HMOX1

Gene Summary

Gene:HMOX1; heme oxygenase 1
Aliases: HO-1, HSP32, HMOX1D, bK286B10
Location:22q12.3
Summary:Heme oxygenase, an essential enzyme in heme catabolism, cleaves heme to form biliverdin, which is subsequently converted to bilirubin by biliverdin reductase, and carbon monoxide, a putative neurotransmitter. Heme oxygenase activity is induced by its substrate heme and by various nonheme substances. Heme oxygenase occurs as 2 isozymes, an inducible heme oxygenase-1 and a constitutive heme oxygenase-2. HMOX1 and HMOX2 belong to the heme oxygenase family. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:heme oxygenase 1
Source:NCBIAccessed: 29 August, 2019

Ontology:

What does this gene/protein do?
Show (59)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HMOX1 (cancer-related)

Park CS, Eom DW, Ahn Y, et al.
Can heme oxygenase-1 be a prognostic factor in patients with hepatocellular carcinoma?
Medicine (Baltimore). 2019; 98(26):e16084 [PubMed] Free Access to Full Article Related Publications
Heme oxygenase-1 (HO-1) is an important catalytic enzyme in heme degradation, which increases during stressful conditions. It plays a major role in antioxidative and antiapoptotic processes and is associated with tumor growth and metastasis.This study aimed to evaluate the degree of HO-1 expressions in hepatocellular carcinoma (HCC) surgical specimens and the correlation between HO-1 expression and patient prognosis. Formalin-fixed, paraffin-embedded HCC tissue samples (n = 96) were included in the analysis, and the expression of HO-1 was evaluated by immunohistochemical staining. We reviewed clinical features of patients and evaluated the prognostic role of HO-1 in patient survival and recurrence.Positive HO-1 expression was identified in 43 cases (44.8%) and was frequently found in patients with advanced histology (Edmondson-Steiner [E-S] grade 2, 3, 4), α-fetoprotein (AFP) level of more than 200 IU/mL, and the presence of microvascular and capsular invasion (P < .05). In the univariate analysis, the overall survival (OS) and disease-free survival (DFS) of patients with HO-1-positive HCC were not statistically different from those with HO-1-negative HCC. Moreover, HO-1 expression was not associated with patient survival and recurrence based on the multivariate analysis. In the subgroup analysis of patients without preoperative transarterial chemoembolization (TACE) (n = 61), HO-1 was not also associated with tumor recurrence (P = .681).The clinical implication of HO-1 activity is controversial in various malignancies. However, HO-1 expression did not seem to influence the prognosis of HCC patients.

Yang IH, Ahn CH, Cho NP, et al.
Heme Oxygenase-1 is a Key Molecule Underlying Differential Response of TW-37-Induced Apoptosis in Human Mucoepidermoid Carcinoma Cells.
Molecules. 2019; 24(9) [PubMed] Free Access to Full Article Related Publications
TW-37 is a small-molecule inhibitor of Bcl-2 family proteins, which can induce anti-cancer activities in various types of cancer. In the current study, we investigated the potential molecular mechanism underlying the differential response to TW-37-induced apoptosis in two human mucoepidermoid carcinoma (MEC) cell lines. The differential response and underlying molecular mechanism of human MEC cells to TW-37 was evaluated by trypan blue exclusion assay, western blotting, 4', 6-diamidino-2-phenylindole staining, annexin V/propidium iodide double staining, analysis of the sub-G1 population, human apoptosis array, and measurements of intracellular reactive oxygen species (ROS). TW-37 decreased cell viability and induced apoptosis in YD-15 cells, but not in MC3 cells. Proteome profiling using a human apoptosis array revealed four candidate proteins and of these, heme oxygenase-1 (HO-1) was mainly related to the differential response to TW-37 of YD-15 and MC3 cells. TW-37 also led to a significant increase in intracellular levels of ROS in YD-15 cells, which is associated with apoptosis induction. The ectopic expression of HO-1 recovered YD-15 cells from TW-37-induced apoptosis by reducing intracellular levels of ROS. The expression of HO-1 was reduced through both transcriptional and post-translational modification during TW-37-mediated apoptosis. We conclude that HO-1 is a potential indicator to estimate response to TW37-induced apoptosis in human MEC.

Huang H, Wu Y, Fu W, et al.
Downregulation of Keap1 contributes to poor prognosis and Axitinib resistance of renal cell carcinoma via upregulation of Nrf2 expression.
Int J Mol Med. 2019; 43(5):2044-2054 [PubMed] Free Access to Full Article Related Publications
Kelch‑like ECH‑associated protein 1 (Keap1)/nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling has a protective effect on normal cells. A number of previous studies demonstrated that Keap1/Nrf2 signaling is associated with drug resistance in numerous tumors. The aim of the present study was to investigate the roles of Keap1 in renal cell carcinoma (RCC) and its effect on sensitivity to chemotherapy. Reverse transcription‑quantitative polymerase chain reaction was used to detect the mRNA expression of Keap1 in 45 cases of RCC tumors and adjacent normal tissues. A total of five randomly selected patients with RCC, five RCC cell lines and normal renal tubular cells were examined to detect the protein and mRNA expressions of Keap1. The 5‑year survival rate was analyzed by Kaplan‑Meier analysis. The cell viability was assessed by a Cell Counting kit‑8 assay. The cell apoptosis and reactive oxygen species (ROS) were determined by flow cytometry. The expressions of associated proteins were determined by western blot analysis. It was identified that in RCC tissues and RCC cell lines, the expression of Keap1 was downregulated, which was considered to be associated with poor prognosis. In total, 1 µM Axitinib significantly decreased cell viability, promoted ROS release and induced cell apoptosis in ACHN cells. Silencing Keap1 was able to reverse the inhibitory effect of Axitinib and enhance the protein expressions of Nrf2, NAD(P)H dehydrogenase [quinone] 1 and heme oxygenase 1. However, silencing Nrf2 increased the cell sensitivity to Axitinib. Under Axitinib condition, overexpressing Nrf2 was able to increase cell viability; however, overexpressing Keap1 resulted in an opposite effect. Keap1 serves as a tumor suppressor; its low expression was associated with poor prognosis and a decreased sensitivity of RCC cells to Axitinib. A possible mechanism underlying Axitinib resistance may involve Nrf2 overexpression.

Leonardi DB, Anselmino N, Brandani JN, et al.
Heme Oxygenase 1 Impairs Glucocorticoid Receptor Activity in Prostate Cancer.
Int J Mol Sci. 2019; 20(5) [PubMed] Free Access to Full Article Related Publications
Glucocorticoids are used during prostate cancer (PCa) treatment. However, they may also have the potential to drive castration resistant prostate cancer (CRPC) growth via the glucocorticoid receptor (GR). Given the association between inflammation and PCa, and the anti-inflammatory role of heme oxygenase 1 (HO-1), we aimed at identifying the molecular processes governed by the interaction between HO-1 and GR. PCa-derived cell lines were treated with Hemin, Dexamethasone (Dex), or both. We studied GR gene expression by RTqPCR, protein expression by Western Blot, transcriptional activity using reporter assays, and nuclear translocation by confocal microscopy. We also evaluated the expression of HO-1, FKBP51, and FKBP52 by Western Blot. Hemin pre-treatment reduced Dex-induced GR activity in PC3 cells. Protein levels of FKBP51, a cytoplasmic GR-binding immunophilin, were significantly increased in Hemin+Dex treated cells, possibly accounting for lower GR activity. We also evaluated these treatments in vivo using PC3 tumors growing as xenografts. We found non-significant differences in tumor growth among treatments. Immunohistochemistry analyses revealed strong nuclear GR staining in almost all groups. We did not observe HO-1 staining in tumor cells, but high HO-1 reactivity was detected in tumor infiltrating macrophages. Our results suggest an association and crossed modulation between HO-1 and GR pathways.

Zhang L, Guo Y, Wang H, et al.
Edaravone reduces Aβ-induced oxidative damage in SH-SY5Y cells by activating the Nrf2/ARE signaling pathway.
Life Sci. 2019; 221:259-266 [PubMed] Related Publications
AIMS: Edaravone potentially alleviates cognitive deficits in a mouse model of Alzheimer's disease (AD). However, the mechanism of edaravone in suppressing AD progression remains unclear. We aim to investigate the mechanism of edaravone in suppressing oxidative stress-mediated AD progression in vitro.
MAIN METHODS: Human neuroblastoma SH-SY5Y cells were pretreated with different concentrations of edaravone prior to the induction by Aβ
KEY FINDINGS: The results showed that apoptosis and reactive oxygen species levels significantly increased in Aβ
SIGNIFICANCE: Activation of the Nrf2/ARE signaling pathway may underlie the protective effects of edaravone against the oxidative damage associated with Alzheimer's disease.

Zhai X, Yuan S, Yang X, et al.
Chitosan Oligosaccharides Induce Apoptosis in Human Renal Carcinoma via Reactive-Oxygen-Species-Dependent Endoplasmic Reticulum Stress.
J Agric Food Chem. 2019; 67(6):1691-1701 [PubMed] Related Publications
In recent years, various studies have confirmed the role of natural products as effective cancer prevention and treatment drugs. The present study demonstrated that chitosan oligosaccharide (COS) from shells of shrimp and crab caused an inhibitory effect on the proliferation of human renal carcinoma in vitro and in vivo. First, the in vivo biodistribution of COS was investigated by the synthesis of cyanine-7-labeled COS (COS-Cy7) following tail vein injection. The kidney was found to be a major target organ. Then, the impacts on renal carcinoma cell proliferation, apoptosis, and reactive oxygen species (ROS) production were observed in vitro, and an orthotopic xenograft tumor model was designed to evaluate the antitumor efficacy of COS in vivo. In renal carcinoma cells, COS induced G2/M phase arrest and apoptosis in a ROS-dependent fashion. COS significantly promoted mRNA expression of nuclear factor erythroid 2-related factor (Nrf2) and Nrf2 target genes, such as heme oxygenase 1, modifier subunit of glutamate cysteine ligase, and solute carrier family 7 member 11. Additionally, COS significantly upregulated the protein expression of glucose-regulated protein 78, protein RNA-like endoplasmic reticulum (ER) kinase, eukaryotic initiation factor 2α, activating transcription factor 4, C/EBP homologous protein, and cytochrome c, which justified the activation of the ER stress signaling pathway. In vivo, COS repressed tumor growth and induced apoptosis and ROS accumulation, consistent with the in vitro results. Taken together, COS repressed human renal carcinoma growth and induced apoptosis both in vitro and in vivo, mainly via ROS-dependent ER stress pathways.

Abdalla MY, Ahmad IM, Rachagani S, et al.
Enhancing responsiveness of pancreatic cancer cells to gemcitabine treatment under hypoxia by heme oxygenase-1 inhibition.
Transl Res. 2019; 207:56-69 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and has one of the worst prognoses leading to a meager 5-year survival rate of ∼8%. Chemotherapy has had limited success in extending the life span of patients with advanced PDAC due to poor tumor perfusion and hypoxia-induced resistance. Hypoxia reprograms the gene expression profile and upregulates the expression of multiple genes including heme oxygenase-1 (HO-1), which provide survival advantage to PDAC cells. However, the relationships between HO-1, hypoxia, and response to chemotherapy is unclear. Our results showed that hypoxia upregulates the expression of HO-1 in PDAC cells, and HO-1 inhibition using the HO-1 inhibitors zinc protoporphyrin, tin protoporphyrin IX (SnPP), and HO-1 knockout using CRISPR/Cas9 suppresses the proliferation of PDAC cells under hypoxia and sensitize them to gemcitabine under in vitro conditions. Treating orthotopic tumors with SnPP, or SnPP in combination with gemcitabine, significantly reduced the weight of pancreatic tumors (P < 0.05), decreased metastasis and improved the efficacy of gemcitabine treatment (P < 0.05). Mechanistically, inhibition of HO-1 increased the production of reactive oxygen species as demonstrated by increased dihydroethidium, and Mitosox, disrupted glutathione cycle, and enhanced apoptosis. There was significant increase in cleaved caspase-3 staining in tumors after combined treatment with SnPP and gemcitabine comparing to control or gemcitabine alone. In addition, inhibiting HO-1 reduced expression of stemness markers (CD133, and CD44) as compared to control or gemcitabine. Overall, our study may present a novel therapeutic regimen that might be adopted for the treatment of PDAC patients.

Wakui M, Kawai K, Mizushima T, et al.
Fatty Acid β-Oxidation-dependent and -independent Responses and Tumor Aggressiveness Acquired Under Mild Hypoxia.
Anticancer Res. 2019; 39(1):191-200 [PubMed] Related Publications
BACKGROUND/AIM: The present study assessed whether and how tumor cells undergoing hypoxia contribute to disease progression after moving to areas with different oxygen conditions.
MATERIALS AND METHODS: Human colorectal carcinoma HCT116 cells cultured under mild hypoxia were subjected to in vivo experiments using transfer to immunodeficient murine recipients and to in vitro experiments using pharmacological inhibition of fatty acid β-oxidation (FAO).
RESULTS: Bone involvement and hepatic metastases were accelerated in transfer models of hypoxically cultured HCT116 cells. Hypoxic HCT116 cells exhibited FAO-dependent glycogen synthesis. FAO-dependent and -independent induction of gene expression also occurred under hypoxia. The distribution of glucose transporter 1 expression compared with heme oxygenase 1 expression in HCT116 cell spheroids seemed consistent with differential dependence of hypoxic expression of these molecules on FAO.
CONCLUSION: These results provide insights into the contribution of hypoxia to tumor progression and the relevance of FAO.

Mahbouli S, Talvas J, der Vartanian A, et al.
Activation of antioxidant defences of human mammary epithelial cells under leptin depend on neoplastic state.
BMC Cancer. 2018; 18(1):1264 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Obesity is associated with oxidative stress, a major factor in carcinogenesis, and with high leptin concentration. The aim of this study was to determine the effects of leptin on the antioxidant response in three human mammary epithelial cells each presenting a different neoplastic status: healthy human mammary epithelial cells (HMEC), oestrogen-receptor positive MCF-7 cells and triple-negative MDA-MB-231 cells.
METHODS: This in vitro kinetic study characterized the cell antioxidant response after 1, 6 and 24 h in the presence of leptin (10 or 100 ng/ml).The antioxidant response was defined in terms of cell glutathione content, gene expression and catalytic activity of antioxidant enzymes (i.e. glutathione peroxidase 1 (Gpx1), glutathione reductase (GR), glutathione S transferase (GST), heme-oxygenase 1 (HO-1) and cyclooxygenase-2 (COX-2)). Oxidative stress occurrence was assessed by lipid hydro peroxide (HPLIP) and isoprostane concentrations in culture media at 24 h.
RESULTS: At both concentrations used, leptin induced ROS production in all cell models, contributing to various antioxidant responses linked to neoplastic cell status. HMEC developed a highly inducible antioxidant response based on antioxidant enzyme activation and an increase in cell GSH content at 10 ng/ml of leptin. However, at 100 ng/ml of leptin, activation of antioxidant response was lower. Conversely, in tumour cells, MCF-7 and MDA-MB-231, leptin did not induce an efficient antioxidant response, at either concentration, resulting in an increase of lipid peroxidation products.
CONCLUSIONS: Leptin can modulate the oxidative status of mammary epithelial cells differently according to their neoplastic state. These novel results shed light on oxidative status changes in mammary cells in the presence of leptin.

Dong J, Li Y, Xiao H, et al.
Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2.
Toxicol Appl Pharmacol. 2019; 364:12-21 [PubMed] Related Publications
Radiation therapy toward malignancies is often ineffective owing to radioresistance of cancer cells. On the basis of anti-tumor properties of cordycepin, we examined the effects of cordycepin on sensitizing breast cancer cells toward radiotherapy. Cordycepin administration promoted G2/M arrest and apoptosis of MCF-7 and MDA-MB-231 cells resulting in restraining the proliferation of the cells in vitro and in vivo following irradiation. Mechanistic investigations showed that the breast cancer cells cultured with cordycepin harbored higher levels of intracellular reactive oxygen species (ROS) and incremental numbers of γ-H2AX foci after irradiation exposure. Importantly, cordycepin treatment down-regulated the expression levels of Nuclear factor erythroid 2-related factor (Nrf2) and a series of downstream genes, such as heme oxygenase-1 (HO-1), to enhance ROS in breast cancer cells exposed to irradiation. Together, our observations demonstrate that cordycepin treatment sensitizes breast carcinoma cells toward irradiation via Nrf2/HO-1/ROS axis. Thus, our findings provide novel insights into the function and the underlying mechanism of cordycepin in radiotherapy, and suggest that cordycepin might be employed as a radiosensitizer during radiotherapy toward breast cancer in a pre-clinical setting.

Wang SF, Wung CH, Chen MS, et al.
Activated Integrated Stress Response Induced by Salubrinal Promotes Cisplatin Resistance in Human Gastric Cancer Cells via Enhanced xCT Expression and Glutathione Biosynthesis.
Int J Mol Sci. 2018; 19(11) [PubMed] Free Access to Full Article Related Publications
The integrated stress response (ISR) pathway is essential for adaption of various stresses and is related to mitochondrion-to-nucleus communication. Mitochondrial dysfunction-induced reactive oxygen species (ROS) was demonstrated to activate general control nonderepressible 2 (GCN2)⁻eukaryotic translation initiation factor 2α (eIF2α)⁻activating transcription factor-4 (ATF4) pathway-mediated cisplatin resistance of human gastric cancer cells. However, whether or how ISR activation per se could enhance chemoresistance remains unclear. In this study, we used eIF2α phosphatase inhibitor salubrinal to activate the ISR pathway and found that salubrinal reduced susceptibility to cisplatin. Moreover, salubrinal up-regulated ATF4-modulated gene expression, and knockdown of ATF4 attenuated salubrinal-induced drug resistance, suggesting that ATF4-modulated genes contribute to the process. The ATF4-modulated genes, xCT (a cystine/glutamate anti-transporter), tribbles-related protein 3 (TRB3), heme oxygenase 1 (HO-1), and phosphoenolpyruvate carboxykinase 2 (PCK2), were associated with a poorer prognosis for gastric cancer patients. By silencing individual genes, we found that xCT, but not TRB3, HO-1, or PCK2, is responsible for salubrinal-induced cisplatin resistance. In addition, salubrinal increased intracellular glutathione (GSH) and decreased cisplatin-induced lipid peroxidation. Salubrinal-induced cisplatin resistance was attenuated by inhibition of xCT and GSH biosynthesis. In conclusion, our results suggest that ISR activation by salubrinal up-regulates ATF4-modulated gene expression, increases GSH synthesis, and decreases cisplatin-induced oxidative damage, which contribute to cisplatin resistance in gastric cancer cells.

Jin H, Kim HS, Seo GS, Lee SH
A new chalcone derivative, 3-phenyl-1-(2,4,6-tris(methoxymethoxy)phenyl)prop-2-yn-1-one), inhibits phorbol ester-induced metastatic activity of colorectal cancer cells through upregulation of heme oxygenase-1.
Eur J Pharmacol. 2018; 841:1-9 [PubMed] Related Publications
Chalcone (1,3-diphenyl-2-propen-1-one) derivatives exert anti-cancer activity by targeting key molecules that can lead to carcinogenesis. We synthesized the chalcone derivative 3-phenyl-1-(2,4,6-tris(methoxymethoxy)phenyl)prop-2-yn-1-one (KB-34) and previously reported its anti-inflammatory activity in macrophages. In this study, we examined the anti-metastatic activity of KB-34 against human colorectal cancer (CRC) cells and elucidated its underlying molecular mechanisms. KB-34 treatment significantly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced migration, as well as the invasion and proliferation of CRC cells (HT-29 and SW620). TPA-induced activation of NF-κB was also markedly suppressed by KB-34 in HT-29 cells. KB-34 suppressed the expression of matrix metalloproteinase-7 (MMP-7) at both the mRNA and protein levels in TPA-stimulated CRC cells (HT-29 and SW620). We also demonstrated that induced heme oxygenase-1 (HO-1) expression in CRC cells (HT-29 and SW620) and HO-1 is required for KB-34-mediated suppression of the expression of MMP-7 in TPA-stimulated HT-29 cells. Additionally, the cyclin-dependent kinase inhibitor p21 was significantly induced by treatment with KB-34 in CRC cells (HT-29 and SW620). Knockdown of HO-1 prevented the induction of p21 expression by KB-34 in HT-29 cells. Furthermore, we also demonstrated that 5-fluorouracil (5-FU) together with KB-34 produced a significantly greater inhibition of growth and stimulation of apoptosis of HT-29 cells than did 5-FU alone. In conclusion, KB-34 inhibits the TPA-stimulated metastatic potential of HT-29 cells by induction of HO-1 and may be a promising anti-cancer agent in chemotherapeutic strategies for CRC.

Hu S, Jin Y, Liu Y, et al.
Synthesis and mechanistic studies of quinolin-chlorobenzothioate derivatives with proteasome inhibitory activity in pancreatic cancer cell lines.
Eur J Med Chem. 2018; 158:884-895 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Inhibition of proteasome activity blocks the degradation of dysfunctional proteins and induces cancer cell death due to cellular stress. Thus, proteasome inhibitors represent an attractive class of anticancer agents, and bortezomib, carfilzomib and ixazomib have been FDA-approved to treat multiple myeloma. However, cancer cells acquire resistance to these inhibitors through point mutations in the proteasome catalytic subunit or induction of alternative compensatory mechanisms. In this study, we identified a quinolin-chlorobenzothioate, QCBT7, as a new proteasome inhibitor showing cytotoxicity in a panel of cancer cell lines. QCBT7 is a more stable derivative of quinoline-8-thiol that targets the regulatory subunit instead of the catalytic subunit of the proteasome. QCBT7 caused the accumulation of ubiquitylated proteins in the cancer cells, indicating its proteasome inhibitory activity. Additionally, QCBT7 increased the expression of a set of genes (PFKFB4, CHOP, HMOX1 and SLC7A11) at both nascent RNA and protein levels, similarly to the known proteasome inhibitors MG132 and ixazomib. Together, QCBT7 induces proteasome inhibition, hypoxic response, endoplasmic reticulum stress and glycolysis, finally leading to cell death. Importantly, we have identified PFKFB4 as a potential biomarker of proteasome inhibitors that can be used to monitor treatment response.

Taira J, Miyazato H, Ueda K
Marine Peroxy Sesquiterpenoids Induce Apoptosis by Modulation of Nrf2-ARE Signaling in HCT116 Colon Cancer Cells.
Mar Drugs. 2018; 16(10) [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Our current study demonstrated that the marine peroxy sesquiterpenoids isolated from the Okinawan soft coral

Ma J, Yu KN, Cheng C, et al.
Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells.
Arch Biochem Biophys. 2018; 658:54-65 [PubMed] Related Publications
Non-thermal plasma (NTP) treatment has been proposed as a potential approach for cancer therapy for killing cancer cells via generation of reactive oxygen species (ROS). As an antioxidant protein, Heme oxygenase-1 (HO-1) has been known to protect cells against oxidative stress. In this paper, we investigated the role of HO-1 activation in NTP-induced apoptosis in A549 cells. Distinctly increased ROS production and apoptosis were observed after NTP exposure. NTP exposure induced HO-1 expression in a dose- and time-dependent manner via activating the translocation of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) from cytoplasm to nucleus. Furthermore, inhibiting HO-1 activation with its specific inhibitor, ZnPP, increased "killing" effect of NTP. Knocking down HO-1 or Nrf2 with the special siRNA also led to elevated ROS level and enhanced NTP-induced cell death. In addition, the c-JUN N-terminal kinase (JNK) signaling pathway was shown to be involved in NTP-induced HO-1 expression. Interestingly, a higher resistance to NTP exposure of A549 cell compared to H1299 and H322 cells was found to be linked to its higher basal level of HO-1 expression. These findings revealed that HO-1 could be considered as a potential target to improve the effect of NTP in cancer therapy.

Kim DH, Yoon HJ, Cha YN, Surh YJ
Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target.
Free Radic Res. 2018; 52(11-12):1336-1347 [PubMed] Related Publications
Cancer stem cells (CSCs) constitute a subpopulation of transformed cells that possess intrinsic ability to undergo selfrenewal and differentiation, which drive tumour resistance and cancer recurrence. It has been reported that CSCs possess enhanced protection against oxidative stress induced by reactive oxygen species compared with nonstem-like cancer cells. In the present work, we investigated the role of heme oxygenase-1 (HO-1), a representative antioxidant enzyme, on the stemness and selfrenewal of human breast CSCs. We found that pharmacologic or genetic inhibition of HO-1 attenuated the sphere formation, whereas HO-1 inducers enhanced the number and the size of tumourspheres in breast CSCs. Carbon monoxide (CO) is endogenously generated as a consequence of degradation of heme by HO-1. The proportion of populations of CD44

Park SH, Choi E, Kim S, et al.
Oxidative Stress-Protective and Anti-Melanogenic Effects of Loliolide and Ethanol Extract from Fresh Water Green Algae,
Int J Mol Sci. 2018; 19(9) [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Loliolide is a monoterpenoid hydroxylactone found in many algae, including fresh water green algae,

Schoch S, Sen V, Gajewski S, et al.
Activity profile of the cisplatin analogue PN149 in different tumor cell lines.
Biochem Pharmacol. 2018; 156:109-119 [PubMed] Related Publications
The efficacy of the anticancer drug cisplatin is restricted by tumor cell resistance and occurrence of severe side effects. One strategy to overcome these limitations is the development of new, improved platinum drugs. Previous investigations showed that platinum(IV)-nitroxyl complexes are able to circumvent cisplatin resistance in bladder cancer cells. In the present study the mode of action of the platinum(IV)-nitroxyl complex PN149 was investigated in the bladder cancer cell line RT112 and the renal cell carcinoma cell line A498 on the molecular and cellular level. Gene expression analysis showed that PN149 induced genes related to DNA damage response (RRM2B, GADD45A), cell cycle regulation (CDKN1A, PLK3, PPM1D) as well as those coding for the pro-apoptotic factors PUMA and Noxa. These findings on the transcriptional level were confirmed on the functional level revealing that PN149 treatment increased levels of p53 and resulted in cell cycle arrest and drug-induced cytotoxicity via induction of apoptosis. Regarding the expression of oxidative-stress sensitive genes, PN149 induced FTH1, GCLC, HMOX1 and TXNRD1 but relevant effects were restricted to RT112 cells treated with 50 µM. The pro-inflammatory IL-8 was induced by PN149 in RT112 but not A498 cells indicating a cell-type specific activation. Taken together, PN149 possessed promising activity in different tumor cell lines rendering it an interesting alternative to cisplatin in chemotherapy.

Xiong DD, Qin Y, Xu WQ, et al.
A Network Pharmacology-Based Analysis of Multi-Target, Multi-Pathway, Multi-Compound Treatment for Ovarian Serous Cystadenocarcinoma.
Clin Drug Investig. 2018; 38(10):909-925 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: Pharmacological control against ovarian serous cystadenocarcinoma has received increasing attention. The purpose of this study was to investigate multi-drug treatments as synergetic therapy for ovarian serous cystadenocarcinoma and to explore their mechanisms of action by the network pharmacology method.
METHODS: Genes acting on ovarian serous cystadenocarcinoma were first collected from GEPIA and DisGeNET. Gene Ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway, Reactome pathway, and Disease Ontology analyses were then conducted. A connectivity map analysis was employed to identify compounds as treatment options for ovarian serous cystadenocarcinoma. Targets of these compounds were obtained from the Search Tool for Interacting Chemicals (STITCH). The intersections between the ovarian serous cystadenocarcinoma-related genes and the compound targets were identified. Finally, the Kyoto Encyclopedia of Genes and Genomes and Reactome pathways in which the overlapped genes participated were selected, and a correspondence compound-target pathway network was constructed.
RESULTS: A total of 541 ovarian serous cystadenocarcinoma-related genes were identified. The functional enrichment and pathway analyses indicated that these genes were associated with critical tumor-related pathways. Based on the connectivity map analysis, five compounds (resveratrol, MG-132, puromycin, 15-delta prostaglandin J2, and valproic acid) were determined as treatment agents for ovarian serous cystadenocarcinoma. Next, 48 targets of the five compounds were collected. Following mapping of the 48 targets to the 541 ovarian serous cystadenocarcinoma-related genes, we identified six targets (PTGS1, FOS, HMOX1, CASP9, PPARG, and ABCB1) as therapeutic targets for ovarian serous cystadenocarcinoma by the five compounds. By analysis of the compound-target pathway network, we found the synergistic anti-ovarian serous cystadenocarcinoma potential and the underlying mechanisms of action of the five compounds.
CONCLUSION: In summary, latent drugs against ovarian serous cystadenocarcinoma were acquired and their target actions and pathways were determined by the network pharmacology strategy, which provides a new prospect for medicamentous therapy for ovarian serous cystadenocarcinoma. However, further in-depth studies are indispensable to increase the validity of this study.

Tsai CF, Chen JH, Chang CN, et al.
Fisetin inhibits cell migration via inducing HO-1 and reducing MMPs expression in breast cancer cell lines.
Food Chem Toxicol. 2018; 120:528-535 [PubMed] Related Publications
Metastasis is commonly seen in advanced stage of cancers, and matrix metalloproteinases (MMPs) are commonly up-regulated and have been identified as critical regulators. In this present study, a flavonoid, fisetin, which can be found in diverse foods, is investigated for its ability to inhibit cell motility, and the underlying mechanism is also studied in breast cancer cells (4T1 and JC cells). We have revealed that fisetin increased HO-1 mRNA and protein expressions. Besides, fisetin also elevated Nrf2 expression in nuclear fraction. By silencing Nrf2, fisetin-induced HO-1 expression was abrogated, suggested that HO-1 expression was mediated by up-regulation of the transcription factor Nrf2. In addition, we also found that fisetin decreased MMP-2 and MMP-9 enzyme activity and gene expression in both protein and mRNA levels. Moreover, by administration of HO-1 inhibitors, tin protoporphyrin and zinc protoporphyrin, fisetin-reduced MMP-2 and MMP-9 expressions were reversed. Furthermore, transfection of siRNA against HO-1 and Nrf2 also abolished MMP-2 and MMP-9 reduction exerted by fisetin. These findings suggest that fisetin-mediated MMP-2 and MMP-9 reduction is regulated by HO-1 through Nrf2. Therefore, fisetin may be useful as a potential therapeutic agent for the treatment of metastatic breast cancer.

Muliaditan T, Caron J, Okesola M, et al.
Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis.
Nat Commun. 2018; 9(1):2951 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor.

Li C, Tang B, Feng Y, et al.
Pinostrobin Exerts Neuroprotective Actions in Neurotoxin-Induced Parkinson's Disease Models through Nrf2 Induction.
J Agric Food Chem. 2018; 66(31):8307-8318 [PubMed] Related Publications
The aim of the present study was to assess the neuroprotective effects of pinostrobin (PSB), a dietary bioflavonoid, and its underlying mechanisms in neurotoxin-induced Parkinson's disease (PD) models. First, PSB could attenuate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and improve behavior deficiency in zebrafish, supporting its potential neuroprotective actions in vivo. Next, PSB could decreased apoptosis and death in the 1-methyl-4-phenylpyridinium (MPP

Barbagallo I, Giallongo C, Volti GL, et al.
Heme Oxygenase Inhibition Sensitizes Neuroblastoma Cells to Carfilzomib.
Mol Neurobiol. 2019; 56(2):1451-1460 [PubMed] Related Publications
Neuroblastoma (NB) is an embryonic malignancy affecting the physiological development of adrenal medulla and paravertebral sympathetic ganglia in early infancy. Proteasome inhibitors (PIs) (i.e., carfilzomib (CFZ)) may represent a possible pharmacological treatment for solid tumors including NB. In the present study, we tested the effect of a novel non-competitive inhibitor of heme oxygenase-1 (HO-1), LS1/71, as a possible adjuvant therapy for the efficacy of CFZ in neuroblastoma cells. Our results showed that CFZ increased both HO-1 gene expression (about 18-fold) and HO activity (about 8-fold), following activation of the ER stress pathway. The involvement of HO-1 in CFZ-mediated cytotoxicity was further confirmed by the protective effect of pharmacological induction of HO-1, significantly attenuating cytotoxicity. In addition, HO-1 selective inhibition by a specific siRNA increased the cytotoxic effect following CFZ treatment in NB whereas SnMP, a competitive pharmacological inhibitor of HO, showed no changes in cytotoxicity. Our data suggest that treatment with CFZ produces ER stress in NB without activation of CHOP-mediated apoptosis, whereas co-treatment with CFZ and LS1/71 led to apoptosis activation and CHOP expression induction. In conclusion, our study showed that treatment with the non-competitive inhibitor of HO-1, LS1 / 71, increased cytotoxicity mediated by CFZ, triggering apoptosis following ER stress activation. These results suggest that PIs may represent a possible pharmacological treatment for solid tumors and that HO-1 inhibition may represent a possible strategy to overcome chemoresistance and increase the efficacy of chemotherapic regimens.

Huang X, Zheng J, Li J, et al.
Functional role of BTB and CNC Homology 1 gene in pancreatic cancer and its association with survival in patients treated with gemcitabine.
Theranostics. 2018; 8(12):3366-3379 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Genetic variation (rs372883C/T) in the 3'-untranslated region of BTB and CNC homology 1 (

Guo Y, Fang Q, Ma D, et al.
Up-regulation of HO-1 promotes resistance of B-cell acute lymphocytic leukemia cells to HDAC4/5 inhibitor LMK-235 via the Smad7 pathway.
Life Sci. 2018; 207:386-394 [PubMed] Related Publications
PURPOSE: HDAC4/5 and Smad7 are potential therapeutic targets for the onset and progression of B-cell acute lymphocytic leukemia (B-ALL) and indices for clinical prognosis. In contrast, HO-1 (heat shock protein 32) plays a key role in protecting tumor cells from apoptosis.
METHODS: HDAC4/5, HO-1 and Smad7 expressions in 34 newly diagnosed B-ALL cases were detected by real-time PCR and Western blot. Lentivirus and small interference RNA were used to transfect B-ALL cells. The expression of Smad7 was detected after treatment with LMK-235 or Hemin and ZnPP. Apoptosis and proliferation were evaluated by flow cytometry, CCK-8 assay and Western blot.
RESULTS: HDAC4/5 was overexpressed in B-ALL patients with high HO-1 levels. Increasing the concentration of HDAC4/5 inhibitor LMK-235 induced the decrease of Smad7 and HO-1 expressions and the apoptosis of B-ALL cells by suppressing the phosphorylation of AKT (Protein kinase B). Up-regulating HO-1 alleviated the decrease of Smad7 expression and enhanced B-ALL resistance to LMK-235 by activating p-AKT which reduced the apoptosis of B-ALL cells and influenced the survival of leukemia patients. Silencing Smad7 also augmented the apoptosis rate of B-ALL cells by suppressing p-AKT.
CONCLUSION: HO-1 played a key role in protecting tumor cells from apoptosis, and HDAC4/5 were related with the apoptosis of B-ALL cells. LMK-235 may be able to improve the poor survival of leukemia patients.

Behiry S, Rabie A, Kora M, et al.
Effect of combination sildenafil and gemfibrozil on cisplatin-induced nephrotoxicity; role of heme oxygenase-1.
Ren Fail. 2018; 40(1):371-378 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
BACKGROUND/AIM: Cisplatin-induced nephrotoxicity in large proportion of patients. The aim of this work is to clarify the effect of combination of sildenafil and gemfibrozil on cisplatin-induced nephrotoxicity either before or after cisplatin treatment and determination of nephrotoxicity predictors among the measured tissue markers.
METHODS: Thirty two adult male albino rats were divided into four equal groups (G) GI control, GII received cisplatin, GIII received sildenafil and gemfibrozil before cisplatin, GIV received sildenafil and gemfibrozil after cisplatin. Creatinine and urea were measured and animals were sacrificed and kidney was taken for histopathology. The following tissue markers were measured, heme oxygenase-1 (HO-1) activity, reduced glutathione, quantitative (real-time polymerase chain reaction) RT-PCR for gene expression of tumor necrosis factor alpha (TNF-α) and endothelial nitric oxide synthase (ENOS) level.
RESULTS: GII developed AKI demonstrated by significantly high urea and creatinine and severe diffuse (80-90%) tubular necrosis. TNF-α was highly and significantly elevated while the rest of tissue markers were significantly reduced in GI1 compared to other groups. GIV showed better results compared to GIII. There was a significant positive correlation between creatinine and TNF-α when combining GI and GII while there were significant negative correlation between creatinine and other tissue markers in same groups. Linear regression analysis demonstrated that HO-1 was the independent predictor of AKI demonstrated by elevated creatinine among GI and GII.
CONCLUSIONS: Combination of sildenafil and gemfibrozil can be used in treatment of cisplatin-induced nephrotoxicity. HO-1 is a promising target for prevention and/or treatment of cisplatin-induced nephrotoxicity.

Bi W, He CN, Li XX, et al.
Ginnalin A from Kujin tea (Acer tataricum subsp. ginnala) exhibits a colorectal cancer chemoprevention effect via activation of the Nrf2/HO-1 signaling pathway.
Food Funct. 2018; 9(5):2809-2819 [PubMed] Related Publications
Ginnalin A (also known as acertannin) is one of the most important phenolic compounds of several beverage Acer plants. In this study, it is reported for the first time that ginnalin A is an activator of the Nrf2 signaling pathway in human colon cancer cells. Ginnalin A, isolated from the leaves of Acer tataricum subsp. ginnala, exhibited promising preventive activity against colon cancer cells (HCT116, SW480 and SW620) with IC50 values of 24.8 μM, 22.0 μM and 39.7 μM, respectively. In addition, it significantly reduced the colony formation of these cells. Flow cytometry analysis indicated that ginnalin A suppressed cancer proliferation via the induction of cell cycle arrest at the S-phase. Real time PCR analysis demonstrated that ginnalin A can upregulate the mRNA expression levels of Nrf2-related antioxidant genes Nrf2, HO-1 and NQO1. Western blotting analysis revealed that ginnalin A promoted the Nrf2 nuclear translocation and upregulated the proteins Nrf2, HO-1 and NQO1. Moreover, the upregulation of p62 and the inhibition of Keap1 were also found by Western blotting analysis. Therefore, the activation of the Nrf2 signaling pathway was probably induced through the upregulation of p62 and the inhibition of Keap1.

Wang M, Shi G, Bian C, et al.
UVA Irradiation Enhances Brusatol-Mediated Inhibition of Melanoma Growth by Downregulation of the Nrf2-Mediated Antioxidant Response.
Oxid Med Cell Longev. 2018; 2018:9742154 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Brusatol (BR) is a potent inhibitor of Nrf2, a transcription factor that is highly expressed in cancer tissues and confers chemoresistance. UVA-generated reactive oxygen species (ROS) can damage both normal and cancer cells and may be of potential use in phototherapy. In order to provide an alternative method to treat the aggressive melanoma, we sought to investigate whether low-dose UVA with BR is more effective in eliminating melanoma cells than the respective single treatments. We found that BR combined with UVA led to inhibition of A375 melanoma cell proliferation by cell cycle arrest in the G1 phase and triggers cell apoptosis. Furthermore, inhibition of Nrf2 expression attenuated colony formation and tumor development from A375 cells in heterotopic mouse models. In addition, cotreatment of UVA and BR partially suppressed Nrf2 and its downstream target genes such as HO-1 along with the PI3K/AKT pathway. We propose that cotreatment increased ROS-induced cell cycle arrest and cellular apoptosis and inhibits melanoma growth by regulating the AKT-Nrf2 pathway in A375 cells which offers a possible therapeutic intervention strategy for the treatment of human melanoma.

Shao J, Glorieux C, Liao J, et al.
Impact of Nrf2 on tumour growth and drug sensitivity in oncogenic K-ras-transformed cells in vitro and in vivo.
Free Radic Res. 2018; 52(6):661-671 [PubMed] Related Publications
K-ras is one of the most common oncogenes in human cancers, and its aberrant activation may lead to malignant transformation associated with oxidative stress and activation of the transcription factor Nrf2 that regulates multiple detoxification enzymes. The purpose of this research was to use gene editing technology to evaluate the role of Nrf2 in affecting tumour growth and drug sensitivity of K-ras

Han L, Jiang J, Ma Q, et al.
The inhibition of heme oxygenase-1 enhances the chemosensitivity and suppresses the proliferation of pancreatic cancer cells through the SHH signaling pathway.
Int J Oncol. 2018; 52(6):2101-2109 [PubMed] Related Publications
Pancreatic cancer (PC) is a type of cancer associated with a high fatality rate due to a poor prognosis and resistance to treatment. Heme oxygenase-1 (HO-1) is significantly overexpressed in a number of types of cancer and seems to play an important role in cancer progression. In this study, we examined the potential effects of HO-1 on PC cell proliferation and sensivity to gemcitabine (Gem). Furthermore, the role of the sonic hedgehog (SHH) signaling pathway in the regulatory effects of HO-1 on PC progression were examined. For this purpose, the expression of HO-1 was examined in cultured PC cells by real-time PCR, western blot analysis and immunofluorescence. Transfection with small interfering RNA against HO-1 or an overexpression plasmid were used to regulate the expression of HO-1 in the MIA PaCa-2 and PANC-1 cell lines. Cell proliferation was examined by MTT assays in response to the different treatments. The results revealed that HO-1 expression differed significantly in the different PC cells. The overexpression of HO-1 induced PC cell proliferation and the inhibition of HO-1 decreased the cell proliferative ability. Furthermore, HO-1 activated the SHH signaling pathway in the PC cells. In addition, the SHH signaling pathway was found to play a role in HO-1-induced PC cell proliferation. The inhibition of HO-1 enhanced the responsiveness of PC cells to Gem and Gem was found to regulate the expression of HO-1 and the activation of the SHH pathway. On the whole, our findings indicate that HO-1 overexpression in PC cells may be responsible for the increased cell proliferation and the resistance to anticancer therapy. Furthermore, the SHH signaling pathway, the activation of which was initiated by HO-1, may be one of the endogenous mechanisms in this process. Our data shed light into the association between HO-1 and SHH in PC cells, and may aid in the development of novel therapeutic targets for the treatment of patients with PC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HMOX1, Cancer Genetics Web: http://www.cancer-genetics.org/HMOX1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999