Gene Summary

Gene:ERRFI1; ERBB receptor feedback inhibitor 1
Aliases: MIG6, RALT, MIG-6, GENE-33
Summary:ERRFI1 is a cytoplasmic protein whose expression is upregulated with cell growth (Wick et al., 1995 [PubMed 7641805]). It shares significant homology with the protein product of rat gene-33, which is induced during cell stress and mediates cell signaling (Makkinje et al., 2000 [PubMed 10749885]; Fiorentino et al., 2000 [PubMed 11003669]).[supplied by OMIM, Mar 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:ERBB receptor feedback inhibitor 1
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Apoptosis
  • Cell Cycle Proteins
  • Transcriptional Activation
  • Transcriptome
  • Adolescents
  • Phosphorylation
  • Bone Cancer
  • Suppressor of Cytokine Signaling Proteins
  • Transcription Factors
  • Signal Transduction
  • Cell Cycle
  • MicroRNAs
  • Tumor Suppressor Proteins
  • ErbB Receptors
  • PTEN
  • Disease Models, Animal
  • Histones
  • Mutation
  • Translocation
  • Acute Myeloid Leukaemia
  • Gene Expression
  • Serine-Arginine Splicing Factors
  • Knockout Mice
  • Signal Transducing Adaptor Proteins
  • Oligonucleotide Array Sequence Analysis
  • Exons
  • Histone Acetyltransferases
  • Down-Regulation
  • Endometrial Cancer
  • Mice, Transgenic
  • Up-Regulation
  • Chromosome 1
  • Osteosarcoma
  • Cell Proliferation
  • Cancer RNA
  • Cancer Gene Expression Regulation
  • Intracellular Signaling Peptides and Proteins
  • Gene Expression Profiling
  • Prostate Cancer
  • Receptors, Progesterone
  • Neoplastic Cell Transformation
  • MAP Kinase Signaling System
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ERRFI1 (cancer-related)

Xu M, Wang Y, He HT, Yang Q
MiR-589-5p is a potential prognostic marker of hepatocellular carcinoma and regulates tumor cell growth by targeting MIG-6.
Neoplasma. 2018; 65(5):753-761 [PubMed] Related Publications
MicroRNAs (miRNAs) are small noncoding RNAs approximately with 22 nucleotides. Accumulating evidence indicates that microRNAs are involved in carcinogenesis and tumor progression. Some recent investigations have also reported that several microRNAs could act as biomarkers in cancer diagnosis and prognosis. MicroRNA-589-5p (miR-589-5p) is a less studied microRNA, in this study, we explored its roles in hepatocellular carcinoma (HCC). We analyzed miR-589-5p expression in HCC tissues by sequencing data and proved the expression in liver cancer cell lines by quantitative real-time PCR (qRT-PCR). We studied the effect of miR-589-5p on the growth of liver cancer cells by MTT assay, colony formation and flow cytometry, and identified its target gene by luciferase reporter assay. We found that miR-589-5p was commonly overexpressed in HCC specimens. High expression of miR-589-5p was a risk factor for HCC patient (Hazard ratio [HR] = 1.434; 95% confidence intervals [CI] = 1.006-2.044; p = 0.046). We also found miR-589-5p had higher expression in hepatocarcinoma cell lines HepG2 and HuH-7 than did in normal hepatocyte Lo-2. We identified that suppression of miR-589-5p inhibited cell proliferation and cell cycle progression by loss-of-function studies. Furthermore, we found mitogen-inducible gene 6 (MIG-6) to be a target of miR-589-5p. Our study demonstrated that miR-589-5p facilitated the growth of liver cancer cells by targeting MIG-6 and could be a prognosis biomarker for HCC. Suppression of miR-589-5p may be a feasible approach for inhibiting HCC progress.

Yoo JY, Kang HB, Broaddus RR, et al.
MIG-6 suppresses endometrial epithelial cell proliferation by inhibiting phospho-AKT.
BMC Cancer. 2018; 18(1):605 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Aberrant hyperactivation of epithelial proliferation, AKT signaling, and association with unopposed estrogen (E2) exposure is the most common endometrial cancer dysfunction. In the normal uterus, progesterone (P4) inhibits proliferation by coordinating stromal-epithelial cross-talk, which we previously showed is mediated by the function of Mitogen-inducible gene 6 (Mig-6). Despite their attractive characteristics, non-surgical conservative therapies based on progesterone alone have not been universally successful. One barrier to this success has been the lack of understanding of the P4 effect on endometrial cells.
METHOD: To further understand the role of Mig-6 and P4 in controlling uterine proliferation, we developed a Sprr2f-cre driven mouse model where Mig-6 is specifically ablated only in the epithelial cells of the uterus (Sprr2f
CONCLUSIONS: These data suggest that endometrial epithelial cell proliferation is regulated by P4 mediated Mig-6 inhibition of AKT phosphorylation, uncovering new mechanisms of P4 action. This information may help guide more effective non-surgical interventions in the future.

Kim SC, Shin YK, Kim YA, et al.
Identification of genes inducing resistance to ionizing radiation in human rectal cancer cell lines: re-sensitization of radio-resistant rectal cancer cells through down regulating NDRG1.
BMC Cancer. 2018; 18(1):594 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Resistance to preoperative radiotherapy is a major clinical problem in the treatment for locally advanced rectal cancer. The role of NDRG1 in resistance to ionizing radiation in rectal cancer has not been fully elucidated. This study aimed to investigate the effect of the reduced intracellular NDRG1 expression on radio-sensitivity of human rectal cancer cells for exploring novel approaches for treatment of rectal cancer.
METHODS: Three radio-resistant human rectal cancer cell lines (SNU-61R80Gy, SNU-283R80Gy, and SNU-503R80Gy) were established from human rectal cancer cell lines (SNU-61, SNU-283, and SNU-503) using total 80 Gy of fractionated irradiation. Microarray analysis was performed to identify differently expressed genes in newly established radio-resistant human rectal cancer cells compared to parental rectal cancer cells.
RESULTS: A microarray analysis indicated the RNA expression of five genes (NDRG1, ERRFI1, H19, MPZL3, and UCA1) was highly increased in radio-resistant rectal cancer cell lines. Short hairpin RNA-mediated silencing of NDRG1 sensitized rectal cancer cell lines to clinically relevant doses of radiation by causing more DNA double strand breakages to rectal cancer cells when exposed to radiation.
CONCLUSIONS: Targeting NDRG1 represents a promising strategy to increase response to radiotherapy in human rectal cancer.

Zhang H, Liu W, Wang Z, et al.
MEF2C promotes gefitinib resistance in hepatic cancer cells through regulating MIG6 transcription.
Tumori. 2018; 104(3):221-231 [PubMed] Related Publications
INTRODUCTION: Mitogen-inducible gene 6 ( MIG6) holds a special position in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance. As MIG6 regulates the activity of EGFR signal pathway negatively, high level of MIG6 can increase the EGFR TKI resistance of cancer cells, and limit the therapeutic action of EGFR TKI, such as gefitinib or erlotinib. Therefore, better understanding of the molecular mechanisms underlying the regulation of EGFR TKI resistance holds great value in cancer therapy.
METHODS: In our study, we mainly explored the function of transcription activator, myocyte enhancer factor 2C (MEF2C), on MIG6 expression as well as gefitinib-resistant ability of hepatic cancer cells.
RESULTS: Our results indicated that both MEF2C and MIG6 could be upregulated in gefitinib-resistant cancer tissues and cancer cell lines compared with gefitinib-sensitive ones. Chromatin immunoprecipitation assay and dual luciferase assay showed that MEF2C could bind to the MEF2C element in the promoter sequence of MIG6 and promote the transcription of MIG6. This effect increased the gefitinib-resistant ability of cancer cells. Therefore, MEF2C knockdown inhibited the gefitinib resistance and limited the proliferation of hepatic cancer cells in vitro and in vivo, while overexpression of MEF2C showed opposite effect on cancer cell proliferation.
CONCLUSION: Our study provides novel insight into the regulation mechanism of MIG6 and suggests potential implications for the therapeutic strategies of gefitinib resistance through inhibiting MEF2C in hepatic cancer cells.

DeLeon TT, Ahn DH, Bogenberger JM, et al.
Novel targeted therapy strategies for biliary tract cancers and hepatocellular carcinoma.
Future Oncol. 2018; 14(6):553-566 [PubMed] Related Publications
Worldwide hepatobiliary cancers are the second leading cause of cancer related death. Despite their relevance, hepatobiliary cancers have a paucity of approved systemic therapy options. However, there are a number of emerging therapeutic biomarkers and therapeutic concepts that show promise. In hepatocellular carcinoma, nivolumab appears particularly promising and recently received US FDA approval. In intrahepatic cholangiocarcinoma, therapies targeting FGFR2 and IDH1 and immune checkpoint inhibitors are the furthest along and generating the most excitement. There are additional biomarkers that merit further exploration in hepatobiliary cancers including FGF19, ERRFI1, TERT, BAP1, BRAF, CDKN2A, tumor mutational burden and ERBB2 (HER2/neu). Development of new and innovative therapies would help address the unmet need for effective systemic therapies in advanced and metastatic hepatobiliary cancers.

Yoo JY, Yang WS, Lee JH, et al.
MIG-6 negatively regulates STAT3 phosphorylation in uterine epithelial cells.
Oncogene. 2018; 37(2):255-262 [PubMed] Free Access to Full Article Related Publications
Endometrial cancer is the most common malignancy of the female genital tract. Progesterone (P4) has been used for several decades in endometrial cancer treatment, especially in women who wish to retain fertility. However, it is unpredictable which patients will respond to P4 treatment and which may have a P4-resistant cancer. Therefore, identifying the mechanism of P4 resistance is essential to improve the therapies for endometrial cancer. Mitogen-inducible gene 6 (Mig-6) is a critical mediator of progesterone receptor (PGR) action in the uterus. In order to study the function of Mig-6 in P4 resistance, we generated a mouse model in which we specifically ablated Mig-6 in uterine epithelial cells using Sprr2f-cre mice (Sprr2f

Li H, Chen H, Wang H, et al.
MicroRNA-374a Promotes Hepatocellular Carcinoma Cell Proliferation by Targeting Mitogen-Inducible Gene 6 (MIG-6).
Oncol Res. 2018; 26(4):557-563 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a disease with poor prognosis rates and ineffective therapeutic options. Previous studies have reported the involvement of mitogen-inducible gene 6 (MIG-6) as a negative regulator in tumor formation. MicroRNAs (miRNAs) play crucial roles in the development of different types of cancer. However, the underlying mechanisms of miRNAs in HCC are poorly understood. This study was aimed to investigate the role of miR-374a in HCC and its role in the regulation of expression of MIG-6. The results showed that MIG-6 overexpression significantly inhibited cell viability of HepG2 cells after 4 days posttransfection. Moreover, MIG-6 was a direct target of miR-374a, and the expression of MIG-6 was remarkably downregulated by the overexpression of miR-374a in HepG2 cells. Furthermore, we found that overexpression of miR-374a promoted cell viability; however, the protective effect was abolished by MIG-6 overexpression. In addition, overexpression of miR-374a activated the EGFR and AKT/ERK signaling pathways by regulation of MIG-6. Our findings suggest that miR-374a could promote cell viability by targeting MIG-6 and activating the EGFR and AKT/ERK signaling pathways. These data provide a promising therapeutic strategy for HCC treatment.

Ando H, Miyamoto T, Kashima H, et al.
Panobinostat Enhances Growth Suppressive Effects of Progestin on Endometrial Carcinoma by Increasing Progesterone Receptor and Mitogen-Inducible Gene-6.
Horm Cancer. 2017; 8(4):257-267 [PubMed] Related Publications
Although progestin has been used to treat endometrial hyperplasia and endometrial carcinoma (EC), its therapeutic efficacy is limited. In order to improve this, the underlining mechanisms of the effects of progestin need to be elucidated in more detail. In the present study, we examined the involvement of mitogen-inducible gene-6 (MIG6), a negative regulator of the EGF receptor, in the progestin-mediated growth suppression of endometrial epithelia. The immunohistochemical expression of MIG6 was elevated in the early to mid-secretory phases of normal endometrium and also with endometrial hyperplasia after medroxyprogesterone acetate (MPA) therapy. The addition of progesterone (P4) to progesterone receptor (PR)-positive EC cells reduced the viability and induced MIG6 messenger RNA (mRNA) and protein expression. The silencing of MIG6 using siRNA eliminated the P4-mediated reduction of EC cell viability, indicating that MIG6 is an essential downstream component of PR-mediated growth suppression. In order to enhance PR-driven signals, we examined the effects of histone deacetylase (HDAC) inhibitors because histone acetylation has been shown to increase the expression of PR. The addition of three HDAC inhibitors (panobinostat, LBH589; trichostatin A, TSA; suberoylanilide hydroxamic acid, SAHA) decreased the viability of EC cells and up-regulated the expression of PR and MIG6, and these effects were the strongest with LBH589. The addition of LBH589 and MPA synergistically decreased the viability and increased apoptosis in EC cells. These results indicate that LBH589 has potential as an enhancer of progestin therapy via the up-regulation of PR and MIG6.

Li Z, Qu L, Luo W, et al.
Mig-6 is down-regulated in HCC and inhibits the proliferation of HCC cells via the P-ERK/Cyclin D1 pathway.
Exp Mol Pathol. 2017; 102(3):492-499 [PubMed] Related Publications
The ablation of Mig-6 has been shown to induce tumor formation in various tissues. However, the relationships between Mig-6 expression, clinical pathological factors, and prognosis have not been clarified in hepatocellular carcinoma (HCC), and the mechanism by which Mig-6 regulates the proliferation of HCC cells has not been reported. In this study, we investigated the clinical significance of the loss of Mig-6 expression in HCC and the mechanism underlying the inhibition of cell proliferation by Mig-6. The down-regulation of Mig-6 correlated significantly with large tumors, a more advanced BCLC stage, and a more advanced TNM stage, and low Mig-6 expression predicted significantly reduced survival. Low Mig-6 expression and high Cyclin D1 expression were independent predictors for survival. The overexpression of Mig-6 led to significant G

Kim TH, Yoo JY, Jeong JW
Mig-6 Mouse Model of Endometrial Cancer.
Adv Exp Med Biol. 2017; 943:243-259 [PubMed] Related Publications
Endometrial cancer is a frequently occurring gynecological disorder. Estrogen-dependent endometrioid carcinoma is the most common type of gynecological cancer. One of the major pathologic phenomena of endometrial cancer is the loss of estrogen (E2) and progesterone (P4) control over uterine epithelial cell proliferation. P4 antagonizes the growth-promoting properties of E2 in the uterus. P4 prevents the development of endometrial cancer associated with unopposed E2 by blocking E2 actions. Mitogen inducible gene 6 (Mig-6, Errfi1, RALT, or gene 33) is an immediate early response gene that can be induced by various mitogens and common chronic stress stimuli. Mig-6 has been identified as an important component of P4-mediated inhibition of E2 signaling in the uterus. Decreased expression of MIG-6 is observed in human endometrial carcinomas. Transgenic mice with Mig-6 ablation in the uterus develop endometrial hyperplasia and E2-dependent endometrial cancer. Thus, MIG-6 has a tumor suppressor function in endometrial tumorigenesis. The following discussion summarizes our current knowledge of Mig-6 mouse models and their role in understanding the molecular mechanisms of endometrial tumorigenesis and in the development of therapeutic approaches for endometrial cancer.

Endo H, Okami J, Okuyama H, et al.
The induction of MIG6 under hypoxic conditions is critical for dormancy in primary cultured lung cancer cells with activating EGFR mutations.
Oncogene. 2017; 36(20):2824-2834 [PubMed] Related Publications
The biologic activity of individual cancer cells is highly heterogeneous. Hypoxia, one of the prominent features of a tumor microenvironment, is thought to be causal in generating this cellular heterogeneity. In this study, we revealed that primary lung cancer cells harboring activating epidermal growth factor receptor (EGFR) mutations generally entered a dormant state when hypoxic. We found that heterodimer formation of the ERBB family receptor tyrosine kinases (RTKs), and their subsequent downstream signaling, was diminished under hypoxic conditions, although phosphorylation of the EGFR was retained. Dormant lung cancer cells were found to be resistant to EGFR tyrosine kinase inhibitor (TKI) treatment. In terms of mechanism, we found that a negative regulator of ERBB signaling, MIG6/ERRFI1/RALT/Gene33, was induced by hypoxia both in vitro and in vivo. MIG6 expression prevented heterodimer formation of ERBB family RTKs, and suppressed their downstream signaling. Knockdown of MIG6 enhanced tumor cell growth under hypoxic conditions, and promoted the phosphorylation of ERK and AKT via increased EGFR-HER3 binding. Critically, sensitivity to an EGFR-TKI, as well as to irradiation under hypoxic conditions, was increased in MIG6 knockdown cells. The expression of MIG6 was partly correlated with a pS6 negative zone in patient tumors. Analyses of tumor sections from 68 patients with activating EGFR mutations showed that patients with high MIG6 expression showed significantly shorter survival after EGFR-TKI treatment than other groups. Collectively, our data suggest that dormant cancer cells with a high MIG6 expression level might be one of the causes of EGFR-TKI resistance in EGFR mutant lung cancer cells.

Jiang X, Niu M, Chen D, et al.
Inhibition of Cdc42 is essential for Mig-6 suppression of cell migration induced by EGF.
Oncotarget. 2016; 7(31):49180-49193 [PubMed] Free Access to Full Article Related Publications
The adaptor protein Mig-6 is a negative regulator of EGF signaling. It is shown that Mig-6 inhibits cell migration via direct interaction with the ErbB receptors, thereby inhibiting cross-phosphorylation or targeting the receptors for degradation. Mig-6 has also been shown to bind to and inhibit the Rho GTPase Cdc42 to suppress cytoskeletal rearrangement. However, the molecular mechanism(s) by which Mig-6 inhibits cell migration via Cdc42 is still not entirely clear. Here, we show that Mig-6 binding to Cdc42 is necessary and sufficient to inhibit EGF-induced filopodia formation and migration. This binding, mediated by four specific residues (I11, R12, M26, R30) in the Mig-6 CRIB domain, is essential for Mig-6 function. In addition, ectopic expression of Cdc42 reverses Mig-6 inhibition of cell migration. Mig-6 CRIB domain, alone, is sufficient to inhibit cell migration. Conversely, Mig-6 binding to EGFR is dispensable for Mig-6-mediated inhibition of cell migration. Moreover, we found that decreased Mig-6 expression correlates with cancer progression in breast and prostate cancers. Together, our results demonstrate that Mig-6 inhibition of Cdc42 signaling is critical in Mig-6 function to suppress cell migration and that dysregulation of this pathway may play a critical role in cancer development.

Vu HL, Rosenbaum S, Capparelli C, et al.
MIG6 Is MEK Regulated and Affects EGF-Induced Migration in Mutant NRAS Melanoma.
J Invest Dermatol. 2016; 136(2):453-463 [PubMed] Free Access to Full Article Related Publications
Activating mutations in neuroblastoma RAS viral oncogene homolog (NRAS) are frequent driver events in cutaneous melanoma. NRAS is a guanosine triphosphate-binding protein whose most well-characterized downstream effector is RAF, leading to activation of mitogen-activated protein kinase (MEK)-extracellular signal-regulated protein kinase 1/2 signaling. Although there are no Food and Drug Administration-approved targeted therapies for melanoma patients with a primary mutation in NRAS, one form of targeted therapy that has been explored is MEK inhibition. In clinical trials, MEK inhibitors have shown disappointing efficacy in mutant NRAS patients, the reasons for which are unclear. To explore the effects of MEK inhibitors in mutant NRAS melanoma, we used a high-throughput reverse-phase protein array platform to identify signaling alterations. Reverse-phase protein array analysis of phospho-proteomic changes in mutant NRAS melanoma in response to trametinib indicated a compensatory increase in v-akt murine thymoma viral oncogene homolog signaling and decreased expression of mitogen-inducible gene 6 (MIG6), a negative regulator of epidermal growth factor receptor/v-erb-b2 erythroblastic leukemia viral oncogene homolog receptors. MIG6 expression did not alter the growth or survival properties of mutant NRAS melanoma cells. Rather, we identified a role for MIG6 as a negative regulator of epidermal growth factor-induced signaling and cell migration and invasion. In MEK-inhibited cells, further depletion of MIG6 increased migration and invasion, whereas MIG6 expression decreased these properties. Therefore, a decrease in MIG6 may promote the migration and invasiveness of MEK-inhibited mutant NRAS melanoma, especially in response to epidermal growth factor stimulation.

Park S, Li C, Zhao H, et al.
Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells.
Oncotarget. 2016; 7(8):8916-30 [PubMed] Free Access to Full Article Related Publications
Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI).

Ajiro M, Jia R, Yang Y, et al.
A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells.
Nucleic Acids Res. 2016; 44(4):1854-70 [PubMed] Free Access to Full Article Related Publications
Alternative RNA splicing is an essential process to yield proteomic diversity in eukaryotic cells, and aberrant splicing is often associated with numerous human diseases and cancers. We recently described serine/arginine-rich splicing factor 3 (SRSF3 or SRp20) being a proto-oncogene. However, the SRSF3-regulated splicing events responsible for its oncogenic activities remain largely unknown. By global profiling of the SRSF3-regulated splicing events in human osteosarcoma U2OS cells, we found that SRSF3 regulates the expression of 60 genes including ERRFI1, ANXA1 and TGFB2, and 182 splicing events in 164 genes, including EP300, PUS3, CLINT1, PKP4, KIF23, CHK1, SMC2, CKLF, MAP4, MBNL1, MELK, DDX5, PABPC1, MAP4K4, Sp1 and SRSF1, which are primarily associated with cell proliferation or cell cycle. Two SRSF3-binding motifs, CCAGC(G)C and A(G)CAGCA, are enriched to the alternative exons. An SRSF3-binding site in the EP300 exon 14 is essential for exon 14 inclusion. We found that the expression of SRSF1 and SRSF3 are mutually dependent and coexpressed in normal and tumor tissues/cells. SRSF3 also significantly regulates the expression of at least 20 miRNAs, including a subset of oncogenic or tumor suppressive miRNAs. These data indicate that SRSF3 affects a global change of gene expression to maintain cell homeostasis.

Xu W, Zhu S, Zhou Y, et al.
Upregulation of mitogen-inducible gene 6 triggers antitumor effect and attenuates progesterone resistance in endometrial carcinoma cells.
Cancer Gene Ther. 2015; 22(11):536-41 [PubMed] Related Publications
Researches regarding mitogen-inducible gene 6 (Mig-6) have confirmed its role as a tumor suppressor and progesterone resistance factor in endometrium. In this study, after confirming the downregulation of Mig-6 protein in endometrial carcinoma (EC) tissues, the expression of Mig-6 was upregulated in Ishikawa cells by pCMV6-Mig-6 plasmid. We observed the increased apoptosis, decreased proliferation and invasion potential of Ishikawa cells after upregulation of Mig-6. The proapoptosis ability of P4 significantly enhanced by 39.36%, the antiproliferation ability increased by 37.90% and the anti-invasion ability increased by 48.89%, suggesting the antiprogesterone resistance potential of Mig-6 in endometrium. In addition, the results suggested that Mig-6 may induce Ishikawa cell apoptosis through the mitochondrial pathway, inhibit cell proliferation via the extracellular signal-regulated kinase pathway and the anti-invasion potential may associate with matrix metalloproteinase (MMP)-2 and MMP-9 downexpression. Therefore, upregulation of Mig-6 may add a new strategy to suppress endometrial tumorigenesis and attenuate the progesterone resistance during P4 treatment.

Li Z, Chen P, Su R, et al.
Overexpression and knockout of miR-126 both promote leukemogenesis.
Blood. 2015; 126(17):2005-15 [PubMed] Free Access to Full Article Related Publications
It is generally assumed that gain- and loss-of-function manipulations of a functionally important gene should lead to the opposite phenotypes. We show in this study that both overexpression and knockout of microRNA (miR)-126 surprisingly result in enhanced leukemogenesis in cooperation with the t(8;21) fusion genes AML1-ETO/RUNX1-RUNX1T1 and AML1-ETO9a (a potent oncogenic isoform of AML1-ETO). In accordance with our observation that increased expression of miR-126 is associated with unfavorable survival in patients with t(8;21) acute myeloid leukemia (AML), we show that miR-126 overexpression exhibits a stronger effect on long-term survival and progression of AML1-ETO9a-mediated leukemia stem cells/leukemia initiating cells (LSCs/LICs) in mice than does miR-126 knockout. Furthermore, miR-126 knockout substantially enhances responsiveness of leukemia cells to standard chemotherapy. Mechanistically, miR-126 overexpression activates genes that are highly expressed in LSCs/LICs and/or primitive hematopoietic stem/progenitor cells, likely through targeting ERRFI1 and SPRED1, whereas miR-126 knockout activates genes that are highly expressed in committed, more differentiated hematopoietic progenitor cells, presumably through inducing FZD7 expression. Our data demonstrate that miR-126 plays a critical but 2-faceted role in leukemia and thereby uncover a new layer of miRNA regulation in cancer. Moreover, because miR-126 depletion can sensitize AML cells to standard chemotherapy, our data also suggest that miR-126 represents a promising therapeutic target.

Park E, Kim N, Ficarro SB, et al.
Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6.
Nat Struct Mol Biol. 2015; 22(9):703-711 [PubMed] Free Access to Full Article Related Publications
Mig6 is a feedback inhibitor that directly binds, inhibits and drives internalization of ErbB-family receptors. Mig6 selectively targets activated receptors. Here we found that the epidermal growth factor receptor (EGFR) phosphorylates Mig6 on Y394 and that this phosphorylation is primed by prior phosphorylation of an adjacent residue, Y395, by Src. Crystal structures of human EGFR-Mig6 complexes reveal the structural basis for enhanced phosphorylation of primed Mig6 and show how Mig6 rearranges after phosphorylation by EGFR to effectively irreversibly inhibit the same receptor that catalyzed its phosphorylation. This dual phosphorylation site allows Mig6 to inactivate EGFR in a manner that requires activation of the target receptor and that can be modulated by Src. Loss of Mig6 is a driving event in human cancer; analysis of 1,057 gliomas reveals frequent focal deletions of ERRFI1, the gene that encodes Mig6, in EGFR-amplified glioblastomas.

Okada H, Honda M, Campbell JS, et al.
Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice.
Cancer Sci. 2015; 106(9):1143-52 [PubMed] Free Access to Full Article Related Publications
Differentially regulated microRNA (miRNA) are associated with hepatic fibrosis; however, their potential usefulness for blocking hepatic fibrosis has not been exploited fully. We examined the expression of miRNA in the liver of a transgenic mouse model in which platelet-derived growth factor C (PDGF-C) is overexpressed (Pdgf-c Tg), resulting in hepatic fibrosis and steatosis and the eventual development of hepatocellular carcinoma (HCC). Robust induction of miR-214 correlated with fibrogenesis in the liver of Pdgf-c Tg mice, atherogenic high-fat diet-induced NASH mice, and patients with chronic hepatitis B or C. Pdgf-c Tg mice were injected with locked nucleic acid (LNA)-antimiR-214 via the tail vein using Invivofectamine 2.0 and the degree of hepatic fibrosis and tumor incidence were evaluated. Pdgf-c Tg mice treated with LNA-antimiR-214 showed a marked reduction in fibrosis and tumor incidence compared with saline or LNA-miR-control-injected control mice. In vitro, LNA-antimiR-214 significantly ameliorated TGF-β1-induced pro-fibrotic gene expression in Lx-2 cells. MiR-214 targets a negative regulator of EGFR signaling, Mig-6. Mimic-miR-214 decreased the expression of Mig-6 and increased the levels of EGF-mediated p-EGFR (Y1173 and Y845) and p-Met (Tyr1234/1235) in Huh-7 cells. Conversely, LNA-antimiR-214 repressed the expression of these genes. In conclusion, miR-214 appears to participate in the development of hepatic fibrosis by modulating the EGFR and TGF-β signaling pathways. LNA-antimiR-214 is a potential therapy for the prevention of hepatic fibrosis.

Milewska M, Romano D, Herrero A, et al.
Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation.
PLoS One. 2015; 10(6):e0129859 [PubMed] Free Access to Full Article Related Publications
BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed towards the EGFR.

Wang H, Pan JQ, Luo L, et al.
NF-κB induces miR-148a to sustain TGF-β/Smad signaling activation in glioblastoma.
Mol Cancer. 2015; 14:2 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Inflammatory cytokines and transforming growth factor-β (TGF-β) are mutually inhibitory. However, hyperactivation of nuclear factor-κB (NF-κB) and TGF-β signaling both emerge in glioblastoma. Here, we report microRNA-148a (miR-148a) overexpression in glioblastoma and that miR-148a directly suppressed Quaking (QKI), a negative regulator of TGF-β signaling.
METHODS: We determined NF-κB and TGF-β/Smad signaling activity using pNF-κB-luc, pSMAD-luc, and control plasmids. The association between an RNA-induced silencing complex and QKI, mitogen-inducible gene 6 (MIG6), S-phase kinase-associated protein 1 (SKP1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was tested with microribonucleoprotein immunoprecipitation and real-time PCR. Xenograft tumors were established in the brains of nude mice.
RESULTS: QKI suppression induced an aggressive phenotype of glioblastoma cells both in vitro and in vivo. Interestingly, we found that NF-κB induced miR-148a expression, leading to enhanced-strength and prolonged-duration TGF-β/Smad signaling. Notably, these findings were consistent with the significant correlation between miR-148a levels with NF-κB hyperactivation and activated TGF-β/Smad signaling in a cohort of human glioblastoma specimens.
CONCLUSIONS: These findings uncover a plausible mechanism for NF-κB-sustained TGF-β/Smad activation via miR-148a in glioblastoma, and may suggest a new target for clinical intervention in human cancer.

Maity TK, Venugopalan A, Linnoila I, et al.
Loss of MIG6 Accelerates Initiation and Progression of Mutant Epidermal Growth Factor Receptor-Driven Lung Adenocarcinoma.
Cancer Discov. 2015; 5(5):534-49 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Somatic mutations in the EGFR kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here, we demonstrate that MIG6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/Y395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for MIG6 to delay mutant EGFR-driven tumor initiation and progression in mouse models.
SIGNIFICANCE: This study demonstrates that MIG6 is a potent tumor suppressor for mutant EGFR-driven lung tumor initiation and progression in mice and provides a possible mechanism by which mutant EGFR can partially circumvent this tumor suppressor in human lung adenocarcinoma.

Wendt MK, Williams WK, Pascuzzi PE, et al.
The antitumorigenic function of EGFR in metastatic breast cancer is regulated by expression of Mig6.
Neoplasia. 2015; 17(1):124-33 [PubMed] Free Access to Full Article Related Publications
Numerous studies by our lab and others demonstrate that epidermal growth factor receptor (EGFR) plays critical roles in primary breast cancer (BC) initiation, growth and dissemination. However, clinical trials targeting EGFR function in BC have lead to disappointing results. In the current study we sought to identify the mechanisms responsible for this disparity by investigating the function of EGFR across the continuum of the metastatic cascade. We previously established that overexpression of EGFR is sufficient for formation of in situ primary tumors by otherwise nontransformed murine mammary gland cells. Induction of epithelial-mesenchymal transition (EMT) is sufficient to drive the metastasis of these EGFR-transformed tumors. Examining growth factor receptor expression across this and other models revealed a potent downregulation of EGFR through metastatic progression. Consistent with diminution of EGFR following EMT and metastasis EGF stimulation changes from a proliferative to an apoptotic response in in situ versus metastatic tumor cells, respectively. Furthermore, overexpression of EGFR in metastatic MDA-MB-231 BC cells promoted their antitumorigenic response to EGF in three dimensional (3D) metastatic outgrowth assays. In line with the paradoxical function of EGFR through EMT and metastasis we demonstrate that the EGFR inhibitory molecule, Mitogen Induced Gene-6 (Mig6), is tumor suppressive in in situ tumor cells. However, Mig6 expression is absolutely required for prevention of apoptosis and ultimate metastasis of MDA-MB-231 cells. Further understanding of the paradoxical function of EGFR between primary and metastatic tumors will be essential for application of its targeted molecular therapies in BC.

Izumchenko E, Chang X, Michailidi C, et al.
The TGFβ-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors.
Cancer Res. 2014; 74(14):3995-4005 [PubMed] Free Access to Full Article Related Publications
Although specific mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) identify tumors that are responsive to EGFR tyrosine kinase inhibitors (TKI), these genetic alterations are present in only a minority of patients. Patients with tumors expressing wild-type EGFR lack reliable predictive markers of their clinical response to EGFR TKIs. Although epithelial-mesenchymal transition (EMT) has been inversely correlated with the response of cancers to EGFR-targeted therapy, the precise molecular mechanisms underlying this association have not been defined and no specific EMT-associated biomarker of clinical benefit has been identified. Here, we show that during transforming growth factor β (TGFβ)-mediated EMT, inhibition of the microRNAs 200 (miR200) family results in upregulated expression of the mitogen-inducible gene 6 (MIG6), a negative regulator of EGFR. The MIG6-mediated reduction of EGFR occurs concomitantly with a TGFβ-induced EMT-associated kinase switch of tumor cells to an AKT-activated EGFR-independent state. In a panel of 25 cancer cell lines of different tissue origins, we find that the ratio of the expression levels of MIG6 and miR200c is highly correlated with EMT and resistance to erlotinib. Analyses of primary tumor xenografts of patient-derived lung and pancreatic cancers carrying wild-type EGFR showed that the tumor MIG6(mRNA)/miR200 ratio was inversely correlated with response to erlotinib in vivo. Our data demonstrate that the TGFβ-miR200-MIG6 network orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors, and identify a low ratio of MIG6 to miR200 as a promising predictive biomarker of the response of tumors to EGFR TKIs.

Kuo CC, Lin CY, Shih YL, et al.
Frequent methylation of HOXA9 gene in tumor tissues and plasma samples from human hepatocellular carcinomas.
Clin Chem Lab Med. 2014; 52(8):1235-45 [PubMed] Related Publications
BACKGROUND: Aberrant DNA methylation is associated with the development of hepatocellular carcinoma (HCC), suggesting that gene methylation could be a potential biomarker for detection of HCC. The aim of this study is to identify potential biomarkers in HCC.
METHODS: We used the Infinium methylation array and a DNA-pooling strategy to analyze the genome-wide methylation profile in HCC. Quantitative methylation-specific PCR (Q-MSP) was used to validate homeobox A9 (HOXA9) methylation in 29 normal controls, 100 HCC samples and adjacent non-tumor tissues and in 74 plasma samples, including 40 patients with HCC.
RESULTS: Ten genes (HOXA9, NEUROG1, TNFRSF10C, IRAK3, GFPT2, ZNF177, DPYSL4, ELOVL4, FSD1, and CACNA1G) showed differences in methylation between controls and HCCs. Of these, HOXA9 was significantly hypermethylated in HCCs (76.7%; 23/30) compared with controls (3.4%; 1/29). In addition, combination analysis of two- and three-gene sets for HCC detection showed greater sensitivity (90%-96.7%) and comparable specificity (93.1%-96.6%) to each individual gene (33.3%-76.7% and 55.2%-100.0%). HOXA9 methylation was further validated by Q-MSP in two independent set of clinical samples including 100 HCC and paired non-tumor tissues. Further, HOXA9 methylation could be detected in plasma from HCC patients (n=40) but not in normal plasma (n=34) (p<0.0005). Combined testing (either parameter positive) for α-fetoprotein (AFP, a plasma protein biomarker) and HOXA9 methylation showed greater sensitivity (94.6%) for detection of HCC than AFP alone (75.7%).
CONCLUSIONS: These data suggest that methylation of HOXA9 could be a helpful biomarker to assist in HCC detection.

Li Z, Qu L, Zhong H, et al.
Low expression of Mig-6 is associated with poor survival outcome in NSCLC and inhibits cell apoptosis via ERK-mediated upregulation of Bcl-2.
Oncol Rep. 2014; 31(4):1707-14 [PubMed] Related Publications
Mitogen-inducible gene-6 (Mig-6), an immediate early response gene, is a specific negative regulator of epidermal growth factor receptor (EGFR). Ablation of Mig-6 has been shown to induce tumor formation in various tissues, supporting the tumor suppressor function of Mig-6. However, little is known about the role of Mig-6 in non-small cell lung cancer (NSCLC) apoptosis, nor has the contribution of upregulated Mig-6 on biological behaviors of A549 and H157 cells previously been reported. The aim of the present study was to investigate the effects of exogenously transfected Mig-6 on proliferation, invasion and apoptosis of A549 and H157 cells and to identify novel underlying mechanisms of Mig-6-induced apoptosis. We used immunohistochemical staining to examine the expression of Mig-6 protein in NSCLC tissues. For evaluation of the prognostic value of Mig-6 expression to each clinicopathologic factor, Kaplan-Meier method and Cox's proportional hazards model were employed. Mig-6 low expression was correlated with a poor prognosis in patients with lung cancer. Patients with high expression of Mig-6 had a statistically significantly longer survival than those with low expression of Mig-6. Cox's regression analysis indicated that loss of Mig-6 expression was an independent, unfavorable prognostic factors. We utilized siRNA-targeting Mig-6 and Mig-6 overexpression plasmid to determine the effect of Mig-6 on lung cancer cells. Flow cytometry studies revealed Mig-6 overexpression promoted apoptosis in NSCLC cell lines. siRNA-mediated Mig-6 knockdown inhibited apoptosis of cancer cells, but this anti-apoptotic effect was abolished by inhibition of ERK. Upregulation of Mig-6 decreased the proliferation and invasive potential of transfected cells. Moreover, upregulation of Mig-6 inhibited proliferation and invasion of A549 and H157 cells. Collectively, our results showed that Mig-6 is a potential biomarker for evaluation of tumor prognosis of lung cancer. Mig-6 promotes apoptosis in lung cancer cells via the ERK pathway.

Walsh AM, Lazzara MJ
Differential parsing of EGFR endocytic flux among parallel internalization pathways in lung cancer cells with EGFR-activating mutations.
Integr Biol (Camb). 2014; 6(3):312-23 [PubMed] Related Publications
Due to the existence of parallel pathways for receptor endocytosis and their complexities, a quantitative understanding of receptor endocytosis in normal and pathological settings requires computational analysis. Here, we develop a mechanistic model of epidermal growth factor receptor (EGFR) endocytosis to determine the relative contributions of three parallel pathways: clathrin-dependent internalization mediated by mitogen-inducible gene 6 (MIG6), an endogenous EGFR kinase inhibitor that links EGFR to endocytic proteins; clathrin-dependent internalization mediated by the ubiquitin ligase CBL, which can be sequestered by the regulatory protein Sprouty2; or alternative pathways that may be non-clathrin mediated. We applied the model to interpret our previous measurements of EGFR endocytosis in lung cancer cells. Interestingly, our results suggest that MIG6 is responsible for at least as much wild-type EGFR internalization as CBL, indicating that a significant fraction of internalizing EGFR may be incapable of driving signaling. Model results also suggest that MIG6's endocytic function is reduced for the kinase-activated and internalization-impaired EGFR mutants found in some lung cancers. Analysis of Sprouty2 knockdown data indicates that Sprouty2 regulates EGFR endocytosis primarily by controlling EGFR expression, rather than by sequestering CBL, and supports the notion that CBL-mediated internalization is impaired for EGFR mutants. We further demonstrate that differences in internalization between wild-type and mutant EGFR cannot explain differences in EGF-mediated EGFR degradation without concomitant changes in EGFR recycling, which we previously quantified. This work provides new quantitative insights into EGFR trafficking in lung cancer and provides a framework for studying parallel endocytosis pathways for other receptors.

Chang X, Izumchenko E, Solis LM, et al.
The relative expression of Mig6 and EGFR is associated with resistance to EGFR kinase inhibitors.
PLoS One. 2013; 8(7):e68966 [PubMed] Free Access to Full Article Related Publications
The sensitivity of only a few tumors to anti-epidermal growth factor receptor EGFR tyrosine kinase inhibitors (TKIs) can be explained by the presence of EGFR tyrosine kinase (TK) domain mutations. In addition, such mutations were rarely found in tumor types other than lung, such as pancreatic and head and neck cancer. In this study we sought to elucidate mechanisms of resistance to EGFR-targeted therapies in tumors that do not harbor TK sensitizing mutations in order to identify markers capable of guiding the decision to incorporate these drugs into chemotherapeutic regimens. Here we show that EGFR activity was markedly decreased during the evolution of resistance to the EGFR tyrosine kinase inhibitor (TKI) erlotinib, with a concomitant increase of mitogen-inducible gene 6 (Mig6), a negative regulator of EGFR through the upregulation of the PI3K-AKT pathway. EGFR activity, which was more accurately predicted by the ratio of Mig6/EGFR, highly correlated with erlotinib sensitivity in panels of cancer cell lines of different tissue origins. Blinded testing and analysis in a prospectively followed cohort of lung cancer patients treated with gefitinib alone demonstrated higher response rates and a marked increased in progression free survival for patients with a low Mig6/EGFR ratio (approximately 100 days, P = 0.01).

Walsh AM, Lazzara MJ
Regulation of EGFR trafficking and cell signaling by Sprouty2 and MIG6 in lung cancer cells.
J Cell Sci. 2013; 126(Pt 19):4339-48 [PubMed] Related Publications
The duration and specificity of epidermal growth factor receptor (EGFR) activation and signaling are determinants of cellular decision processes and are tightly regulated by receptor dephosphorylation, internalization and degradation. In addition, regulatory proteins that are upregulated or activated post-transcriptionally upon receptor activation may initiate feedback loops that play crucial roles in spatiotemporal regulation of signaling. We examined the roles of Sprouty2 (SPRY2) and mitogen-inducible gene 6 (MIG6), two feedback regulators of EGFR trafficking and signaling, in lung cancer cells with or without EGFR-activating mutations. These mutations are of interest because they confer unusual cellular sensitivity to EGFR inhibition through a mechanism involving an impairment of EGFR endocytosis. We found that the endocytosis of wild-type and mutant EGFR was promoted by SPRY2 knockdown and antagonized by MIG6 knockdown. SPRY2 knockdown also significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation, EGFR expression, and EGFR recycling. In a cell line expressing mutant EGFR, this effect on ERK led to a marked increase in cell death response to EGFR inhibition. The effects of SPRY2 knockdown on EGFR endocytosis and recycling were primarily the result of the concomitant change in EGFR expression, but this was not true for the observed changes in ERK phosphorylation. Thus, our study demonstrates that SPRY2 and MIG6 are important regulators of wild-type and mutant EGFR trafficking and points to an EGFR expression-independent function of SPRY2 in the regulation of ERK activity that may impact cellular sensitivity to EGFR inhibitors, especially in the context of EGFR mutation.

Kraguljac Kurtović N, Krajnović M, Bogdanović A, et al.
Concomitant aberrant methylation of p15 and MGMT genes in acute myeloid leukemia: association with a particular immunophenotype of blast cells.
Med Oncol. 2012; 29(5):3547-56 [PubMed] Related Publications
In this study, methylation-specific polymerase chain reaction (MS-PCR) was used to define the methylation status of the target promoter sequences of p15 and MGMT genes in the group of 21 adult patients with acute myeloid leukemia (AML). The incidence of aberrant hypermethylation of p15 gene (71 %) was higher comparing to MGMT gene (33 %), whereas concomitant methylation of both genes had 24 % of the patients. Although the incidence of cytogenetic abnormalities between the groups with a different methylation status of p15 and/or MGMT genes was not significantly different, we observed general trend of clustering of abnormalities with adverse prognosis into groups with concomitant hypermethylation of both genes and only p15 gene. Also, we showed that AML patients with concomitant methylation of p15/MGMT genes had a higher proportion of leukemic blast cells characterized with specific expression of individual leukocyte surface antigens (CD117(+)/CD7(+)/CD34(+)/CD15(-)), indicating leukemic cells as early myeloid progenitors. Although we could not prove that hypermethylation of p15 and/or MGMT genes is predictive parameter for response to therapy and overall survival, we noticed that AML patients with comethylated p15/MGMT genes or methylated p15 gene exhibited a higher frequency of early death, lower frequency of complete remissions as well as a trend for shorter overall survival. Assessing of the methylation status of p15 and MGMT genes may allow stratification of patients with AML into distinct groups with potentially different prognosis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ERRFI1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999