DAB2IP

Gene Summary

Gene:DAB2IP; DAB2 interacting protein
Aliases: AIP1, AIP-1, AF9Q34, DIP1/2
Location:9q33.2
Summary:DAB2IP is a Ras (MIM 190020) GTPase-activating protein (GAP) that acts as a tumor suppressor. The DAB2IP gene is inactivated by methylation in prostate and breast cancers (Yano et al., 2005 [PubMed 15386433]).[supplied by OMIM, May 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:disabled homolog 2-interacting protein
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (38)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DAB2IP (cancer-related)

Son HJ, Jo YS, Kim MS, et al.
DAB2IP with tumor-inhibiting activities exhibits frameshift mutations in gastrointestinal cancers.
Pathol Res Pract. 2018; 214(12):2075-2080 [PubMed] Related Publications
A scaffold protein DAB2 and its interaction partner DAB2IP have putative tumor suppressor gene (TSG) functions. Previous studies identified that both DAB2 and DAB2IP genes were inactivated by promoter hypermethylation in human cancers, but their mutational alterations in cancers remain largely unknown. The aim of our study was to find whether DAB2 and DAB2IP were mutated in gastric (GCs) and colorectal cancers (CRCs) by DNA sequencing. Both DAB2 and DAB2IP have mononucleotide repeats in their coding sequence that could be mutation targets in high microsatellite instability (MSI-H) cancers. We analyzed GC and CRC tissues and found that 8 of 34 GCs (23.5%) and 15 of 79 CRCs (20.0%) with MSI-H harbored DAB2IP frameshift mutations. DAB2 frameshift mutations were found in 2 of 79 CRCs (2.5%) with MSI-H. These mutations were not detected in microsatellite stable (MSS) cancers. We also found intratumoral heterogeneity (ITH) of DAB2IP frameshift mutations in 7 of 16 CRCs (43.8%). Loss of DAB2IP protein expression was found in approximately 20% of GCs and CRCs irrespective of MSI and DAB2IP frameshift mutation status. Our study shows that the TSG DAB2IP harbored frameshift mutations and ITH as well as expression loss. Together these tumor alterations might play a role in tumorigenesis of GC and CRC with MSI-H by down-regulating the tumor-inhibiting activities of DAB2IP.

Ou Z, Wang Y, Chen J, et al.
Estrogen receptor β promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals.
Exp Mol Med. 2018; 50(11):152 [PubMed] Free Access to Full Article Related Publications
Although early studies suggested that bladder cancer (BCa) is more prevalent in men than in women, muscle-invasive rates are higher in women than in men, suggesting that sex hormones might play important roles in different stages of BCa progression. In this work, we found that estrogen receptor beta (ERβ) could increase BCa cell proliferation and invasion via alteration of miR-92a-mediated DAB2IP (DOC-2⁄DAB2 interacting protein) signals and that blocking miR-92a expression with an inhibitor could partially reverse ERβ-enhanced BCa cell growth and invasion. Further mechanism dissection found that ERβ could increase miR-92a expression at the transcriptional level via binding to the estrogen-response-element (ERE) on the 5' promoter region of its host gene C13orf25. The ERβ up-regulated miR-92a could decrease DAB2IP tumor suppressor expression via binding to the miR-92a binding site located on the DAB2IP 3' UTR. Preclinical studies using an in vivo mouse model also confirmed that targeting this newly identified ERβ/miR-92a/DAB2IP signal pathway with small molecules could suppress BCa progression. Together, these results might aid in the development of new therapies via targeting of this ERβ-mediated signal pathway to better suppress BCa progression.

Samadaian N, Salehipour P, Ayati M, et al.
A potential clinical significance of DAB2IP and SPRY2 transcript variants in prostate cancer.
Pathol Res Pract. 2018; 214(12):2018-2024 [PubMed] Related Publications
Deregulation of key signaling pathways is one of the primary phenomena in carcinogenesis. DAB2IP and SPRY2 are regulatory elements, which act as feedback inhibitors of receptor tyrosine kinases signaling in mitogen-activated protein kinase pathway. These elements have also been implicated in the pathophysiology of cancer. Therefore, this study is aimed to investigate the expression of all known splice variants of DAB2IP and SPRY2 in prostate tissue. Fresh Prostate tissue samples (50 prostate cancer/ matched normal tissue and 30 BPH) were collected and total RNA was extracted followed by cDNA synthesis. The expression of DAB2IP and SPRY2 transcript variants were evaluated using RT-PCR and quantitative Real-time PCR. The results indicated significant down-regulation of DAB2IP transcript variant 1 in cancerous tissues compared to paired normal tissues (P = 0.001) as well as SPRY2 transcript variant 2 in cancerous tissues in comparison with the normal counterparts and BPH (P = 0.008 and P = 0.025, respectively). In addition, there was a significant negative correlation between DAB2IP.1 and SPRY2.2 expression with PSA levels in prostate cancer (P = 0.039 ρ =-0.24 and P = 0.045 ρ =-0.3, respectively). Interestingly, the down-regulation of DAB2IP.1 mRNA and SPRY2.2 mRNA was positively correlated in tumor samples (P = 0.002 ρ = 0.434). For the first time, this experiment highlights the deregulation of DAB2IP and SPRY2 transcript variants in human prostate cancer. The present study confirms and extends the previous reports through indicating transcript-specific down-regulation and significant association of DAB2IP and SPRY2 in prostate tumorigenesis.

Wang J, Liu Y, Wang X, et al.
MiR-1266 promotes cell proliferation, migration and invasion in cervical cancer by targeting DAB2IP.
Biochim Biophys Acta Mol Basis Dis. 2018; 1864(12):3623-3630 [PubMed] Related Publications
Cervical cancer (CC) is one of the most prevalent cancers in women in the world. However, the pathogenesis is still very unclear, and the current screening methods are too expensive. Emerging evidence shows that miR-1266 has great influence on tumor cell migration and invasion. In order to clarify the role of miR-1266 in CC, we collected serum from CC, high-grade squamous intraepithelial lesion (HSIL), low-grade squamous intraepithelial lesion (LSIL) and normal control (NC), collected tissues from CC and control group (CG), and followed up 50 CC patients. We used HeLa and SiHa cells to clarify the roles of miR-1266 on cell proliferation, migration and invasion. The CC mouse model was conducted to prove the role of miR-1266 on tumorigenesis. qRT-PCR was used to measure the expressions of miR-1266 and DAB2IP mRNA. Western blot was used to determine the expression of DAB2IP protein. Cell counting kit-8 proliferation assay (CCK-8), Colony formation assay, Wound-healing assay and Transwell invasion assay were used to determine the cell survival, proliferative, migrative and invasive abilities. Our study found that miR-1266 had a rising trend in serum from NC to LSIL to HSIL to CC, and increased in CC tissues. High expression serum miR-1266 had lower overall survival rates than patients with miR-1266 low expression. MiR-1266 promoted cell viability, proliferation, migration and invasion by targeting DAB2IP. And miR-1266 could promote tumorigenesis in vivo. In conclusion, miR-1266 could be used as a new biomarker for diagnosis, prediction and treatment of CC in the future.

Xiao T, Xue J, Shi M, et al.
Circ008913, via miR-889 regulation of DAB2IP/ZEB1, is involved in the arsenite-induced acquisition of CSC-like properties by human keratinocytes in carcinogenesis.
Metallomics. 2018; 10(9):1328-1338 [PubMed] Related Publications
Arsenic is a known human carcinogen and the mechanisms underlying arsenic-induced tumorigenesis remain elusive. Circular RNAs (circRNAs) are involved in the development of cancers, generally acting as sponges for microRNAs (miRNAs). Here, we screened the circRNA expression profiles of HaCaT cells, which are immortalized human keratinocytes, and arsenite-transformed HaCaT cells (T-HaCaT). The presence of has_circRNA-008913 (circ008913) was confirmed in HaCaT cells. Among the circRNAs down-regulated in T-HaCaT cells, circ008913 showed the greatest decrease and was chosen for further research. In HaCaT cells, arsenite induced increases of mRNA levels of the genes for cell-surface markers (k5 and CD34) of skin stem cells, decreases of DAB2IP, and increases of ZEB1. MicroRNA (miR)-889 suppressed the expression of DAB2IP and was involved in regulation of cancer stem cells (CSCs). Moreover, overexpression of circ008913 with pLCDH-circ008913 or transfection with an miR-889 inhibitor reduced the capacity of T-HaCaT cells for colony formation, invasion, migration, and the sizes of tumors in nude mice, effects that were reversed by co-transfection with an miR-889 mimic. These results suggest that, in HaCaT cells, arsenite decreases circ008913 levels, which act as a sponge for miR-889 and down-regulate the miR-889 target, DAB2IP, which, in turn, up-regulates ZEB1, increases mRNA levels of the cell-surface markers of skin stem cells, and is involved in arsenite-induced acquisition of CSC-like properties that lead to malignant transformation. The results also indicate that circ008913 functions as a competing endogenous RNA (ceRNA) for miR-889, which is involved in the arsenite-induced acquisition of CSC-like properties by regulation of DAB2IP and elucidate a previously unknown mechanism between arsenite-induced acquisition of CSC-like properties and carcinogenesis.

Cai W, Jiang H, Yu Y, et al.
miR-367 regulation of DOC-2/DAB2 interactive protein promotes proliferation, migration and invasion of osteosarcoma cells.
Biomed Pharmacother. 2017; 95:120-128 [PubMed] Related Publications
Recently, miR-367 is reported to exert either oncogenic or tumor suppressive effects in human malignancies. Recent study reports that miR-367 is up-regulated in OS tissues and cell lines, and abrogates adriamycin-induced apoptosis. The clinical significance of miR-367 and its function in OS need further investigation. In our study, miR-367 expression in OS was markedly elevated compared with corresponding non-tumor tissues. High miR-367 expression was associated with malignant clinical features and poor prognosis of OS patients. In accordance, the levels of miR-367 were dramatically up-regulated in OS cells. Loss of miR-367 expression in Saos-2 cells obviously inhibited the proliferation, migration and invasion of cancer cells in vitro. Meanwhile, miR-367 restoration promoted these malignant behaviors of MG-63 cells. Mechanistically, miR-367 negatively regulated DOC-2/DAB2 interactive protein (DAB2IP) abundance in OS cells. Hereby, DAB2IP was recognized as a direct target gene of miR-367 in OS. DAB2IP mRNA level was down-regulated and inversely correlated with miR-367 expression in OS specimens. DAB2IP overexpression prohibited proliferation, migration and invasion in Saos-2 cells, while DAB2IP knockdown showed promoting effects on proliferation, migration and invasion of MG-63 cells. Furthermore, the role of miR-367 might be mediated by DAB2IP-regulated phosphorylation of ERK and AKT in OS cells. To conclude, miR-367 may function as a biomarker for prediction of prognosis and a target for OS therapy.

Tao Y, Sun C, Zhang T, Song Y
SMURF1 promotes the proliferation, migration and invasion of gastric cancer cells.
Oncol Rep. 2017; 38(3):1806-1814 [PubMed] Related Publications
Smad ubiquitin regulatory factor 1 (SMURF1), a well-known E3 ubiquitin ligase, targets substrate proteins for ubiquitination and proteasomal degradation. Accumulating studies have shown that SMURF1 acts as an oncogenic factor in human malignancies. However, the clinical significance of SMURF1 and its role in gastric cancer (GC) remain unclear. The expression of SMURF1 was detected in 68 cases of GC and corresponding tumor-adjacent specimens. Our results revealed that SMURF1 was prominently overexpressed in GC specimens compared to corresponding tumor-adjacent tissues. Furthermore, increased levels of SMURF1 mRNA were also observed in GC cell lines. Clinicopathological detection ascertained that SMURF1-positive expression was associated with large tumor size, more lymph nodes and distant metastasis as well as advanced tumor-node-metastasis (TNM) stage of GC. Notably, GC patients with SMURF1 positive‑expressing tumors exhibited a significant decreased survival. Further experiments illustrated that SMURF1 knockdown significantly inhibited proliferation, migration and invasion of MGC-803 cells, while SMURF1 overexpression prominently promoted these behaviors in SGC-7901 cells. In vivo studies revealed that SMURF1 knockdown markedly inhibited tumor growth and liver metastasis of GC. Mechanically, SMURF1 inversely regulated the expression of DOC-2/DAB2 interactive protein (DAB2IP) in GC tissues and cells. Furthermore, DAB2IP restoration revealed similar effects to SMURF1 knockdown on MGC-803 cells with decreased proliferation, migration and invasion. In addition, the PI3K/Akt pathway and its downstream targets including c-Myc and ZEB1 were potentially involved in the oncogenic role of the SMURF1/DABIP axis. Collectively, the present study revealed the first evidence that SMURF1 can be potentially used as a clinical biomarker and target for novel treatment of human GC.

Feng C, Sun P, Hu J, et al.
miRNA-556-3p promotes human bladder cancer proliferation, migration and invasion by negatively regulating DAB2IP expression.
Int J Oncol. 2017; 50(6):2101-2112 [PubMed] Related Publications
MicroRNAs (miRNAs) play critical roles in tumorigenesis and metastasis by negatively regulating gene expression through complementary binding to the 3'-untranslated region of target mRNAs. The role of miRNAs in expression of the tumor suppressor DAB2IP in bladder cancer (BC) remains unknown. The aim of the present study was to identify miRNAs targeting DAB2IP and determine their expression and function in BC. We predicted candidate miRNAs targeting DAB2IP using TargetScan software. Dual-luciferase reporter assays confirmed that miRNA-556-3p directly regulated DAB2IP expression. Quantitative RT-PCR and RNase protection assays showed that endogenous miRNA-556-3p expression was significantly upregulated in clinical samples of BC patients and BC cell lines and western blot analysis indicated that DAB2IP expression in BC tissues and BC cell lines was concurrently downregulated. Gain or loss of function studies showed that upregulation of miRNA-556-3p promoted proliferation, invasion, migration and colony formation of BC cells, whereas downregulation resulted in opposite effects. Importantly, restoration of DAB2IP expression rescued the effects induced by miRNA-556-3p. Overexpression of miRNA-556-3p in BC cells not only decreased DAB2IP expression, but also markedly increased Ras GTPase activity and ERK1/2 phosphorylation level. These findings suggest that DAB2IP is a direct target of miRNA-556-3p, and endogenous miRNA-556-3p expression shows inverse correlation with simultaneous DAB2IP expression in BC tissues and cells. miRNA-556-3p functions as a tumor promoter in tumorigenesis and metastasis of BC by targeting DAB2IP. Moreover, miRNA-556-3p-mediated DAB2IP suppression plays an oncogenic role by partial activation of the Ras-ERK pathway.

Zhu XH, Wang JM, Yang SS, et al.
Down-regulation of DAB2IP promotes colorectal cancer invasion and metastasis by translocating hnRNPK into nucleus to enhance the transcription of MMP2.
Int J Cancer. 2017; 141(1):172-183 [PubMed] Related Publications
DOC-2/DAB2 interacting protein (DAB2IP) is a RasGAP protein that shows a suppressive effect on cancer progression. Our previous study showed the involvement of transcription regulation of DAB2IP in metastasis of colorectal cancer (CRC). However, the molecular mechanisms of DAB2IP in regulating the progression of CRC need to be further explored. Here, we identified heterogeneous nuclear ribonucleoprotein K (hnRNPK) and matrix metalloproteinase 2 (MMP2) as vital downstream targets of DAB2IP in CRC cells by two-dimensional fluorescence difference gel electrophoresis and cDNA microassay, respectively. Mechanistically, down-regulation of DAB2IP increased the level of hnRNPK through MAPK/ERK signaling pathway. Subsequently, translocation of hnRNPK into nucleus enhanced the transcription activity of MMP2, and therefore promoted invasion and metastasis of CRC. Down-regulation of DAB2IP correlated negatively with hnRNPK and MMP2 expressions in CRC tissues. In conclusion, our study elucidates a novel mechanism of the DAB2IP/hnRNPK/MMP2 axis in the regulation of CRC invasion and metastasis, which may be a potential therapeutic target.

Olsen SN, Wronski A, Castaño Z, et al.
Loss of RasGAP Tumor Suppressors Underlies the Aggressive Nature of Luminal B Breast Cancers.
Cancer Discov. 2017; 7(2):202-217 [PubMed] Free Access to Full Article Related Publications
Luminal breast cancers are typically estrogen receptor-positive and generally have the best prognosis. However, a subset of luminal tumors, namely luminal B cancers, frequently metastasize and recur. Unfortunately, the causal events that drive their progression are unknown, and therefore it is difficult to identify individuals who are likely to relapse and should receive escalated treatment. Here, we identify a bifunctional RasGAP tumor suppressor whose expression is lost in almost 50% of luminal B tumors. Moreover, we show that two RasGAP genes are concomitantly suppressed in the most aggressive luminal malignancies. Importantly, these genes cooperatively regulate two major oncogenic pathways, RAS and NF-κB, through distinct domains, and when inactivated drive the metastasis of luminal tumors in vivo Finally, although the cooperative effects on RAS drive invasion, NF-κB activation triggers epithelial-to-mesenchymal transition and is required for metastasis. Collectively, these studies reveal important mechanistic insight into the pathogenesis of luminal B tumors and provide functionally relevant prognostic biomarkers that may guide treatment decisions.
SIGNIFICANCE: The lack of insight into mechanisms that underlie the aggressive behavior of luminal B breast cancers impairs treatment decisions and therapeutic advances. Here, we show that two RasGAP tumor suppressors are concomitantly suppressed in aggressive luminal B tumors and demonstrate that they drive metastasis by activating RAS and NF-κB. Cancer Discov; 7(2); 202-17. ©2016 AACR.See related commentary by Sears and Gray, p. 131This article is highlighted in the In This Issue feature, p. 115.

Alves IT, Cano D, Böttcher R, et al.
A mononucleotide repeat in PRRT2 is an important, frequent target of mismatch repair deficiency in cancer.
Oncotarget. 2017; 8(4):6043-6056 [PubMed] Free Access to Full Article Related Publications
The DNA mismatch repair (MMR) system corrects DNA replication mismatches thereby contributing to the maintenance of genomic stability. MMR deficiency has been observed in prostate cancer but its impact on the genomic landscape of these tumours is not known. In order to identify MMR associated mutations in prostate cancer we have performed whole genome sequencing of the MMR deficient PC346C prostate cancer cell line. We detected a total of 1196 mutations in PC346C which was 1.5-fold higher compared to a MMR proficient prostate cancer sample (G089). Of all different mutation classes, frameshifts in mononucleotide repeat (MNR) sequences were significantly enriched in the PC346C sample. As a result, a selection of genes with frameshift mutations in MNR was further assessed regarding its mutational status in a comprehensive panel of prostate, ovarian, endometrial and colorectal cancer cell lines. We identified PRRT2 and DAB2IP to be frequently mutated in MMR deficient cell lines, colorectal and endometrial cancer patient samples. Further characterization of PRRT2 revealed an important role of this gene in cancer biology. Both normal prostate cell lines and a colorectal cancer cell line showed increased proliferation, migration and invasion when expressing the mutated form of PRRT2 (ΔPRRT2). The wild-type PRRT2 (PRRT2wt) had an inhibitory effect in proliferation, consistent with the low expression level of PRRT2 in cancer versus normal prostate samples.

Chen K, Xiao H, Zeng J, et al.
Alternative Splicing of EZH2 pre-mRNA by SF3B3 Contributes to the Tumorigenic Potential of Renal Cancer.
Clin Cancer Res. 2017; 23(13):3428-3441 [PubMed] Free Access to Full Article Related Publications

Wang DY, An SH, Liu L, et al.
Hepatitis B virus X protein influences enrichment profiles of H3K9me3 on promoter regions in human hepatoma cell lines.
Oncotarget. 2016; 7(51):84883-84892 [PubMed] Free Access to Full Article Related Publications
We previously showed that hepatitis B virus (HBV) X protein (HBx) could promote the trimethylation of histone H3 lysine 9 (H3K9me3) to repress tumor suppressor genes in hepatocellular carcinoma (HCC). In this work, we analyze 23,148 human promoters using ChIP-chip to determine the effects of HBx on H3K9me3 enrichments in hepatoma cells with transfection of HBx-expressing plasmid. Immunohistochemistry for HBx and H3K9me3 was performed in 21 cases of HBV-associated HCC tissues. We identified that H3K9me3 immunoreactivity was significantly correlated with HBx staining in HCC tissues. ChIP-chip data indicated that HBx remarkably altered promoter enrichments of H3K9me3 in hepatoma cells. We identified 25 gene promoters, whose H3K9me3 enrichments are significantly altered in hepatoma cells transfected HBx-expressing plasmid, including 19 gaining H3K9m3, and six losing this mark. Most of these genes have not been previously reported in HCC, and BTBD17, MIR6089, ZNF205-AS1 and ZP1 have not previously been linked to cancer; only two genes (DAB2IP and ZNF185) have been reported in HCC. Genomic analyses suggested that genes with the differential H3K9me3 enrichments function in diverse cellular pathways and many are involved in cancer development and progression.

Lee JH, Kim JE, Kim BG, et al.
STAT3-induced WDR1 overexpression promotes breast cancer cell migration.
Cell Signal. 2016; 28(11):1753-60 [PubMed] Related Publications
WD repeat domain 1 (WDR1), a protein that assists cofilin-mediated actin filament disassembly, is overexpressed in the invading front of invasive ductal carcinoma (IDC), but its implication of overexpression and how to be regulated have not been studied. In our study, we demonstrated that STAT3 bound to the 5' upstream sequence (-1971 to -1964), a putative promoter region, of WDR1 gene, and its activation induced WDR1 overexpression in breast cancer cells. The exogenous overexpression of WDR1 increased the migration of MDA-MB-231, which was attenuated by WDR1 knockdown. In the analysis of breast cancer patients, WDR1 overexpression was associated with a shorter distant metastasis-free survival (DMFS), more specifically in basal-like tumors.

Wang B, Huang J, Zhou J, et al.
DAB2IP regulates EMT and metastasis of prostate cancer through targeting PROX1 transcription and destabilizing HIF1α protein.
Cell Signal. 2016; 28(11):1623-30 [PubMed] Related Publications
Prospero-related homeobox 1 (PROX1) is an essential regulator in lymphangiogenesis and has been implicated in both oncogenic and tumor-suppressive functions in many types of human cancers. However, the role of PROX1 in prostate cancer (PCa) remains poorly understood. In this study, based on different PCa cell lines and knockout mice, we showed that PROX1 could be suppressed by DAB2IP, a novel member of the Ras GTPase-activating protein family and a critical player in control of epithelial-mesenchymal transition (EMT) and PCa metastasis. Mechanistically, PROX1 overexpression in DAB2IP-deficient PCa cells could enhance the accumulation of HIF1α protein by inhibiting ubiquitin pathway and then consequently induce an EMT response, which is characterized by repression of E-cadherin, up-regulation of vimentin and matrix metallopeptidases (MMPs) and enhancement of cell migration. Together, our data provides a new insight into mechanism that DAB2IP regulates EMT and PCa metastasis, especially points out the potential roles of its downstream PROX1/HIF1α signaling in a unique non-skeletal metastasis of PCa.

Huang J, Wang B, Hui K, et al.
miR-92b targets DAB2IP to promote EMT in bladder cancer migration and invasion.
Oncol Rep. 2016; 36(3):1693-701 [PubMed] Related Publications
Muscle-invasive or metastatic bladder cancer (BCa) has a very poor prognosis; however, its mechanisms remain largely unknown. Previous studies have discovered multiple microRNAs (miRs) that are involved in BCa progression and regarded as potential biomarkers or therapeutic targets. In this study, we demonstrated that miR-92b could uniquely promote cell migration and invasion of BCa cells, but had no effect on cell proliferation. Mechanistically, our data provided evidence to verify that miR-92b was able to directly target DAB2IP, a well-known tumor suppressor, and inhibit epithelial‑mesenchymal transition of BCa cells. Moreover, the increased expression levels of miR-92b were negatively correlated with DAB2IP, and predicted poor prognosis of patients with BCa. Overall, this study reveals a new promising biomarker and its mechanisms contributing to BCa invasion or metastasis.

Yang C, He H, Zhang T, et al.
Decreased DAB2IP gene expression, which could be induced by fractionated irradiation, is associated with resistance to γ‑rays and α‑particles in prostate cancer cells.
Mol Med Rep. 2016; 14(1):567-73 [PubMed] Related Publications
External beam radiation therapy, alone or combined with androgen deprivation, is a well‑established treatment for prostate cancer (PCa). However, not all patients benefit from radiotherapy due to congenital or acquired radioresistance. The preliminary results of the present study indicated that the loss of disabled homolog 2 interactive protein (DAB2IP) expression in PCa and normal prostate epithelia results in the resistance to γ‑rays. To further explore the association between DAB2IP and ionizing radiation (IR), PCa cells were fractionally irradiated 12 times with 2 Gy of γ‑rays and the change in DAB2IP mRNA expression was monitored. Notably, along with a continuous reduction of DAB2IP expression levels, increased expression levels of ataxia‑telangiectasia mutated (ATM) was observed in IR‑treated cells. In order to improve the sensitivity of DAB2IP‑deficient cells to IR, α‑particles, a type of high linear energy transfer radiation and KU55933, an ATM inhibitor, were used in the current study. It was determined that α‑particle irradiations were more effective than γ‑rays on cells expressing expected and decreased levels of DAB2IP. However, cells with a dysfunctional DAB2IP gene were resistant to α‑particle irradiation. Treatment with KU55933 did not enhance cell sensitivity to α‑irradiation. Therefore, this suggested that DAB2IP downregulation induced by radiotherapy may be associated with acquired radioresistance in patients with PCa.

Wang ZR, Wei JH, Zhou JC, et al.
Validation of DAB2IP methylation and its relative significance in predicting outcome in renal cell carcinoma.
Oncotarget. 2016; 7(21):31508-19 [PubMed] Free Access to Full Article Related Publications
We have recently reported tumor suppressive role of DAB2IP in RCC development. In this study, We identified one CpG methylation biomarker (DAB2IP CpG1) located UTSS of DAB2IP that was associated with poor overall survival in a cohort of 318 ccRCC patients from the Cancer Genome Atlas (TCGA). We further validated the prognostic accuracy of DAB2IP CpG methylation by pyrosequencing quantitative methylation assay in 224 ccRCC patients from multiple Chinese centers (MCHC set), and 239 patients from University of Texas Southwestern Medical Center at Dallas (UTSW set) by using FFPE samples. DAB2IP CpG1 can predict the overall survival of patients in TCGA, MCHC, and UTSW sets independent of patient age, Fuhrman grade and TNM stage (all p<0.05). DAB2IP CpG1 successfully categorized patients into high-risk and low-risk groups with significant differences of clinical outcome in respective clinical subsets, regardless of age, sex, grade, stage, or race (HR: 1.63-7.83; all p<0.05). The detection of DAB2IP CpG1 methylation was minimally affected by ITH in ccRCC. DAB2IP mRNA expression was regulated by DNA methylation in vitro. DAB2IP CpG1 methylation is a practical and repeatable biomarker for ccRCC, which can provide prognostic value that complements the current staging system.

Li X, Dai X, Wan L, et al.
Smurf1 regulation of DAB2IP controls cell proliferation and migration.
Oncotarget. 2016; 7(18):26057-69 [PubMed] Free Access to Full Article Related Publications
Tumor cell proliferation, survival and migration are regulated by the deletion of ovarian carcinoma 2/disabled homolog 2 (DOC-2/DAB2) interacting protein (DAB2IP), a tumor suppressor that serves as a scaffold protein for H-Ras and TRAF2. Importantly, the oncogenic histone methyl-transferase EZH2 epigenetically down-regulates DAB2IP in a variety of tumors. Recently, we demonstrated that DAB2IP is negatively regulated by Akt-dependent phosphorylation and SCFFbw7-mediated degradation. Here, we further identify the oncoprotein Smurf1, an E3-ubiquitin ligase, as a novel negative regulator of DAB2IP. Smurf1-mediated cellular proliferation and migration are largely dependent on the presence of DAB2IP, suggesting that DAB2IP is a key effector molecule of Smurf1 oncogenic function. Additionally, we identify that similar to DAB2IP, Smurf1 is also a target of phosphorylation by both Akt1 and Akt2 kinases, which enhances Smurf1 abundance, leading to a reduction in DAB2IP. Given the role of DAB2IP in tumorigenesis and metastasis, our data identify Smurf1 as an upstream oncogenic factor that negatively regulates DAB2IP to govern aberrant cell growth and migration.

Zhou J, Luo J, Wu K, et al.
Loss of DAB2IP in RCC cells enhances their growth and resistance to mTOR-targeted therapies.
Oncogene. 2016; 35(35):4663-74 [PubMed] Related Publications
Targeted therapies using small-molecule inhibitors (SMIs) are commonly used in metastatic renal cell cancer (mRCC) patients; patients often develop drug resistance and eventually succumb to disease. Currently, understanding of mechanisms leading to SMIs resistance and any identifiable predictive marker(s) are still lacking. We discovered that DAB2IP, a novel Ras-GTPase-activating protein, was frequently epigenetically silenced in RCC, and DAB2IP loss was correlated with the overall survival of RCC patients. Loss of DAB2IP in RCC cells enhances their sensitivities to growth factor stimulation and resistances to SMI (such as mammalian target of rapamycin (mTOR) inhibitors). Mechanistically, loss of DAB2IP results in the activation of extracellular signal-regulated kinase/RSK1 and phosphoinositide-3 kinase/mTOR pathway, which synergizes the induction of hypoxia-inducible factor (HIF)-2α expression. Consequently, elevated HIF-2α suppresses p21/WAF1 expression that is associated with resistance to mTOR inhibitors. Thus combinatorial targeting both pathways resulted in a synergistic tumor inhibition. DAB2IP appears to be a new prognostic/predictive marker for mRCC patients, and its function provides a new insight into the molecular mechanisms of drug resistance to mTOR inhibitors, which also can be used to develop new strategies to overcome drug-resistant mRCC.

Liu L, Xu C, Hsieh JT, et al.
DAB2IP in cancer.
Oncotarget. 2016; 7(4):3766-76 [PubMed] Free Access to Full Article Related Publications
DOC-2/DAB2 is a member of the disable gene family that features tumor-inhibiting activity. The DOC-2/DAB2 interactive protein, DAB2IP, is a new member of the Ras GTPase-activating protein family. It interacts directly with DAB2 and has distinct cellular functions such as modulating different signal cascades associated with cell proliferation, survival, apoptosis and metastasis. Recently, DAB2IP has been found significantly down regulated in multiple types of cancer. The aberrant alteration of DAB2IP in cancer is caused by a variety of mechanisms, including the aberrant promoter methylation, histone deacetylation, and others. Reduced expression of DAB2IP in neoplasm may indicate a poor prognosis of many malignant cancers. Moreover, DAB2IP stands for a promising direction for developing targeted therapies due to its capacity to inhibit tumor cell growth in vitro and in vivo. Here, we summarize the present understanding of the tumor suppressive role of DAB2IP in cancer progression; the mechanisms underlying the dysregulation of DAB2IP; the gene functional mechanism and the prospects of DAB2IP in the future cancer research.

Yeh CR, Ou ZY, Xiao GQ, et al.
Infiltrating T cells promote renal cell carcinoma (RCC) progression via altering the estrogen receptor β-DAB2IP signals.
Oncotarget. 2015; 6(42):44346-59 [PubMed] Free Access to Full Article Related Publications
Previous studies indicated the T cells, one of the most common types of immune cells existing in the microenvironment of renal cell carcinoma (RCC), may influence the progression of RCC. The potential linkage of T cells and the estrogen receptor beta (ERβ), a key player to impact RCC progression, however, remains unclear. Our results demonstrate that RCC cells can recruit more T cells than non-malignant kidney cells. Using an in vitro matrigel invasion system, we found infiltrating T cells could promote RCC cells invasion via increasing ERβ expression and transcriptional activity. Mechanism dissection suggested that co-culturing T cells with RCC cells released more T cell attraction factors, including IFN-γ, CCL3 and CCL5, suggesting a positive regulatory feed-back mechanism. Meanwhile, infiltrating T cells may also promote RCC cell invasion via increased ERβ and decreased DAB2IP expressions, and knocking down DAB2IP can then reverse the T cells-promoted RCC cell invasion. Together, our results suggest that infiltrating T cells may promote RCC cell invasion via increasing the RCC cell ERβ expression to inhibit the tumor suppressor DAB2IP signals. Further mechanism dissection showed that co-culturing T cells with RCC cells could produce more IGF-1 and FGF-7, which may enhance the ERβ transcriptional activity. The newly identified relationship between infiltrating T cells/ERβ/DAB2IP signals may provide a novel therapeutic target in the development of agents against RCC.

Min J, Liu L, Li X, et al.
Absence of DAB2IP promotes cancer stem cell like signatures and indicates poor survival outcome in colorectal cancer.
Sci Rep. 2015; 5:16578 [PubMed] Free Access to Full Article Related Publications
Metastasis is a critical factor for the high mortality of colorectal cancer (CRC), but its mechanism is not completely understood. Epithelial-mesenchymal transition (EMT) is thought to play a key role in metastasis and also increases the cancer stem cell (CSC) feature that facilitates metastatic colonization. In this study, we investigated the biological roles of DAB2IP regulating EMT and stem cell-like features in human CRC. We demonstrate that DAB2IP suppresses NF-κB-mediated EMT and CSC features in CRC cells. In DAB2IP knockout mice, we discovered the hyperplasia in colonic epithelium which aberrantly represents the mesenchymal feature and NF-κB pathway activation. In clinic CRC tissue, we also reveal that reduced DAB2IP can enrich the CD133(+) subpopulation. DAB2IP expression was inversely correlated with tumor differentiation and metastasis, and patients with lower DAB2IP expression had shorter overall survival time. Taken together, our study demonstrates that DAB2IP inhibits NF-κB-inducing EMT and CSC to suppress the CRC progression, and also suggests that DAB2IP is a beneficial prediction factor for CRC patient prognosis.

Zhou J, Ning Z, Wang B, et al.
DAB2IP loss confers the resistance of prostate cancer to androgen deprivation therapy through activating STAT3 and inhibiting apoptosis.
Cell Death Dis. 2015; 6:e1955 [PubMed] Free Access to Full Article Related Publications
Loss of DAB2IP, a novel tumor suppressor gene, is associated with the high risk of aggressive prostate cancer (PCa). Previously, we reported that DAB2IP modulated androgen receptor activation in the development of castration-resistant PCa; however, its direct action on the failure of androgen deprivation therapy (ADT) remains largely unknown. In this study, we showed that DAB2IP knockdown could significantly enhance in vitro growth and colony formation of PCa cells following ADT as well as tumorigenicity in pre-castrated nude mice. In addition, DAB2IP loss stabilized mitochondrial transmembrane potential, prevented release of cytochrome c, Omi/HtrA2 and Smac from the mitochondria to the cytoplasm and inhibited intrinsic apoptosis induced by ADT. Mechanistically, DAB2IP could interact with the signal transducer and activator of transcription 3 (STAT3) via its unique PR domain and suppress STAT3 phosphorylation and transactivation, leading to the inhibition of survivin expression in PCa cells. Moreover, the luminal epithelia in DAB2IP(-/-) mice with more activated STAT3 and survivin expression were resistant to castration-induced apoptosis. Consistently, DAB2IP expression inversely correlated with STAT3 phosphorylation and survivin expression in PCa patients. Together, our data indicate that DAB2IP loss reprograms intracellular signal transduction and anti-apoptotic gene expression, which potentiates PCa cell survival from ADT-induced cell death.

Yun EJ, Zhou J, Lin CJ, et al.
Targeting Cancer Stem Cells in Castration-Resistant Prostate Cancer.
Clin Cancer Res. 2016; 22(3):670-9 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Clinical evidence suggests increased cancer stem cells (CSCs) in a tumor mass may contribute to the failure of conventional therapies because CSCs seem to be more resistant than differentiated tumor cells. Thus, unveiling the mechanism regulating CSCs and candidate target molecules will provide new strategy to cure the patients.
EXPERIMENTAL DESIGN: The stem-like cell properties were determined by a prostasphere assay and dye exclusion assay. To find critical stem cell marker and reveal regulation mechanism, basic biochemical and molecular biologic methods, such as quantitative real-time PCR, Western blot, reporter gene assay, and chromatin immunoprecipitation assay, were used. In addition, to determine the effect of combination therapy targeting both CSCs and its progeny, in vitro MTT assay and in vivo xenograft model was used.
RESULTS: We demonstrate immortalized normal human prostate epithelial cells, appeared nontumorigenic in vivo, become tumorigenic, and acquire stem cell phenotype after knocking down a tumor suppressor gene. Also, those stem-like cells increase chemoresistance to conventional anticancer reagent. Mechanistically, we unveil that Wnt signaling is a key pathway regulating well-known stem cell marker CD44 by directly interacting to the promoter. Thus, by targeting CSCs using Wnt inhibitors synergistically enhances the efficacy of conventional drugs. Furthermore, the in vivo mouse model bearing xenografts showed a robust inhibition of tumor growth after combination therapy.
CONCLUSIONS: Overall, this study provides strong evidence of CSC in castration-resistant prostate cancer. This new combination therapy strategy targeting CSC could significantly enhance therapeutic efficacy of current chemotherapy regimen only targeting non-CSC cells.

Wu K, Wang B, Chen Y, et al.
DAB2IP regulates the chemoresistance to pirarubicin and tumor recurrence of non-muscle invasive bladder cancer through STAT3/Twist1/P-glycoprotein signaling.
Cell Signal. 2015; 27(12):2515-23 [PubMed] Related Publications
There is a high frequency of tumor recurrence in non-muscle invasive bladder cancer (NMIBC) after transurethral resection and postoperative intravesical chemotherapy, however, the molecular mechanisms leading to the chemoresistance and tumor re-growth remain largely unknown. In this study, we observed a significant decrease of DAB2IP expression in high-grade and recurrent NMIBC specimens, which was negatively correlated with Twist1 expression and predicted a lower recurrence-free survival of patients. Mechanistically, DAB2IP could inhibit the phosphorylation and transactivation of STAT3, and then subsequently suppress the expression of Twist1 and its target gene P-glycoprotein, both of which were crucial for the pirarubicin chemoresistance and tumor re-growth of bladder cancer cells. Overall, this study reveals a new promising biomarker modulating the chemoresistance and tumor recurrence of NMIBC after bladder preservation surgery.

Wang J, Zhu X, Hu J, et al.
The positive feedback between Snail and DAB2IP regulates EMT, invasion and metastasis in colorectal cancer.
Oncotarget. 2015; 6(29):27427-39 [PubMed] Free Access to Full Article Related Publications
DAB2IP has been identified as a tumor suppressor in several cancers but its oncogenic role and transcriptionally regulatory mechanisms in the progression of colorectal carcinoma (CRC) remain unknown. In this study, DAB2IP was down-regulated in CRC tissues and a valuable prognostic marker for survival of CRC patients, especially in the late stage. Moreover, DAB2IP was sufficient to suppress proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis in CRC. Mechanically, the linear complex of EZH2/HDAC1/Snail contributed to DAB2IP silencing in CRC cells. The study further proved that the positive feedback loop between Snail and DAB2IP existed in CRC cells and DAB2IP was required for Snail-induced aggressive cell behaviors. Finally, DAB2IP correlated negatively with Snail and EZH2 expressions in CRC tissues. Our findings reveal the suppressive role and a novel regulatory mechanism of DAB2IP expression in the progression of CRC. DAB2IP may be a potential, novel therapeutic and prognostic target for clinical CRC patients.

Ji W, Li Y, He Y, et al.
AIP1 Expression in Tumor Niche Suppresses Tumor Progression and Metastasis.
Cancer Res. 2015; 75(17):3492-504 [PubMed] Free Access to Full Article Related Publications
Studies from tumor cells suggest that tumor-suppressor AIP1 inhibits epithelial-mesenchymal transition (EMT). However, the role of AIP1 in the tumor microenvironment has not been examined. We show that a global or vascular endothelial cell (EC)-specific deletion of the AIP1 gene in mice augments tumor growth and metastasis in melanoma and breast cancer models. AIP1-deficient vascular environment not only enhances tumor neovascularization and increases premetastatic niche formation, but also secretes tumor EMT-promoting factors. These effects from AIP1 loss are associated with increased VEGFR2 signaling in the vascular EC and could be abrogated by systemic administration of VEGFR2 kinase inhibitors. Mechanistically, AIP1 blocks VEGFR2-dependent signaling by directly binding to the phosphotyrosine residues within the activation loop of VEGFR2. Our data reveal that AIP1, by inhibiting VEGFR2-dependent signaling in tumor niche, suppresses tumor EMT switch, tumor angiogenesis, and tumor premetastatic niche formation to limit tumor growth and metastasis.

Xu Y, He J, Wang Y, et al.
miR-889 promotes proliferation of esophageal squamous cell carcinomas through DAB2IP.
FEBS Lett. 2015; 589(10):1127-35 [PubMed] Related Publications
MicroRNAs have been reported to play critical roles in various cancers, but there has been no study on the role of miR-889 in cancers. Here, we report that over-expression of miR-889 leads to rapid proliferation of EC109 and EC9706 cells in vitro and in vivo by inducing cells into S-phase. Using bioinformatics methods, DAB2IP was further confirmed to be a direct target of miR-889. In addition, the expression of DAB2IP, which was negatively correlated with that of miR-889, was significantly associated with clinicopathological features of ESCC patients. In conclusion, miR-889 is an important regulator in ESCC and both miR-889 and DAB2IP may serve as promising biomarkers and therapeutic targets in patients with ESCC.

Lechuga S, Baranwal S, Ivanov AI
Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.
Am J Physiol Gastrointest Liver Physiol. 2015; 308(9):G745-56 [PubMed] Free Access to Full Article Related Publications
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DAB2IP, Cancer Genetics Web: http://www.cancer-genetics.org/DAB2IP.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999