COL4A2

Gene Summary

Gene:COL4A2; collagen type IV alpha 2 chain
Aliases: ICH, BSVD2, POREN2
Location:13q34
Summary:This gene encodes one of the six subunits of type IV collagen, the major structural component of basement membranes. The C-terminal portion of the protein, known as canstatin, is an inhibitor of angiogenesis and tumor growth. Like the other members of the type IV collagen gene family, this gene is organized in a head-to-head conformation with another type IV collagen gene so that each gene pair shares a common promoter. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:collagen alpha-2(IV) chain
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (12)
Pathways:What pathways are this gene/protein implicaed in?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: COL4A2 (cancer-related)

Wu Q, Zhang B, Wang Z, et al.
Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gastric cancer.
Pathol Res Pract. 2019; 215(5):1038-1048 [PubMed] Related Publications
BACKGROUND AND OBJECTIVE: The underlying molecular mechanisms of gastric cancer (GC) have yet not been investigated clearly. In this study, we aimed to identify hub genes involved in the pathogenesis and prognosis of GC.
METHODS: We integrated five microarray datasets from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between GC and normal samples were analyzed with limma package. Gene ontology (GO) and KEGG enrichment analysis were performed using DAVID. Then we established the protein-protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING). The prognostic analysis of hub genes were performed through Gene Expression Profiling Interactive Analysis (GEPIA). Additionally, we used real-time quantitative PCR to validate the expression of hub genes in 5 pairs of tumor tissues and corresponding adjacent tissues. Finally, the candidate small molecules as potential drugs to treat GC were predicted in CMap database.
RESULTS: Through integrating five microarray datasets, a total of 172 overlap DEGs were detected including 79 up-regulated and 93 down-regulated genes. Biological process analysis of functional enrichment showed these DEGs were mainly enriched in digestion, collagen fibril organization and cell adhesion. Signaling pathway analysis indicated that these DEGs played an vital in ECM-receptor interaction, focal adhesion and metabolism of xenobiotics by cytochrome P450. Protein-protein interaction network among the overlap DEGs was established with 124 nodes and 365 interactions. Three DEGs with high degree of connectivity (NID2, COL4A1 and COL4A2) were selected as hub genes. The GEPIA database confirmed that overexpression levels of hub genes were significantly associated with worse survival of patients. Finally, the 20 most significant small molecules were obtained based on CMap database and spiradoline was the most promising small molecule to reverse the GC gene expression.
CONCLUSIONS: Our results indicated that NID2, COL4A1 and COL4A2 could be the potential novel biomarkers for GC diagnosis prognosis and the promising therapeutic targets. The present study may be crucial to understanding the molecular mechanism of GC initiation and progression.

Soini T, Eloranta K, Pihlajoki M, et al.
Transcription factor GATA4 associates with mesenchymal-like gene expression in human hepatoblastoma cells.
Tumour Biol. 2018; 40(7):1010428318785498 [PubMed] Related Publications
GATA4, a transcription factor crucial for early liver development, has been implicated in the pathophysiology of hepatoblastoma, an embryonal tumor of childhood. However, the molecular and phenotypic consequences of GATA4 expression in hepatoblastoma are not fully understood. We surveyed GATA4 expression in 24 hepatoblastomas using RNA in situ hybridization and immunohistochemistry. RNA interference was used to inhibit GATA4 in human HUH6 hepatoblastoma cells, and changes in cell migration were measured with wound healing and transwell assays. RNA microarray hybridization was performed on control and GATA4 knockdown HUH6 cells, and differentially expressed genes were validated by quantitative polymerase chain reaction or immunostaining. Plasmid transfection was used to overexpress GATA4 in primary human hepatocytes and ensuring changes in gene expression were measured by quantitative polymerase chain reaction. We found that GATA4 expression was high in most hepatoblastomas but weak or negligible in normal hepatocytes. GATA4 gene silencing impaired HUH6 cell migration. We identified 106 differentially expressed genes (72 downregulated, 34 upregulated) in knockdown versus control HUH6 cells. GATA4 silencing altered the expression of genes associated with cytoskeleton organization, cell-to-cell adhesion, and extracellular matrix dynamics (e.g. ADD3, AHNAK, DOCK8, RHOU, MSF, IGFBP1, COL4A2). These changes in gene expression reflected a more epithelial (less malignant) phenotype. Consistent with this notion, there was reduced F-actin stress fiber formation in knockdown HUH6 cells. Forced expression of GATA4 in primary human hepatocytes triggered opposite changes in the expression of genes identified by GATA4 silencing in HUH6 cells. In conclusion, GATA4 is highly expressed in most hepatoblastomas and correlates with a mesenchymal, migratory phenotype of hepatoblastoma cells.

Zhang R, Zhang TT, Zhai GQ, et al.
Evaluation of the HOXA11 level in patients with lung squamous cancer and insights into potential molecular pathways via bioinformatics analysis.
World J Surg Oncol. 2018; 16(1):109 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: This study was carried out to discover the underlying role that HOXA11 plays in lung squamous cancer (LUSC) and uncover the potential corresponding molecular mechanisms and functions of HOXA11-related genes.
METHODS: Twenty-three clinical paired LUSC and non-LUSC samples were utilized to examine the level of HOXA11 using quantitative real-time polymerase chain reaction (qRT-PCR). The clinical significance of HOXA11 was systematically analyzed based on 475 LUSC and 18 non-cancerous adjacent tissues from The Cancer Genome Atlas (TCGA) database. A total of 102 LUSC tissues and 121 non-cancerous tissues were available from Oncomine to explore the expressing profiles of HOXA11 in LUSC. A meta-analysis was carried out to further assess the differential expression of HOXA11 in LUSC, including in-house qRT-PCR data, expressing data extracted from TCGA and Oncomine databases. Moreover, the enrichment analysis and potential pathway annotations of HOXA11 in LUSC were accomplished via Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of hub genes and according correlations with HOXA11 were assessed to further explore the biological role of HOXA11 in LUSC.
RESULTS: HOXA11 expression in LUSC had a tendency to be upregulated in comparison to adjacent non-cancerous tissues by qRT-PCR. TCGA data displayed that HOXA11 was remarkably over-expressed in LUSC compared with that in non-LUSC samples, and the area under curves (AUC) was 0.955 (P < 0.001). A total of 1523 co-expressed genes were sifted for further analysis. The most significant term enriched in the KEGG pathway was focal adhesion. Among the six hub genes of HOXA11, including PARVA, ILK, COL4A1, COL4A2, ITGB1, and ITGA5, five (with the exception of COL4A1) were significantly decreased compared with the normal lung tissues. Moreover, the expression of ILK was negatively related to HOXA11 (r = - 0.141, P = 0.002).
CONCLUSION: High HOXA11 expression may lead to carcinogenesis and the development of LUSC. Furthermore, co-expressed genes might affect the prognosis of LUSC.

Sandoval-Bórquez A, Polakovicova I, Carrasco-Véliz N, et al.
MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer.
Clin Epigenetics. 2017; 9:114 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Multiple aberrant microRNA expression has been reported in gastric cancer. Among them, microRNA-335-5p (miR-335), a microRNA regulated by DNA methylation, has been reported to possess both tumor suppressor and tumor promoter activities.
RESULTS: Herein, we show that miR-335 levels are reduced in gastric cancer and significantly associate with lymph node metastasis, depth of tumor invasion, and ultimately poor patient survival in a cohort of Amerindian/Hispanic patients. In two gastric cancer cell lines AGS and, Hs 746T the exogenous miR-335 decreases migration, invasion, viability, and anchorage-independent cell growth capacities. Performing a PCR array on cells transfected with miR-335, 19 (30.6%) out of 62 genes involved in metastasis and tumor invasion showed decreased transcription levels. Network enrichment analysis narrowed these genes to nine (PLAUR, CDH11, COL4A2, CTGF, CTSK, MMP7, PDGFA, TIMP1, and TIMP2). Elevated levels of PLAUR, a validated target gene, and CDH11 were confirmed in tumors with low expression of miR-335. The 3'UTR of CDH11 was identified to be directly targeted by miR-335. Downregulation of miR-335 was also demonstrated in plasma samples from gastric cancer patients and inversely correlated with DNA methylation of promoter region (Z = 1.96,
CONCLUSIONS: Comprehensive evaluation of metastasis and invasion pathway identified a subset of associated genes and confirmed PLAUR and CDH11, both targets of miR-335, to be overexpressed in gastric cancer tissues. DNA methylation of miR-335 may be a promissory strategy for non-invasive approach to gastric cancer.

Vastrad B, Vastrad C, Godavarthi A, Chandrashekar R
Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
Med Oncol. 2017; 34(11):182 [PubMed] Related Publications
The aim of this study was to identify key genes associated with gliomas and glioblastoma and to explore the related signaling pathways. Gene expression profiles of three glioma stem cell line samples, three normal astrocyte samples, three astrocyte overexpressing 4 iPSC-inducing and oncogenic factors (myc(T58A), OCT-4, p53DD, and H-Ras(G12V)) samples, three astrocyte overexpressing 7 iPSC-inducing and oncogenic factors (OCT4, H-Ras(G12V), myc(T58A), p53DD, cyclin D1, CDK4(RC24) and hTERT) samples and three glioblastoma cell line samples were downloaded from the ArrayExpress database (accession: E-MTAB-4771). The differentially expressed genes (DEGs) in gliomas and glioblastoma were identified using FDR and t tests, and protein-protein interaction (PPI) networks for these DEGs were constructed using the protein interaction network analysis. The GeneTrail2 1.5 tool was used to identify potentially enriched biological processes among the DEGs using gene ontology (GO) terms and to identify the related pathways using the Kyoto Encyclopedia of Genes and Genomes, Reactome and WikiPathways pathway database. In addition, crucial modules of the constructed PPI networks were identified using the PEWCC1 plug-in, and their topological properties were analyzed using NetworkAnalyzer, both available from Cytoscape. We also constructed microRNA-target gene regulatory network and transcription factor-target gene regulatory network for these DEGs were constructed using the miRNet and binding and expression target analysis. We identified 200 genes that could potentially be involved in the gliomas and glioblastoma. Among them, bioinformatics analysis identified 137 up-regulated and 63 down-regulated DEGs in gliomas and glioblastoma. The significant enriched pathway (PI3K-Akt) for up-regulated genes such as COL4A1, COL4A2, EGFR, FGFR1, LAPR6, MYC, PDGFA, SPP1 were selected as well as significant GO term (ear development) for up-regulated genes such as CELSR1, CHRNA9, DDR1, FGFR1, GLI2, LGR5, SOX2, TSHR were selected, while the significant enriched pathway (amebiasis) for down-regulated gene such as COL3A1, COL5A2, LAMA2 were selected as well as significant GO term (RNA polymerase II core promoter proximal region sequence-specific binding (5) such as MEIS2, MEOX2, NR2E1, PITX2, TFAP2B, ZFPM2 were selected. Importantly, MYC and SOX2 were hub proteins in the up-regulated PPI network, while MET and CDKN2A were hub proteins in the down-regulated PPI network. After network module analysis, MYC, FGFR1 and HOXA10 were selected as the up-regulated coexpressed genes in the gliomas and glioblastoma, while SH3GL3 and SNRPN were selected as the down-regulated coexpressed genes in the gliomas and glioblastoma. MicroRNA hsa-mir-22-3p had a regulatory effect on the most up DEGs, including VSNL1, while hsa-mir-103a-3p had a regulatory effect on the most down DEGs, including DAPK1. Transcription factor EZH2 had a regulatory effect on the both up and down DEGs, including CD9, CHI3L1, MEIS2 and NR2E1. The DEGs, such as MYC, FGFR1, CDKN2A, HOXA10 and MET, may be used for targeted diagnosis and treatment of gliomas and glioblastoma.

Ryu D, Lee C
Expression quantitative trait loci for PI3K/AKT pathway.
Medicine (Baltimore). 2017; 96(1):e5817 [PubMed] Free Access to Full Article Related Publications
A genome-wide association study (GWAS) was conducted to identify expression quantitative trait loci (eQTLs) for the genes involved in phosphatidylinositol-3-kinase/v-akt murine thymoma viral oncogene homolog (PI3K/AKT) pathway.Data on mRNA expression of 341 genes in lymphoblastoid cell lines of 373 Europeans recruited by the 1000 Genomes Project using Illumina HiSeq2000 were utilized. We used their genotypes at 5,941,815 nucleotide variants obtained by Genome Analyzer II and SOLiD.The association analysis revealed 4166 nucleotide variants associated with expression of 85 genes (P < 5 × 10). A total of 73 eQTLs were identified as association signals for the expression of multiple genes. They included 9 eQTLs for both of the genes encoding collagen type I alpha 1 (COL1A1) and integrin alpha 11 (ITGA11), which synthesize a major complex of plasma membrane. They also included eQTLs for type IV collagen molecules; 13 eQTLs for both collagen type IV alpha 1 (COL4A1) and collagen type IV alpha 2 (COL4A2) and 18 eQTLs for both collagen type IV alpha 5 (COL4A5) and collagen type IV alpha 6 (COL4A6). Some genes expressed by the eQTLs might induce expression of the genes encoding type IV collagen. One eQTL (rs16871986) was located in the promoter of palladin (PALLD) gene which might synthesize collagen by activating fibroblasts through the PI3K/AKT pathway. Another eQTL (rs34845474) was located in an enhancer of cadherin related family member 3 (CDHR3) gene which can mediate cell adhesion.This study showed a profile of eQTLs for the genes involved in the PI3K/AKT pathway using a healthy population, revealing 73 eQTLs associated with expression of multiple genes. They might be candidates of common variants in predicting genetic susceptibility to cancer and in targeting cancer therapy. Further studies are required to examine their underlying mechanisms for regulating expression of the genes.

Xia L, Liu Y, Fu Y, et al.
Integrated analysis reveals candidate mRNA and their potential roles in uterine leiomyomas.
J Obstet Gynaecol Res. 2017; 43(1):149-156 [PubMed] Related Publications
AIM: Uterine leiomyomas (UL) are the most common pelvic tumors, and the etiology and pathophysiology are not well understood. We aimed to elucidate the genes responsible for UL development.
METHODS: Integrated analyses of four datasets of mRNA profiling for UL were performed. Functional annotation of differentially expressed genes (DEG) was used to systematically characterize the global expression profiles. The UL-specific protein-protein interaction network was constructed.
RESULTS: Integrated analysis led to the discovery of 2167 DEG (1042 upregulated and 1125 downregulated). The aberrant expression of NAV2, KIF5C, DCX, CAPN6, COL4A2, ALDH1A1, and DPT may play important roles in UL tumorigenesis. In addition, the dysregulation of MEST, LGALS3, and TLR3 may be involved in the progression of UL by a common mechanism. Functional annotation showed that extracellular matrix receptor interaction may be more active and cause the extracellular matrix abnormally formed in UL. Moreover, focal adhesion and cell adhesion molecules may play roles in the development of UL. Furthermore, chemokine signaling pathway and cytokine-cytokine receptor interaction were most probably involved in the development of UL.
CONCLUSION: In conclusion, our study observed that a set of aberrantly expressed genes and the related biochemical pathways may lead to transformation of normal myometrium in pathological focuses.

Poplawski P, Rybicka B, Boguslawska J, et al.
Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells.
Mol Cell Endocrinol. 2017; 442:58-67 [PubMed] Related Publications
Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration.

JingSong H, Hong G, Yang J, et al.
siRNA-mediated suppression of collagen type iv alpha 2 (COL4A2) mRNA inhibits triple-negative breast cancer cell proliferation and migration.
Oncotarget. 2017; 8(2):2585-2593 [PubMed] Free Access to Full Article Related Publications
Triple-negative breast cancer (TNBC) is more aggressive than other breast cancer subtypes. Collagen type IV alpha 2 (COL4A2), a major component of the basement membrane, dynamically influences a wide range of biological processes, including cancer pathogenesis and progression. This study evaluated the effects of COL4A2 siRNA delivered by lentiviral vector to TNBC cells. COL4A2 siRNA lenti-viral vector was constructed and transfected into MDA-MB-231 and MDA-MB-468 cells. The COL4A2 mRNA levels were quantified by RT-PCR. CCK8 assay was performed to evaluate cell proliferation and migration. Cell migration and invasion assays were carried out using Transwell. Cell apoptosis and cell cycle analyses were conducted using flow cytometric approach. We found that COL4A2 mRNA levels were significantly down-regulated in MDA-MB-231 and MDA-MB-468 cells after transfection with COL4A2 siRNA. Furthermore, cell migration and proliferation were significantly decreased and the cell cycle was arrested. Our results indicated that COL4A2 siRNA significantly suppresses the migration and proliferation of TNBC cells. Inhibition of COL4A2 may be a new target for the prevention and treatment of TNBC.

Thangavelu PU, Krenács T, Dray E, Duijf PH
In epithelial cancers, aberrant
Clin Epigenetics. 2016; 8:120 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Metastasis is a leading cause of death among cancer patients. In the tumor microenvironment, altered levels of extracellular matrix proteins, such as collagens, can facilitate the first steps of cancer cell metastasis, including invasion into surrounding tissue and intravasation into the blood stream. However, the degree of misexpression of collagen genes in tumors remains understudied, even though this knowledge could greatly facilitate the development of cancer treatment options aimed at preventing metastasis.
METHODS: We systematically evaluate the expression of all 44 collagen genes in breast cancer and assess whether their misexpression provides clinical prognostic significance. We use immunohistochemistry on 150 ductal breast cancers and 361 cervical cancers and study DNA methylation in various epithelial cancers.
RESULTS: In breast cancer, various tests show that
CONCLUSIONS: Paradoxically, collagen XVII is underexpressed in breast cancer and overexpressed in cervical and other epithelial cancers. However, the

Tang B, Qi G, Sun X, et al.
HOXA7 plays a critical role in metastasis of liver cancer associated with activation of Snail.
Mol Cancer. 2016; 15(1):57 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Liver cancer is one of the main causes of cancer-related death in human. HOXA7 has been proved to be related with several cancers.
METHOD: The expression levels of HOXA7 were examined by Western blot, qRT-PCR or ICH. MTT was used to detect the proliferative rate of liver cancer cells. The invasive abilities were examined by matrigel and transwell assay. The metastatic abilities of liver cancer cells were revealed in BALB/c nude mice.
RESULTS: In this report, we revealed that HOXA7 promoted metastasis of HCC patients. First, increased levels of HOXA7 were examined in liver cancer especially in metastatic liver cancer. Moreover, higher expression level of HOXA7 was associated with poorer prognosis of liver cancer patients. Overexpression of HOXA7 significantly enhanced proliferation, migration, invasion in vitro and tumor growth and metastasis in vivo meanwhile silencing HOXA7 significantly inhibited the aboves abilities of liver cancer cells. In this research, we identified that HOXA7 performed its oncogenic characteristics through activating Snail.
CONCLUSION: Collectively, we identify the critical role and possible mechanism of HOXA7 in metastasis of liver cancer which suggest that HOXA7 may be a potential therapeutic target of liver cancer patients.

Roy R, Singh R, Chattopadhyay E, et al.
MicroRNA and target gene expression based clustering of oral cancer, precancer and normal tissues.
Gene. 2016; 593(1):58-63 [PubMed] Related Publications
PURPOSE: Development of oral cancer is usually preceded by precancerous lesion. Despite histopathological diagnosis, development of disease specific biomarkers continues to be a promising field of study. Expression of miRNAs and their target genes was studied in oral cancer and two types of precancer lesions to look for disease specific gene expression patterns.
METHODS: Expression of miR-26a, miR-29a, miR-34b and miR-423 and their 11 target genes were determined in 20 oral leukoplakia, 20 lichen planus and 20 cancer tissues with respect to 20 normal tissues using qPCR assay. Expression data were, then, used for cluster analysis of normal as well as disease tissues.
RESULTS: Expression of miR-26a and miR-29a was significantly down regulated in leukoplakia and cancer tissues but up regulated in lichen planus tissues. Expression of target genes such as, ADAMTS7, ATP1B1, COL4A2, CPEB3, CDK6, DNMT3a and PI3KR1 was significantly down regulated in at least two of three disease types with respect to normal tissues. Negative correlations between expression levels of miRNAs and their targets were observed in normal tissues but not in disease tissues implying altered miRNA-target interaction in disease state. Specific expression profile of miRNAs and target genes formed separate clusters of normal, lichen planus and cancer tissues.
CONCLUSION: Our results suggest that alterations in expression of selected miRNAs and target genes may play important roles in development of precancer to cancer. Expression profiles of miRNA and target genes may be useful to differentiate cancer and lichen planus from normal tissues, thereby bolstering their role in diagnostics.

Chida S, Okayama H, Noda M, et al.
Stromal VCAN expression as a potential prognostic biomarker for disease recurrence in stage II-III colon cancer.
Carcinogenesis. 2016; 37(9):878-887 [PubMed] Related Publications
To develop prognostic biomarkers that can discriminate stage II-III colorectal cancer patients with high risk of postoperative recurrence, we conducted a genome-wide screening of relapse-related genes utilizing multiple microarray cohorts. Among differentially expressed genes between tumor and nontumor, we identified eight candidate genes associated with relapse in two datasets of stage II-III patients (n = 94 and 145, respectively, P < 0.05). Using datasets of laser-microdissected samples and FACS-purified cell populations, the localization of candidate genes, including COL4A2, COL4A1, VCAN and SERPINE1, were found predominantly in cancer stroma rather than epithelial components. Among those relapse-related stromal genes, VCAN mRNA, specifically expressed in cancer-associated fibroblasts, was further validated to be a prognostic factor in two additional independent datasets, consisting of 453 (P = 0.0334) and 89 (P = 0.0041) stage II-III patients. Furthermore, in our large set of formalin-fixed paraffin-embedded cohort (n = 338), VCAN protein was detected exclusively in cancer stroma by immunohistochemistry, demonstrating a stepwise increase of stromal VCAN from normal tissues through stage 0 to stage IV tumors. Stromal VCAN protein was associated with shorter relapse-free survival (RFS) in stage II-III colon cancer, independent of other clinical factors by multivariate analysis (P = 0.004). Stratified analyses revealed that stromal VCAN was a strong prognostic indicator particularly in stage II colon cancer (P = 0.0029). In all five analyzed cohorts, the expression of VCAN, in transcript or protein levels, was associated with poor RFS in stage II-III patients. We conclude that VCAN is a promising biomarker to identify stage II-III patients at high risk of relapse who may benefit from intensive postoperative management.

Choquet H, Trapani E, Goitre L, et al.
Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1.
Free Radic Biol Med. 2016; 92:100-109 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease.
METHODS: Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 'common Hispanic mutation' (CCM1-CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually.
RESULTS: The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity.
CONCLUSIONS: Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment.

Jones TA, Jeyapalan JN, Forshew T, et al.
Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-κB pathways.
Acta Neuropathol Commun. 2015; 3:86 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Pilocytic astrocytomas are slow-growing tumors that usually occur in the cerebellum or in the midline along the hypothalamic/optic pathways. The most common genetic alterations in pilocytic astrocytomas activate the ERK/MAPK signal transduction pathway, which is a major driver of proliferation but is also believed to induce senescence in these tumors. Here, we have conducted a detailed investigation of microRNA and gene expression, together with pathway analysis, to improve our understanding of the regulatory mechanisms in pilocytic astrocytomas.
RESULTS: Pilocytic astrocytomas were found to have distinctive microRNA and gene expression profiles compared to normal brain tissue and a selection of other pediatric brain tumors. Several microRNAs found to be up-regulated in pilocytic astrocytomas are predicted to target the ERK/MAPK and NF-κB signaling pathways as well as genes involved in senescence-associated inflammation and cell cycle control. Furthermore, IGFBP7 and CEBPB, which are transcriptional inducers of the senescence-associated secretory phenotype (SASP), were also up-regulated together with the markers of senescence and inflammation, CDKN1A (p21), CDKN2A (p16) and IL1B.
CONCLUSION: These findings provide further evidence of a senescent phenotype in pilocytic astrocytomas. In addition, they suggest that the ERK/MAPK pathway, which is considered the major driver of these tumors, is regulated not only by genetic aberrations but also by microRNAs.

Warnecke-Eberz U, Metzger R, Hölscher AH, et al.
Diagnostic marker signature for esophageal cancer from transcriptome analysis.
Tumour Biol. 2016; 37(5):6349-58 [PubMed] Related Publications
Esophageal cancer is often diagnosed at an advanced stage. Diagnostic markers are needed for achieving a cure in esophageal cancer detecting and treating tumor cells earlier. In patients with locally advanced squamous cell carcinoma of the esophagus (ESCC), we profiled the gene expression of ESCC compared to corresponding normal biopsies for diagnostic markers by genome microarrays. Profiling of gene expression identified 4844 genes differentially expressed, 2122 upregulated and 2722 downregulated in ESCC. Twenty-three overexpressed candidates with best scores from significance analysis have been selected for further analysis by TaqMan low-density array-technique using a validation cohort of 40 patients. The verification rate was 100 % for ESCC. Twenty-two markers were additionally overexpressed in adenocarcinoma of the esophagus (EAC). The markers significantly overexpressed already in earlier tumor stages (pT1-2) of both histological subtypes (n = 19) have been clustered in a "diagnostic signature": PLA2G7, PRAME, MMP1, MMP3, MMP12, LIlRB2, TREM2, CHST2, IGFBP2, IGFBP7, KCNJ8, EMILIN2, CTHRC1, EMR2, WDR72, LPCAT1, COL4A2, CCL4, and SNX10. The marker signature will be translated to clinical practice to prove its diagnostic impact. This diagnostic signature may contribute to the earlier detection of tumor cells, with the aim to complement clinical techniques resulting in the development of better detection of concepts of esophageal cancer for earlier therapy and more favorite prognosis.

Field AC, Qasim W
Engineered T cell therapies.
Expert Rev Mol Med. 2015; 17:e19 [PubMed] Related Publications
Alongside advancements in gene therapy for inherited immune disorders, the need for effective alternative therapeutic options for other conditions has resulted in an expansion in the field of research for T cell gene therapy. T cells are easily obtained and can be induced to divide robustly ex vivo, a characteristic that allows them to be highly permissible to viral vector-mediated introduction of transgenes. Pioneering clinical trials targeting cancers and infectious diseases have provided safety and feasibility data and important information about persistence of engineered cells in vivo. Here, we review clinical experiences with γ-retroviral and lentiviral vectors and consider the potential of integrating transposon-based vectors as well as specific genome editing with designer nucleases in engineered T cell therapies.

Okunaga S, Takasu A, Meshii N, et al.
Entry of Oncolytic Herpes Simplex Virus into Human Squamous Cell Carcinoma Cells by Ultrasound.
Viruses. 2015; 7(10):5610-8 [PubMed] Free Access to Full Article Related Publications
Low-intensity ultrasound is a useful method to introduce materials into cells due to the transient formation of micropores, called sonoporations, on the cell membrane. Whether oncolytic herpes simplex virus type 1 (HSV-1) can be introduced into oral squamous cell carcinoma (SCC) cells through membrane pores remains undetermined. Human SCC cell line SAS and oncolytic HSV-1 RH2, which was deficient in the 134.5 gene and fusogenic, were used. Cells were exposed to ultrasound in the presence or absence of microbubbles. The increase of virus entry was estimated by plaque numbers. Viral infection was hardly established without the adsorption step, but plaque number was increased by the exposure of HSV-1-inoculated cells to ultrasound. Plaque number was also increased even if SAS cells were exposed to ultrasound and inoculated with RH2 without the adsorption step. This effect was abolished when the interval from ultrasound exposure to virus inoculation was prolonged. Scanning electron microscopy revealed depressed spots on the cell surface after exposure to ultrasound. These results suggest that oncolytic HSV-1 RH2 can be introduced into SAS cells through ultrasound-mediated pores of the cell membrane that are resealed after an interval.

Ilhan-Mutlu A, Siehs C, Berghoff AS, et al.
Expression profiling of angiogenesis-related genes in brain metastases of lung cancer and melanoma.
Tumour Biol. 2016; 37(1):1173-82 [PubMed] Related Publications
Brain metastases (BM) are the most common brain tumors of adults and are associated with fatal prognosis. Formation of new blood vessels, named angiogenesis, was proposed to be the main hallmark of the growth of BM. Previous preclinical evidence revealed that angiogenic blockage might be considered for treatment; however, there were varying responses. In this study, we aimed to characterize the expression pattern of angiogenesis-related genes in BM of lung cancer and melanoma, which might be of importance for the different responses against anti-angiogenic treatment. Fifteen snap-frozen tissues obtained from BM of non-small cell lung cancer (NSCLC), small-cell lung cancer (SCLC), and melanoma patients were analyzed for angiogenesis-related genes using a commercially available gene expression kit. Epilepsy tissue was used as control. Expression values were analyzed using hierarchical clustering investigating relative fold changes and mapping to Omicsnet protein interaction network. CXCL10, CEACAM1, PECAM1, KIT, COL4A2, COL1A1, and HSPG2 genes were more than 50-fold up-regulated in all diagnosis groups when compared to control, whereas genes such as ANGPT4, PDGFRB, and SERPINF1 were down-regulated only in SCLC and melanoma groups, respectively. Using hierarchical clustering, 12 out of 15 cases were allocated to the correct histological primary tumor type. We identified genes with consistent up-regulation in BM of lung cancer and melanoma and other genes with differential expression across BM of these tumor types. Our data may be of relevance for targeted therapy or prophylaxis of BM using anti-angiogenic agents.

Giri A, Edwards TL, Motley SS, et al.
Genetic Determinants of Metabolism and Benign Prostate Enlargement: Associations with Prostate Volume.
PLoS One. 2015; 10(7):e0132028 [PubMed] Free Access to Full Article Related Publications
Prostate enlargement leading to clinical benign prostatic hyperplasia (BPH) is associated with metabolic dysregulation and obesity. The genetic basis of this association is unclear. Our objective was to evaluate whether single nucleotide polymorphisms (SNPs) previously associated with metabolic disorders are also associated with prostate volume (PV). Participants included 876 men referred for prostate biopsy and found to be prostate cancer free. PV was measured by transrectal ultrasound. Samples were genotyped using the Illumina Cardio-MetaboChip platform. Multivariable adjusted linear regression models were used to evaluate SNPs (additive coding) in relation to natural-log transformed (log) PV. We compared SNP-PV results from biopsy-negative men to 442 men with low-grade prostate cancer with similar levels of obesity and PV. Beta-coefficients from the discovery and replication samples were then aggregated with fixed effects inverse variance weighted meta-analysis. SNP rs11736129 (near the pseudo-gene LOC100131429) was significantly associated with log-PV (beta: 0.16, p-value 1.16x10(-8)) after adjusting for multiple testing. Other noteworthy SNPs that were nominally associated (p-value < 1x10(-4)) with log-PV included rs9583484 (intronic SNP in COL4A2), rs10146527 (intronic SNP in NRXN3), rs9909466 (SNP near RPL32P31), and rs2241606 (synonymous SNP in SLC12A7). We found several SNPs in metabolic loci associated with PV. Further studies are needed to confirm our results and elucidate the mechanism between these genetic loci, PV, and clinical BPH.

Zhu J, Pan C, Jiang J, et al.
Six stroma-based RNA markers diagnostic for prostate cancer in European-Americans validated at the RNA and protein levels in patients in China.
Oncotarget. 2015; 6(18):16757-65 [PubMed] Free Access to Full Article Related Publications
We previously analyzed human prostate tissue containing stroma near to tumor and from cancer-negative tissues of volunteers. Over 100 candidate gene expression differences were identified and used to develop a classifier that could detect nearby tumor with an accuracy of 97% (sensitivity = 98% and specificity = 88%) based on 364 independent test cases from primarily European American cases. These stroma-based gene signatures have the potential to identify cancer patients among those with negative biopsies. In this study, we used prostate tissues from Chinese cases to validate six of these markers (CAV1, COL4A2, HSPB1, ITGB3, MAP1A and MCAM). In validation by real-time PCR, four genes (COL4A2, HSPB1, ITGB3, and MAP1A) demonstrated significantly lower expression in tumor-adjacent stroma compared to normal stroma (p value ≤ 0.05). Next, we tested whether these expression differences could be extended to the protein level. In IHC assays, all six selected proteins showed lower expression in tumor-adjacent stroma compared to the normal stroma, of which COL4A2, HSPB1 and ITGB3 showed significant differences (p value ≤ 0.05). These results suggest that biomarkers for diagnosing prostate cancer based on tumor microenvironment may be applicable across multiple racial groups.

Trapani E, Retta SF
Cerebral cavernous malformation (CCM) disease: from monogenic forms to genetic susceptibility factors.
J Neurosurg Sci. 2015; 59(3):201-9 [PubMed] Related Publications
Cerebral cavernous malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions manifest across a range of different phenotypes, including wide interindividual differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH), and may remain asymptomatic during the host's lifetime or result in pathological conditions of various type and severity at any age, with symptoms ranging from relatively minor (but still disabling) headaches through to very severe neurological deficits, seizures, and stroke. Currently, surgical removal of accessible lesions is the only direct therapeutic approach for CCM disease. However, whereas little information is available on the natural history of risk for patients to develop serious complications, such as ICH, prognostic biomarkers remain to be identified in order to ensure timely and optimal clinical decision making. In recent years, it has become clear that the three known CCM genes play an important role in controlling signalling pathways involved in cell responses to oxidative stress, pointing to a novel pathogenic mechanism whereby the function of CCM genes may be relevant in preventing vascular dysfunctions triggered by oxidative stress events. In turn, these novel findings have raised the possibility that genetic susceptibility factors related to differences in sensitivity to oxidative stress, including genetic polymorphisms, may contribute to interindividual differences in CCM disease susceptibility and severity. This review discusses recent progress toward the understanding of molecular mechanisms of pathogenesis and the identification of genetic susceptibility factors that could influence onset, progression and clinical severity of CCM disease, as well as consequent implications for the development of novel, safe and effective therapeutic strategies.

Huang Y, Nie S, Zhou S, et al.
PPARD rs2016520 polymorphism and circulating lipid levels connect with brain diseases in Han Chinese and suggest sex-dependent effects.
Biomed Pharmacother. 2015; 70:7-11 [PubMed] Related Publications
The PPARD polymorphisms were shown to be associated with circulating lipoprotein metabolism in various diseases. We aimed to check the contribution of PPARD rs2016520 and lipid concentration to the risk of intracerebral hemorrhages (ICH) and brain tumors (BT) in Han Chinese. A total of 864 participants were included in the case-control study. The melting temperature shift (Tm-shift) method was used for rs2016520 genotyping. Under the recessive model, PPARD rs2016520 was shown to be associated with the risk of ICH (P=0.029, odds ratio (OR)=2.72), specifically in males (P=0.045, OR=3.98). Additionally, we also found that the levels of TC and LDL-C were significantly higher in participants with brain diseases than in the controls (TC: P<0.0001; LDL-C: P<0.0001). Significantly higher HDL-C and lower ApoA-I levels were observed in the male patients with brain diseases (HDL-C: P<0.0001; ApoA-I: P=0.008), in contrast of a higher TG level in female ICH (P=0.023). Subsequent interaction analysis between PPARD rs2016520 and lipoprotein metabolism showed that the LDL-C level was positively correlated with ICH in the rs2016520-AA carriers (P<0.0001), but not in the other genotype carriers (AG or GG, P=0.300). Our results showed that PPARD rs2016520 displayed a strong relationship with ICH risk in the male Han Chinese. The TC and LDL-C levels were positively higher in the patients with brain diseases than in the controls. The levels of TG, HDL-C and ApoA-I were shown to affect brain disease in a gender-dependent model. The genotype rs2016520-AA showed significant interaction with the circulating LDL-C levels in ICH.

Choquet H, Pawlikowska L, Nelson J, et al.
Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity.
Cerebrovasc Dis. 2014; 38(6):433-40 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Familial cerebral cavernous malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions that often result in intracerebral hemorrhage (ICH), seizures, and neurological deficits. Carriers of the same genetic mutation can present with variable symptoms and severity of disease, suggesting the influence of modifier factors. Evidence is emerging that inflammation and immune response play a role in the pathogenesis of CCM. The purpose of this study was to investigate whether common variants in inflammatory and immune response genes influence the severity of familial CCM1 disease, as manifested by ICH and greater brain lesion count.
METHODS: Hispanic CCM1 patients (n=188) harboring the founder Q455X 'common Hispanic mutation' (CHM) in the KRIT1 gene were analyzed at baseline. Participants were enrolled between June 2010 and March 2014 either through the Brain Vascular Malformation Consortium (BVMC) study or through the Angioma Alliance organization. Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging were performed to determine ICH as well as total and large (≥5 mm in diameter) lesion counts. Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 830 variants in 56 inflammatory and immune response genes for association with ICH and residuals of log-transformed total or large lesion count adjusted for age at enrollment and gender. Variants were analyzed individually or grouped by sub-pathways or whole pathways.
RESULTS: At baseline, 30.3% of CCM1-CHM subjects had ICH, with a mean ± standard deviation (SD) of 60.1±115.0 (range 0-713) for total lesions and 4.9±8.7 (range 0-104) for large lesions. The heritability estimates explained by all autosomal variants were 0.20 (SE=0.31), 0.81 (SE=0.17), and 0.48 (SE=0.19), for ICH, total lesion count, and large lesion count, respectively. TGFBR2 rs9823731 was significantly associated with ICH as well as with the total and large lesion counts (p≤0.017). Further, IL-4 rs9327638, CD14 rs778588, IL-6R rs114660934 and MSR1 rs62489577 were associated with two markers of disease severity. Finally, the whole pathway was associated with total lesion count (p=0.005) with TLR-4 rs10759930, CD14 rs778588, IL-6R rs114660934 and IGH rs57767447 mainly bearing this association. Eicosanoid signaling, extracellular pattern recognition, and immune response sub-pathways were also associated with the total lesion count.
CONCLUSIONS: These results suggest that polymorphisms in inflammatory and immune response pathways contribute to variability in CCM1 disease severity and might be used as predictors of disease severity. In particular, TGFBR2 rs9823731 was associated with all three markers of CCM1 disease severity tested, suggesting that TGFBR2 might be a key participant in the mechanism underlying CCM1 disease severity and phenotype variability. However, further longitudinal studies in larger sample sizes are needed to confirm these findings.

Igci M, Arslan A, Erturhan S, et al.
Loss of heterozygosity of chromosome 13q33-34 region and molecular analysis of ING1 and p53 genes in bladder carcinoma.
Mol Biol Rep. 2015; 42(2):507-16 [PubMed] Related Publications
Cancer is a consequence of accumulation of genetic and epigenetic alterations in the cell which can lead to activation of oncogenes or inactivation of tumor suppressor genes (TSG). Since members of ING family were discovered as TSGs in different cancer types, it was aimed to analyze the chromosome 13q33-34 region, ING1 and p53 genes in bladder cancer. 30 paired normal and tumor tissues were investigated in terms of microdeletion of chromosome 13q33-34 region, ING1 expression and mutation status of ING1 and p53 genes. Because there is no data available about the transcription factors which bind to ING1 promoter, the promoter sequence was analyzed via Genomatix-MatInspector and TFSEARCH softwares. Used DS markers were D13S285, D13S1315, D13S796, D13S278, D13S158, and D13S779 where loss of heterozygosity (LOH) results were as 23.3, 20, 6.7, 3.3, 6.7, and 0 %, respectively. The highest LOH scores were obtained with markers D13S285 and D13S1315 which are flanking the ING1. Seven of 30 cases showed alteration in expression (p > 0.05). However, no mutation was detected in the exons of ING1. One patient showed a two-nucleotide deletion in p53 gene. However no significant TSG activity of ING1 was observed while higher activity was reported in different cancer types. As for the LOH data 13q33-34 region may contain different candidate TSGs like COL4A1, COL4A2 and SOX1. As a result of computational promoter analysis, some factors like ABL, E2F, HIF1, SOX, P53, BPTF, NRSF, c-Rel and c-ETS were associated with the promoter region. Molecular analysis of ING1 promoter warrants further analysis.

Huan JL, Gao X, Xing L, et al.
Screening for key genes associated with invasive ductal carcinoma of the breast via microarray data analysis.
Genet Mol Res. 2014; 13(3):7919-25 [PubMed] Related Publications
The aim of this study was to identify key genes related to invasive ductal carcinoma (IDC) of the breast by analyzing gene expression data with bioinformatic tools. Microarray data set GSE31138 was downloaded from Gene Expression Omnibus, including 3 breast cancer tissue samples and 3 normal controls. Differentially expressed genes (DEGs) between breast cancer and normal control were screened out (FDR < 0.05 and |logFC| > 2). Coexpression between genes was examined with String, and a network was then constructed. Relevant pathways and diseases were retrieved with KOBAS. A total of 56 DEGs were obtained in the IDC of the breast compared with normal controls. A gene coexpression network including 27 pairs of genes was constructed and all the genes in the network were upregulated. Further study indicated that most of the genes in the coexpression network were enriched in ECM-receptor interaction (COL4A2, FN1, and HMMR) and nucleotide excision repair (CETN2 and PCNA) pathways, and that the most significantly related disease was autoimmune lymphoproliferative syndromes. A number of DEGs were acquired through comparative analysis of gene expression data. These findings are beneficial in promoting the understanding of the molecular mechanisms in breast cancer. More importantly, some key genes were revealed via gene coexpression network analysis, which could be potential biomarkers for IDC of the breast.

Mathsyaraja H, Thies K, Taffany DA, et al.
CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth.
Oncogene. 2015; 34(28):3651-61 [PubMed] Free Access to Full Article Related Publications
Metastasis of solid tumors is associated with poor prognosis and bleak survival rates. Tumor-infiltrating myeloid cells (TIMs) are known to promote metastasis, but the mechanisms underlying their collaboration with tumor cells remain unknown. Here, we report an oncogenic role for microRNA (miR) in driving M2 reprogramming in TIMs, characterized by the acquisition of pro-tumor and pro-angiogenic properties. The expression of miR-21, miR-29a, miR-142-3p and miR-223 increased in myeloid cells during tumor progression in mouse models of breast cancer and melanoma metastasis. Further, we show that these miRs are regulated by the CSF1-ETS2 pathway in macrophages. A loss-of-function approach utilizing selective depletion of the miR-processing enzyme Dicer in mature myeloid cells blocks angiogenesis and metastatic tumor growth. Ectopic expression of miR-21 and miR-29a promotes angiogenesis and tumor cell proliferation through the downregulation of anti-angiogenic genes such as Col4a2, Spry1 and Timp3, whereas knockdown of the miRs impedes these processes. miR-21 and miR-29a are expressed in Csf1r+ myeloid cells associated with human metastatic breast cancer, and levels of these miRs in CD115+ non-classical monocytes correlates with metastatic tumor burden in patients. Taken together, our results suggest that miR-21 and miR-29a are essential for the pro-tumor functions of myeloid cells and the CSF1-ETS2 pathway upstream of the miRs serves as an attractive therapeutic target for the inhibition of M2 remodeling of macrophages during malignancy. In addition, miR-21 and miR-29a in circulating myeloid cells may potentially serve as biomarkers to measure therapeutic efficacy of targeted therapies for CSF1 signaling.

Brown CW, Brodsky AS, Freiman RN
Notch3 overexpression promotes anoikis resistance in epithelial ovarian cancer via upregulation of COL4A2.
Mol Cancer Res. 2015; 13(1):78-85 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Ovarian cancer is a lethal disease with the majority of diagnosed women having distant metastases. Interestingly, although Notch3 overexpression has been correlated with poor survival in epithelial ovarian cancer (EOC), little is known about its mechanism of action. Data show that Notch3 specifically promotes anoikis resistance. In addition, data indicate a positive role for focal adhesion kinase (FAK) as well as downstream signaling kinases such as Akt and Erk 1/2 in promoting anchorage-independent growth. Mechanistically, both mRNA transcript and protein levels of type IV collagen (COL4A2) are reduced when Notch3 levels are decreased and exogenous collagen IV supplementation reverses the anoikis sensitivity. Reduction of COL4A2 expression by RNAI-mediated knockdown induces cell death. Finally, elevated Notch3 expression levels correlate with higher COL4A2 expression in human ovarian tumor specimens.
IMPLICATIONS: These data highlight type IV collagen as a novel therapeutic target for metastatic EOC. Visual Overview: http://mcr.aacrjournals.org/content/early/2014/11/25/1541-7786.MCR-14-0334/F1.large.jpg

Di Tommaso S, Tinelli A, Malvasi A, Massari S
Missense mutations in exon 2 of the MED12 gene are involved in IGF-2 overexpression in uterine leiomyoma.
Mol Hum Reprod. 2014; 20(10):1009-15 [PubMed] Related Publications
Uterine leiomyoma (UL), the most common benign tumour found in females, is associated with many recurrent genetic aberrations, such as translocations, interstitial deletions and specific germline mutations. Among these, mutations affecting exon 2 of the mediator complex subunit 12 (MED12) gene are commonly detected in the majority of ULs. Mutational analysis of the MED12 gene, performed on 36 UL samples, revealed that 12 leiomyomas (33.4%) exhibited heterozygous missense mutations in codon 44 of exon 2 of the MED12 gene, four leiomyomas (11.1%) showed internal in-frame deletions, and two leiomyomas (5.5%) exhibited deletions involving intron 1-exon 2 junction, which caused a predicted loss of the splice acceptor. No mutations were detected in uterine myometrium (UM) and pseudocapsule (PC) samples, including those from women with a MED12 mutation in UL. These data showed that the PC is a healthy tissue that surrounds the UL to maintain UM integrity. Analysis of insulin-like growth factor 2 (IGF-2) and collagen type IV alpha 2 (COL4A2) mRNA expression levels in the same set of ULs revealed that only those with MED12 missense mutations expressed significantly higher levels of IGF-2 mRNA. In contrast, MED12 gene status does not appear to affect mRNA expression levels of the COL4A2 gene. On the basis of this finding, we suggest that the MED12 status stratifies the ULs into two mutually exclusive pathways of leiomyoma genesis, one with IGF-2 overexpression and the other with no IGF-2 activation. The occurrence of IGF-2 overexpression could be therapeutically targeted for the non-surgical treatment of leiomyomas.

Oktem G, Sercan O, Guven U, et al.
Cancer stem cell differentiation: TGFβ1 and versican may trigger molecules for the organization of tumor spheroids.
Oncol Rep. 2014; 32(2):641-9 [PubMed] Related Publications
Cancer stem cells (CSCs) have the ability to self-renew similar to normal stem cells. This process is linked with metastasis and resistance to chemotherapy and radiotherapy. In the present study, we constructed an in vitro differentiation model for CSCs. CSCs isolated and proliferated for one passage were maintained as monolayers or spheroid-forming cells with serum included media for differentiation process. Differentiation of adhesion molecules and cellular ultrastructural properties were investigated and compared in both monolayer and spheroid cultures. CD133+/CD44+ cancer-initiating cells were isolated from DU-145 human prostate cancer cell line monolayer cultures and propagated as tumor spheroids and compared with the remaining heterogeneous cancer cell bulk population. Microarray-based gene expression analysis was applied to determine genes with differential expression and protein expression levels of candidates were analyzed by immunohistochemistry. Electron microscopy showed detailed analysis of morphology. TGFβ1 was found to be significantly upregulated in monolayer CSCs. High expression levels of VCAN, COL7A1, ITGβ3, MMP16, RPL13A, COL4A2 and TIMP1 and low expression levels of THBS1, MMP1 and MMP14 were detected when CSCs were maintained as serum-grown prostate CSC spheroids. Immunohistochemistry supported increased immunoreactivity of TGFβ1 in monolayer cultures and VCAN in spheroids. CSCs were found to possess multipotential differentiation capabilities through upregulation and/or downregulation of their markers. TGFβ1 is a triggering molecule, it stimulates versican, Col7A1, ITGβ3 and, most importantly, the upregulation of versican was only detected in CSCs. Our data support a model where CSCs must be engaged by one or more signaling cascades to differentiate and initiate tumor formation. This mechanism occurs with intracellular and extracellular signals and it is possible that CSCc themselves may be a source for extracellular signaling. These molecules functioning in tumor progression and differentiation may help develop targeted therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. COL4A2, Cancer Genetics Web: http://www.cancer-genetics.org/COL4A2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999