015; 126(6):779-89 [PubMed] Free Access to Full Article Related Publications
Cereblon (CRBN), a substrate receptor of the Cullin 4 RING E3 ubiquitin ligase complex, is the target of the immunomodulatory drugs lenalidomide and pomalidomide. Recently, it was demonstrated that binding of these drugs to CRBN promotes the ubiquitination and subsequent degradation of 2 common substrates, transcription factors Aiolos and Ikaros. Here we report that CC-122, a new chemical entity termed pleiotropic pathway modifier, binds CRBN and promotes degradation of Aiolos and Ikaros in diffuse large B-cell lymphoma (DLBCL) and T cells in vitro, in vivo, and in patients, resulting in both cell autonomous as well as immunostimulatory effects. In DLBCL cell lines, CC-122-induced degradation or short hairpin RNA-mediated knockdown of Aiolos and Ikaros correlates with increased transcription of interferon (IFN)-stimulated genes independent of IFN-α, -β, and -γ production and/or secretion and results in apoptosis in both activated B-cell (ABC) and germinal center B-cell DLBCL cell lines. Our results provide mechanistic insight into the cell-of-origin independent antilymphoma activity of CC-122, in contrast to the ABC subtype selective activity of lenalidomide.

Kumar S, Ingle H, Mishra S, et al.
IPS-1 differentially induces TRAIL, BCL2, BIRC3 and PRKCE in type I interferons-dependent and -independent anticancer activity.
Cell Death Dis. 2015; 6:e1758 [PubMed] Free Access to Full Article Related Publications
RIG-I-like receptors are the key cytosolic sensors for RNA viruses and induce the production of type I interferons (IFN) and pro-inflammatory cytokines through a sole adaptor IFN-β promoter stimulator-1 (IPS-1) (also known as Cardif, MAVS and VISA) in antiviral innate immunity. These sensors also have a pivotal role in anticancer activity through induction of apoptosis. However, the mechanism for their anticancer activity is poorly understood. Here, we show that anticancer vaccine adjuvant, PolyIC (primarily sensed by MDA5) and the oncolytic virus, Newcastle disease virus (NDV) (sensed by RIG-I), induce anticancer activity. The ectopic expression of IPS-1 into type I IFN-responsive and non-responsive cancer cells induces anticancer activity. PolyIC transfection and NDV infection upregulate pro-apoptotic gene TRAIL and downregulate the anti-apoptotic genes BCL2, BIRC3 and PRKCE. Furthermore, stable knockdown of IPS-1, IRF3 or IRF7 in IFN-non-responsive cancer cells show reduced anticancer activity by suppressing apoptosis via TRAIL and anti-apoptotic genes. Collectively, our study shows that IPS-1 induces anticancer activity through upregulation of pro-apoptotic gene TRAIL and downregulation of the anti-apoptotic genes BCL2, BIRC3 and PRKCE via IRF3 and IRF7 in type I IFN-dependent and -independent manners.

Minter MR, Main BS, Brody KM, et al.
Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro.
J Neuroinflammation. 2015; 12:71 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Neuro-inflammation has long been implicated as a contributor to the progression of Alzheimer's disease in both humans and animal models. Type-1 interferons (IFNs) are pleiotropic cytokines critical in mediating the innate immune pro-inflammatory response. The production of type-1 IFNs following pathogen detection is, in part, through the activation of the toll-like receptors (TLRs) and subsequent signalling through myeloid differentiation factor-88 (Myd88) and interferon regulatory factors (IRFs). We have previously identified that neuronal type-1 IFN signalling, through the type-1 interferon alpha receptor-1 (IFNAR1), is detrimental in models of AD. Using an in vitro approach, this study investigated the TLR network as a potential production pathway for neuronal type-1 IFNs in response to Aβ.
METHODS: Wildtype and Myd88(-/-) primary cultured cortical and hippocampal neurons were treated with 2.5 μM Aβ1-42 for 24 to 72 h or 1 to 10 μM Aβ1-42 for 72 h. Human BE(2)M17 neuroblastoma cells stably expressing an IRF7 small hairpin RNA (shRNA) or negative control shRNA construct were subjected to 7.5 μM Aβ1-42/Aβ42-1 for 24 to 96 h, 2.5 to 15 μM Aβ1-42 for 96 h or 100 ng/ml LPS for 0.5 to 24 h. Q-PCR was used to analyse IFNα, IFNβ, IL-1β, IL-6 and TNFα mRNA transcript levels. Phosphorylation of STAT-3 was detected by Western blot analysis, and cell viability was assessed by MTS assay.
RESULTS: Reduced IFNα, IFNβ, IL-1β, IL-6 and TNFα expression was detected in Aβ1-42-treated Myd88(-/-) neurons compared to wildtype cells. This correlated with reduced phosphorylation of STAT-3, a downstream type-1 IFN signalling mediator. Significantly, Myd88(-/-) neuronal cultures were protected against Aβ1-42-induced neurotoxicity compared to wildtype as determined by MTS assay. Knockdown of IRF7 in M17 cells was sufficient in blocking IFNα, IFNβ and p-STAT-3 induction to both Aβ1-42 and the TLR4 agonist LPS. M17 IRF7 KD cells were also protected against Aβ1-42-induced cytotoxicity.
CONCLUSIONS: This study confirms that the neuronal type-1 IFN response to soluble amyloid is mediated primarily through TLRs. This production is dependent upon Myd88 and IRF7 signalling. This study suggests that targeting this pathway to modulate neuronal type-1 IFN levels may be beneficial in controlling Aβ-induced neurotoxicity.

Kim JK, Jin X, Ham SW, et al.
IRF7 promotes glioma cell invasion by inhibiting AGO2 expression.
Tumour Biol. 2015; 36(7):5561-9 [PubMed] Related Publications
Interferon regulatory factor 7 (IRF7) is the master transcription factor that plays a pivotal role in the transcriptional activation of type I interferon genes in the inflammatory response. Our previous study revealed that IRF7 is an important regulator of tumor progression via the expression of inflammatory cytokines in glioma. Here, we report that IRF7 promotes glioma invasion and confers resistance to both chemotherapy and radiotherapy by inhibiting expression of argonaute 2 (AGO2), a regulator of microRNA biogenesis. We found that IRF7 and AGO2 expression levels were negatively correlated in patients with glioblastoma multiforme. Ectopic IRF7 expression led to a reduction in AGO2 expression, while depletion of IRF7 resulted in increased AGO2 expression in the LN-229 glioma cell line. In an in vitro invasion assay, IRF7 overexpression enhanced glioma cell invasion. Furthermore, reconstitution of AGO2 expression in IRF7-overexpressing cells led to decreased cell invasion, whereas the reduced invasion due to IRF7 depletion was rescued by AGO2 depletion. In addition, IRF7 induced chemoresistance and radioresistance of glioma cells by diminishing AGO2 expression. Finally, AGO2 depletion alone was sufficient to accelerate glioma cell invasion in vitro and in vivo, indicating that AGO2 regulates cancer cell invasion. Taken together, our results indicate that IRF7 promotes glioma cell invasion and both chemoresistance and radioresistance through AGO2 inhibition.

Choi HJ, Lui A, Ogony J, et al.
Targeting interferon response genes sensitizes aromatase inhibitor resistant breast cancer cells to estrogen-induced cell death.
Breast Cancer Res. 2015; 17:6 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Estrogen deprivation using aromatase inhibitors (AIs) is currently the standard of care for postmenopausal women with hormone receptor-positive breast cancer. Unfortunately, the majority of patients treated with AIs eventually develop resistance, inevitably resulting in patient relapse and, ultimately, death. The mechanism by which resistance occurs is still not completely known, however, recent studies suggest that impaired/defective interferon signaling might play a role. In the present study, we assessed the functional role of IFITM1 and PLSCR1; two well-known interferon response genes in AI resistance.
METHODS: Real-time PCR and Western blot analyses were used to assess mRNA and protein levels of IFITM1, PLSCR1, STAT1, STAT2, and IRF-7 in AI-resistant MCF-7:5C breast cancer cells and AI-sensitive MCF-7 and T47D cells. Immunohistochemistry (IHC) staining was performed on tissue microarrays consisting of normal breast tissues, primary breast tumors, and AI-resistant recurrence tumors. Enzyme-linked immunosorbent assay was used to quantitate intracellular IFNα level. Neutralizing antibody was used to block type 1 interferon receptor IFNAR1 signaling. Small interference RNA (siRNA) was used to knockdown IFITM1, PLSCR1, STAT1, STAT2, IRF-7, and IFNα expression.
RESULTS: We found that IFITM1 and PLSCR1 were constitutively overexpressed in AI-resistant MCF-7:5C breast cancer cells and AI-resistant tumors and that siRNA knockdown of IFITM1 significantly inhibited the ability of the resistant cells to proliferate, migrate, and invade. Interestingly, suppression of IFITM1 significantly enhanced estradiol-induced cell death in AI-resistant MCF-7:5C cells and markedly increased expression of p21, Bax, and Noxa in these cells. Significantly elevated level of IFNα was detected in AI-resistant MCF-7:5C cells compared to parental MCF-7 cells and suppression of IFNα dramatically reduced IFITM1, PLSCR1, p-STAT1, and p-STAT2 expression in the resistant cells. Lastly, neutralizing antibody against IFNAR1/2 and knockdown of STAT1/STAT2 completely suppressed IFITM1, PLSCR1, p-STAT1, and p-STAT2 expression in the resistant cells, thus confirming the involvement of the canonical IFNα signaling pathway in driving the overexpression of IFITM1 and other interferon-stimulated genes (ISGs) in the resistant cells.
CONCLUSION: Overall, these results demonstrate that constitutive overexpression of ISGs enhances the progression of AI-resistant breast cancer and that suppression of IFITM1 and other ISGs sensitizes AI-resistant cells to estrogen-induced cell death.

Chen L, Liu T, Zhou J, et al.
Citrate synthase expression affects tumor phenotype and drug resistance in human ovarian carcinoma.
PLoS One. 2014; 9(12):e115708 [PubMed] Free Access to Full Article Related Publications
Citrate synthase (CS), one of the key enzymes in the tricarboxylic acid (TCA) cycle, catalyzes the reaction between oxaloacetic acid and acetyl coenzyme A to generate citrate. Increased CS has been observed in pancreatic cancer. In this study, we found higher CS expression in malignant ovarian tumors and ovarian cancer cell lines compared to benign ovarian tumors and normal human ovarian surface epithelium, respectively. CS knockdown by RNAi could result in the reduction of cell proliferation, and inhibition of invasion and migration of ovarian cancer cells in vitro. The drug resistance was also inhibited possibly through an excision repair cross complementing 1 (ERCC1)-dependent mechanism. Finally, upon CS knockdown we observed significant increase expression of multiple genes, including ISG15, IRF7, CASP7, and DDX58 in SKOV3 and A2780 cells by microarray analysis and real-time PCR. Taken together, these results suggested that CS might represent a potential therapeutic target for ovarian carcinoma.

Makovski V, Jacob-Hirsch J, Gefen-Dor C, et al.
Analysis of gene expression array in TSC2-deficient AML cells reveals IRF7 as a pivotal factor in the Rheb/mTOR pathway.
Cell Death Dis. 2014; 5:e1557 [PubMed] Free Access to Full Article Related Publications
Mutations in tuberous sclerosis (TSC) genes cause the genetic disorder TSC, as well as other neoplasms, including lymphangioleiomyomatosis (LAM) and angiomyolipomas (AMLs). AMLs are benign renal tumors occur both in sporadic LAM and in TSC. As they carry the same mutations, AML cell lines serve as a model for TSC and LAM. Rheb/mammalian target of rapamycin complex 1 (mTORC1) pathway is chronically activated in TSC-deficient cells, and this activation can be diminished using the appropriate inhibitors. Rapamycin (sirolimus) is a known specific inhibitor of mTORC1, whereas S-trans,trans-farnesylthiosalicylic acid (FTS; salirasib) has been shown to inhibit Rheb. To examine the effect of the Rheb/mTOR inhibition pathway, we used human TSC2-deficient AML cells, derived from a LAM patient. FTS indeed inhibited Rheb in these cells and attenuated their proliferation. After comparative treatments with FTS or rapamycin or by re-expression of TSC2, we carried out a gene array analysis. This yielded a substantial number of commonly altered genes, many of which we identified as downstream targets of the interferon (IFN) regulatory factor 7 (IRF7) transcription factor, a central activator of the IFN type 1 immune response. Furthermore, nuclear localization of IRF7 was impaired by each of the three treatments. Interestingly, the phenomena seen on FTS or rapamycin treatment were selective for TSC2-deficient cells. Moreover, knockdown of IRF7 by siRNA mimicked the decrease in number of the abovementioned genes and also inhibited AML cell proliferation. Altogether, these findings support FTS as a potential treatment for TSC and its related pathologies and IRF7 as a novel target for treatment.

Lu S, Pardini B, Cheng B, et al.
Single nucleotide polymorphisms within interferon signaling pathway genes are associated with colorectal cancer susceptibility and survival.
PLoS One. 2014; 9(10):e111061 [PubMed] Free Access to Full Article Related Publications
Interferon (IFN) signaling has been suggested to play an important role in colorectal carcinogenesis. Our study aimed to examine potentially functional genetic variants in interferon regulatory factor 3 (IRF3), IRF5, IRF7, type I and type II IFN and their receptor genes with respect to colorectal cancer (CRC) risk and clinical outcome. Altogether 74 single nucleotide polymorphisms (SNPs) were covered by the 34 SNPs genotyped in a hospital-based case-control study of 1327 CRC cases and 758 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 483 patients. Seven SNPs in IFNA1, IFNA13, IFNA21, IFNK, IFNAR1 and IFNGR1 were associated with CRC risk. After multiple testing correction, the associations with the SNPs rs2856968 (IFNAR1) and rs2234711 (IFNGR1) remained formally significant (P = 0.0015 and P<0.0001, respectively). Multivariable survival analyses showed that the SNP rs6475526 (IFNA7/IFNA14) was associated with overall survival of the patients (P = 0.041 and event-free survival among patients without distant metastasis at the time of diagnosis, P = 0.034). The hazard ratios (HRs) for rs6475526 remained statistically significant even after adjustment for age, gender, grade and stage (P = 0.029 and P = 0.036, respectively), suggesting that rs6475526 is an independent prognostic marker for CRC. Our data suggest that genetic variation in the IFN signaling pathway genes may play a role in the etiology and survival of CRC and further studies are warranted.

Xu D, Zhang Y, Zhao L, et al.
Interferon regulatory factor 7 is involved in the growth of Epstein-Barr virus-transformed human B lymphocytes.
Virus Res. 2015; 195:112-8 [PubMed] Related Publications
The cellular interferon (IFN) regulatory factor-7 (IRF7) is closely associated with the Epstein-Barr virus (EBV)-mediated transformation of B lymphocytes in vitro and in vivo. However, the exact role of IRF7 in viral transformation is not clear. We have found that knockdown of IRF7 leads to growth inhibition of EBV-transformed cells, and restoration of IRF7 by exogenous plasmid correlates with growth recovery of the viral transformed cells. In addition, IRF7-knockdown cells have a lower proliferation but a higher apoptotic rate than control cells. Moreover, reduction of IRF7 leads to reduction of major viral oncoprotein, latent membrane protein 1 (LMP1). Our data suggest that IRF7 may be a factor in EBV transformation and a useful target in the therapy of EBV-mediated neoplasia.

Wang W, Meng M, Zhang Y, et al.
Global transcriptome-wide analysis of CIK cells identify distinct roles of IL-2 and IL-15 in acquisition of cytotoxic capacity against tumor.
BMC Med Genomics. 2014; 7:49 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cytokine-induced killer (CIK) cells are an emerging approach of cancer treatment. Our previous study have shown that CIK cells stimulated with combination of IL-2 and IL-15 displayed improved proliferation capacity and tumor cytotoxicity. However, the mechanisms of CIK cell proliferation and acquisition of cytolytic function against tumor induced by IL-2 and IL-15 have not been well elucidated yet.
METHODS: CIK(IL-2) and CIK(IL-15) were generated from peripheral blood mononuclear cells primed with IFN-γ, and stimulated with IL-2 and IL-15 in combination with OKT3 respectively. RNA-seq was performed to identify differentially expressed genes, and gene ontology and pathways based analysis were used to identify the distinct roles of IL-2 and IL-15 in CIK preparation.
RESULTS: The results indicated that CIKIL-15 showed improved cell proliferation capacity compared to CIK(IL-2). However, CIK(IL-2) has exhibited greater tumor cytotoxic effect than CIKIL-15. Employing deep sequencing, we sequenced mRNA transcripts in CIK(IL-2) and CIK(IL-15). A total of 374 differentially expressed genes (DEGs) were identified including 175 up-regulated genes in CIK(IL-15) and 199 up-regulated genes in CIK(IL-2)). Among DEGs in CIK(IL-15), Wnt signaling and cell adhesion were significant GO terms and pathways which related with their functions. In CIK(IL-2, type I interferon signaling and cytokine-cytokine receptor interaction were significant GO terms and pathways. We found that the up-regulation of Wnt 4 and PDGFD may contribute to enhanced cell proliferation capacity of CIK(IL-15), while inhibitory signal from interaction between CTLA4 and CD80 may be responsible for the weak proliferation capacity of CIK(IL-2). Moreover, up-regulated expressions of CD40LG and IRF7 may make for improved tumor cytolytic function of CIK(IL-2) through type I interferon signaling.
CONCLUSIONS: Through our findings, we have preliminarily elucidated the cells proliferation and acquisition of tumor cytotoxicity mechanism of CIK(IL-15) and CIK(IL-2). Better understanding of these mechanisms will help to generate novel CIK cells with greater proliferation potential and improved tumor cytolytic function.

Wrangle J, Wang W, Koch A, et al.
Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine.
Oncotarget. 2013; 4(11):2067-79 [PubMed] Free Access to Full Article Related Publications
Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IRF7, Cancer Genetics Web: http://www.cancer-genetics.org/IRF7.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999