CD274

Gene Summary

Gene:CD274; CD274 molecule
Aliases: B7-H, B7H1, PDL1, PD-L1, hPD-L1, PDCD1L1, PDCD1LG1
Location:9p24.1
Summary:This gene encodes an immune inhibitory receptor ligand that is expressed by hematopoietic and non-hematopoietic cells, such as T cells and B cells and various types of tumor cells. The encoded protein is a type I transmembrane protein that has immunoglobulin V-like and C-like domains. Interaction of this ligand with its receptor inhibits T-cell activation and cytokine production. During infection or inflammation of normal tissue, this interaction is important for preventing autoimmunity by maintaining homeostasis of the immune response. In tumor microenvironments, this interaction provides an immune escape for tumor cells through cytotoxic T-cell inactivation. Expression of this gene in tumor cells is considered to be prognostic in many types of human malignancies, including colon cancer and renal cell carcinoma. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:programmed cell death 1 ligand 1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (11)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (9)

Latest Publications: CD274 (cancer-related)

Erol T, İmamoğlu NE, Aydin B, et al.
Primary tumor resection for initially staged IV breast cancer: An emphasis on programmed death-ligand 1 expression, promoter methylation status, and survival.
Medicine (Baltimore). 2019; 98(33):e16773 [PubMed] Related Publications
Conventional therapy modalities for advanced breast cancer are problematic, whereas checkpoint blockade immunotherapy has been considered as a promising approach. This study aims to determine programmed death-ligand 1 (PD-L1) expression and methylation status of PD-L1 promoter in primary tumor tissue and metastatic foci of patients with stage IV breast cancer.Clinicopathological data and survival rates of 57 breast cancer patients, who were initially staged IV, and operated for intact tumors, were retrospectively analyzed. Immunohistochemical analysis of PD-L1 using 57 primary tumors, 33 paired metastatic lymph nodes, and 14 paired distant metastases was performed. Additionally, the methylation rate of the PD-L1 gene promoter region was determined with real-time polymerase chain reaction (PCR) analysis in 38 samples.Overall PD-L1 expression in primary tumors was 23.1% (12/52). PD-L1 positivity was reduced in lymph nodes by 15.2% (5/33) and in distant metastases by 21.4% (3/14). PD-L1 expression diverged between primary and metastatic foci in a subset of cases (18.2% for lymph node and 33.3% for distant metastasis). In general, the PD-L1 promoter was not methylated, and mean methylation rates were low (min. 0%-max. 21%). We observed no correlation between PD-L1 expression, promoter methylation, and survival.Neither the expression nor the methylation status of PD-L1 in patients, who were presented with stage IV breast cancer and operated for an intact primary tumor, had a statistically significant relation with survival. Discordance in PD-L1 expression between primary tumor and metastasis should be considered during pathological and clinical management of patients who would undergo checkpoint blockade therapy.

Fukuoka E, Yamashita K, Tanaka T, et al.
Neoadjuvant Chemotherapy Increases PD-L1 Expression and CD8
Anticancer Res. 2019; 39(8):4539-4548 [PubMed] Related Publications
BACKGROUND/AIM: The aim of this study was to investigate PD-L1 expression and its association with prognosis in esophageal squamous cell carcinoma (ESCC) before and after neoadjuvant chemotherapy (5-fluorouracil and cisplatin, NAC-FP).
PATIENTS AND METHODS: Using a database of 69 ESCC patients, we analyzed PD-L1 expression on tumor cells (TCs) and immune cells (ICs), as well as the density of CD8
RESULTS: The fraction of ESCC containing ICs expressing PD-L1 and having a high CD8
CONCLUSION: NAC-FP induced PD-L1 expression on ICs and CD8

Kang BW, Baek DW, Kang H, et al.
Novel Therapeutic Approaches for Epstein-Barr Virus Associated Gastric Cancer.
Anticancer Res. 2019; 39(8):4003-4010 [PubMed] Related Publications
Epstein-Barr virus (EBV)-associated gastric cancer (GC) (EBVaGC) is classified as one of four GC subtypes by comprehensive molecular characterization. Though the mechanism of tumorigenesis by EBV infection has not yet been fully clarified, EBV infection might contribute to the malignant transformation of GC cells by involving various cellular processes and signaling pathways. EBVaGC has shown the following distinct characteristics in contrast to other subtypes: extreme DNA hypermethylation, recurrent phosphatidylinositol 4,5-biphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) mutations, overexpression of programmed cell death ligand 1/2 (PD-L1/2), and occasional immune cell signaling activation. Therefore, using these molecular features as guides, targeted agents need to be evaluated in clinical trials for EBVaGC. Accordingly, this review uses the best available evidence to focus on novel therapeutic approaches using the distinct pathologic characteristics of EBVaGC patients.

Yoo SK, Song YS, Lee EK, et al.
Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer.
Nat Commun. 2019; 10(1):2764 [PubMed] Free Access to Full Article Related Publications
Anaplastic thyroid cancer (ATC) and advanced differentiated thyroid cancers (DTCs) show fatal outcomes, unlike DTCs. Here, we demonstrate mutational landscape of 27 ATCs and 86 advanced DTCs by massively-parallel DNA sequencing, and transcriptome of 13 ATCs and 12 advanced DTCs were profiled by RNA sequencing. TERT, AKT1, PIK3CA, and EIF1AX were frequently co-mutated with driver genes (BRAF

Chen H, Chong W, Teng C, et al.
The immune response-related mutational signatures and driver genes in non-small-cell lung cancer.
Cancer Sci. 2019; 110(8):2348-2356 [PubMed] Free Access to Full Article Related Publications
Immune checkpoint blockade (ICB) therapy has achieved remarkable clinical benefit in non-small-cell lung cancer (NSCLC), but our understanding of biomarkers that predict the response to ICB remain obscure. Here we integrated somatic mutational profile and clinicopathologic information from 113 NSCLC patients treated by ICB (CTLA-4/PD-1). High tumor mutation burden (TMB) and neoantigen burden were identified significantly associated with improved efficacy in NSCLC immunotherapy. Furthermore, we identified apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) mutational signature was markedly associated with responding of ICB therapy (log-rank test, P = .001; odds ratio (OR), 0.18 [95% CI, 0.06-0.50], P < .001). The association with progression-free survival remained statistically significant after controlling for age, sex, histological type, smoking, PD-L1 expression, hypermutation, smoking signature and mismatch repair (MMR) (HR, 0.30 [95% CI, 0.12-0.75], P = .010). Combined high TMB with APOBEC signature preferably predict immunotherapy responders in NSCLC cohort. The CIBERSORT algorithm revealed that high APOBEC mutational activity samples were associated with increased infiltration of CD4 memory activated T cells, CD8

Qian X, Nie X, Wollenberg B, et al.
Heterogeneity of Head and Neck Squamous Cell Carcinoma Stem Cells.
Adv Exp Med Biol. 2019; 1139:23-40 [PubMed] Related Publications
Current systemic cancer treatment in head and neck squamous cell carcinoma (HNSCC) is moving toward more personalized approaches such as de-escalation protocols human-papilloma-virus dependent HNSCC or application of checkpoint inhibitors. However, these treatments have been challenged by cancer stem cells (CSC), a small population within the bulk tumor, which are leading to treatment failure, tumor recurrence, or metastases. This review will give an overview of the characteristics of HNSCC-CSC. Specifically, the mechanisms by which HNSCC-CSC induce tumor initiation, progression, recurrence, or metastasis will be discussed. Although evidence-based treatment options targeting HNSCC-CSC specifically are still being sought for, they warrant a promise for additional and sustainable treatment options where for HNSCC patients where others have failed.

Liu JF, Gray KP, Wright AA, et al.
Results from a single arm, single stage phase II trial of trametinib and GSK2141795 in persistent or recurrent cervical cancer.
Gynecol Oncol. 2019; 154(1):95-101 [PubMed] Related Publications
BACKGROUND: Improved treatment for advanced cervical cancer is needed; currently, treatment options include combined chemotherapy and bevacizumab or pembrolizumab monotherapy for PD-L1 positive disease. PIK3CA and KRAS mutations have been reported in cervical cancers; this study therefore tested dual inhibition of PI3K and RAS signaling by combining the MEK inhibitor trametinib and the AKT inhibitor GSK2141795 in recurrent cervical cancer.
METHODS: This was an investigator-initiated phase II study combining trametinib and GSK2141795 in patients with recurrent cervical cancer. Primary endpoint was best tumor response; secondary endpoints included progression free survival, overall survival, and safety assessment. Translational objectives included characterization of molecular alterations in PI3K and RAS signaling pathway genes.
RESULTS: Planned accrual was 35 patients; 14 patients were enrolled and received at least one dose of study drug before the study was terminated due to discontinuation of GSK2141795 development. There were no confirmed responses; 1 patient had an unconfirmed PR, 8 had stable disease, 3 had progression as best response, and 2 were unevaluable. Toxicities were mostly grade 1 and 2, although 57% of patients experienced grade 3/4 adverse events and 50% patients required a dose reduction.
CONCLUSIONS: The combination of trametinib and GSK2141795 was feasible but required dose holds and modifications for adverse events; however, anti-cancer activity was minimal, even in patients with PI3K or RAS pathway alterations. Although the study was terminated early after GSK2141795 development was halted, the findings in these 14 patients do not support further development of this combination in cervical cancer.

Kawashima Y, Nishikawa S, Ninomiya H, et al.
Lung Adenocarcinoma with Lynch Syndrome and the Response to Nivolumab.
Intern Med. 2019; 58(10):1479-1484 [PubMed] Free Access to Full Article Related Publications
Lynch syndrome is caused by mutations in mismatch repair genes that lead to microsatellite instability (MSI). An increased number of mutation-associated neoantigens have been observed in patients with high-frequency MSI (MSI-H) cancer; in addition, membranous programmed death ligand-1 (PD-L1) tends to be expressed at higher levels in MSI-H cancers than in microsatellite-stable cancers. MSI-H cancer patients are therefore considered to be susceptible to immune checkpoint blockade. We herein report for the first time a case of lung adenocarcinoma with Lynch syndrome and the response to nivolumab.

Kawachi H, Fujimoto D, Yamashita D, et al.
Association Between Formalin Fixation Time and Programmed Cell Death Ligand 1 Expression in Patients With Non-Small Cell Lung Cancer.
Anticancer Res. 2019; 39(5):2561-2567 [PubMed] Related Publications
BACKGROUND/AIM: The expression of programmed cell death ligand 1 (PD-L1) determined by immunohistochemistry (IHC) may be associated with tissue formalin fixation time in non-small cell lung cancer (NSCLC) samples. We investigated the association between the PD-L1 expression and formalin fixation time, and clarified the optimal duration of fixation for accurate PD-L1 evaluation.
MATERIALS AND METHODS: We collected 55 tumor specimens from resected NSCLC patients. The samples were halved and immediately fixed in 10% buffered formalin for 12-24 h (normal fixation), or 96-120 h (prolonged fixation). Each specimen was stained using two assay systems (22C3 and SP263) for PD-L1.
RESULTS: The mean PD-L1 tumor proportion score was not significantly different between normal and prolonged fixation groups for either 22C3 or SP263 (normal fixation: 18.8%; prolonged fixation: 16.3%, p=0.277; normal fixation: 16.2%; prolonged fixation: 17.6%, p=0.560, respectively).
CONCLUSION: Formalin fixation duration for up to 120 h does not affect PD-L1 IHC expression. PD-L1 tumor proportion score of tumor specimens can be evaluated by IHC even if these have been fixed in formalin outside the recommended duration in clinical practice.

Voorwerk L, Slagter M, Horlings HM, et al.
Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial.
Nat Med. 2019; 25(6):920-928 [PubMed] Related Publications
The efficacy of programmed cell death protein 1 (PD-1) blockade in metastatic triple-negative breast cancer (TNBC) is low

Nakayama Y, Mimura K, Tamaki T, et al.
Phospho‑STAT1 expression as a potential biomarker for anti‑PD‑1/anti‑PD‑L1 immunotherapy for breast cancer.
Int J Oncol. 2019; 54(6):2030-2038 [PubMed] Free Access to Full Article Related Publications
In the present study, we evaluated the mechanisms of programmed death ligand 1 (PD‑L1) expression in the breast cancer microenvironment, focusing on the role of interferon‑γ (IFN‑γ), and the clinical indications for anti‑programmed cell death 1 (PD‑1) /anti‑PD‑L1 immunotherapy. We evaluated PD‑L1 expression in 4 breast cancer cell lines in the presence of 3 types of inhibitors, as well as IFN‑γ. The expression of phosphorylated signal transducer and activator of transcription 1 (p‑STAT1), one of the IFN‑γ signaling pathway molecules, was analyzed using immunohistochemistry (IHC) in relation to PD‑L1 and human leukocyte antigen (HLA) class I expression on cancer cells and tumor‑infiltrating CD8‑positive T cells in 111 patients with stage II/III breast cancer. Using The Cancer Genome Atlas (TCGA) database, the correlation of the IFN‑γ signature with PD‑L1 expression was analyzed in breast invasive carcinoma tissues. As a result, the JAK/STAT pathway via IFN‑γ was mainly involved in PD‑L1 expression in the cell lines examined. IHC analysis revealed that the PD‑L1 and HLA class I expression levels were significantly upregulated in the p‑STAT1‑positive cases. TCGA analysis indicated that the PD‑L1 expression and IFN‑γ signature exhibited a positive correlation. On the whole, these findings suggest that PD‑L1 and HLA class I are co‑expressed in p‑STAT1‑positive breast cancer cells induced by IFN‑γ secreted from tumor infiltrating immune cells, and that p‑STAT1 expression may be a potential biomarker for patient selection for immunotherapy with anti‑PD‑1/anti‑PD‑L1 monoclonal antibodies.

Imaoka M, Tanese K, Masugi Y, et al.
Macrophage migration inhibitory factor-CD74 interaction regulates the expression of programmed cell death ligand 1 in melanoma cells.
Cancer Sci. 2019; 110(7):2273-2283 [PubMed] Free Access to Full Article Related Publications
Expression of programmed cell death ligand 1 (PD-L1) on tumor cells contributes to cancer immune evasion by interacting with programmed cell death 1 on immune cells. γ-Interferon (IFN-γ) has been reported as a key extrinsic stimulator of PD-L1 expression, yet its mechanism of expression is poorly understood. This study analyzed the role of CD74 and its ligand macrophage migration inhibitory factor (MIF) on PD-L1 expression, by immunohistochemical analysis of melanoma tissue samples and in vitro analyses of melanoma cell lines treated with IFN-γ and inhibitors of the MIF-CD74 interaction. Immunohistochemical analyses of 97 melanoma tissue samples showed significant correlations between CD74 and the expression status of PD-L1 (P < .01). In vitro analysis of 2 melanoma cell lines, which are known to secrete MIF constitutively and express cell surface CD74 following IFN-γ stimulation, showed upregulation of PD-L1 levels by IFN-γ stimulation. This was suppressed by further treatment with the MIF-CD74 interaction inhibitor, 4-iodo-6-phenylpyrimidine. In the analysis of melanoma cell line WM1361A, which constitutively expresses PD-L1, CD74, and MIF in its non-treated state, treatment with 4-iodo-6-phenylpyrimidine and transfection of siRNAs targeting MIF and CD74 significantly suppressed the expression of PD-L1. Together, the results indicated that MIF-CD74 interaction directly regulated the expression of PD-L1 and helps tumor cells escape from antitumorigenic immune responses. In conclusion, the MIF-CD74 interaction could be a therapeutic target in the treatment of melanoma patients.

Mussetti A, Pellegrinelli A, Cieri N, et al.
PD-L1, LAG3, and HLA-DR are increasingly expressed during smoldering myeloma progression.
Ann Hematol. 2019; 98(7):1713-1720 [PubMed] Related Publications
Symptomatic multiple myeloma (MM) is a plasma cell neoplasm that represents the final stage of a continuum of clinical conditions that start from monoclonal gammopathy of unknown significance (MGUS), then transits in the more advance, but still asymptomatic, smoldering MM (SMM), with a final evolution in symptomatic MM. To investigate SMM microenvironment modifications, we studied 16 patients diagnosed at our hospital. Eight of them (group A) developed MM within 2 years from diagnosis while the others (group B) had stable SMM. Samples were bone marrow biopsies at diagnosis and after 2 years (± 4 months) and were analyzed by immunohistochemical analysis. Firstly, we found a significant increase in both CD4+ cells (11 vs 17%, p < 0.01) and CD8+ cells (15 vs 18%, p < 0.01) between diagnosis and at follow-up samples (whole cohort). This was associated to an increase in the CD4+/CD8+ ratio (0.74 vs 0.93, p < 0.01). Secondly, we discovered an increased expression of T cell inhibitory molecules during SMM evolution. In fact, plasma cell PD-L1 and microenvironment cell LAG3 expression increased from 1 to 12% (p = 0.03) and 4 to 10% (p = 0.04), respectively, from diagnosis to follow-up. Also, plasma cells and microenvironment cells HLA-DR expression augmented during SMM evolution from 7 to 10% (p = 0.04) and 29 to 39% (p = 0.01), respectively. When comparing group A vs group B, we found an increased CD68-KP1+ cell infiltration in favor of group B at diagnosis (23 vs 28%, p = 0.01) and a greater plasma cell infiltration at follow-up (50 vs 26%, p < 0.01). Our findings suggest how immune escape mechanisms appear earlier during multiple myeloma evolution, and that LAG3 could be a possible immunologic target in this setting.

Jagoda EM, Vasalatiy O, Basuli F, et al.
Immuno-PET Imaging of the Programmed Cell Death-1 Ligand (PD-L1) Using a Zirconium-89 Labeled Therapeutic Antibody, Avelumab.
Mol Imaging. 2019 Jan-Dec; 18:1536012119829986 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: The goal is to evaluate avelumab, an anti-PD-L1 monoclonal immunoglobulin G antibody labeled with zirconium-89 in human PD-L1-expressing cancer cells and mouse xenografts for clinical translation.
METHODS: [
RESULTS: [
CONCLUSIONS: [

Sammarco G, Varricchi G, Ferraro V, et al.
Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer.
Int J Mol Sci. 2019; 20(9) [PubMed] Free Access to Full Article Related Publications
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.

Zanusso C, Dreussi E, Bortolus R, et al.
rs4143815-
Int J Mol Sci. 2019; 20(9) [PubMed] Free Access to Full Article Related Publications
Up to 30-50% of patients with locally advanced prostate cancer (PCa) undergoing radiotherapy (RT) experience biochemical recurrence (BCR). The immune system affects the RT response. Immunogenetics could define new biomarkers for personalization of PCa patients' treatment. The aim of this study is to define the immunogenetic biomarkers of 10 year BCR (primary aim), 10 year overall survival (OS) and 5 year BCR (secondary aims). In this mono-institutional retrospective study, 549 Caucasian patients (a discovery set

Liang W, Guo M, Pan Z, et al.
Association between certain non-small cell lung cancer driver mutations and predictive markers for chemotherapy or programmed death-ligand 1 inhibition.
Cancer Sci. 2019; 110(6):2014-2021 [PubMed] Free Access to Full Article Related Publications
This study aimed to analyze the association between driver mutations and predictive markers for some anti-tumor agents in non-small cell lung cancer (NSCLC). A cohort of 785 Chinese patients with NSCLC who underwent resection from March 2016 to November 2017 in the First Affiliated Hospital of Guangzhou Medical University was investigated. The specimens were subjected to hybridization capture and sequence of 8 important NSCLC-related driver genes. In addition, the slides were tested for PD-L1, excision repair cross-complementation group 1 (ERCC1), ribonucleotide reductase subunit M1 (RRM1), thymidylate synthase (TS) and β-tubulin III by immunohistochemical staining. A total of 498 (63.4%) patients had at least 1 driver gene alteration. Wild-type, EGFR rare mutation (mut), ALK fusion (fus), RAS mut, RET fus and MET mut had relatively higher proportions of lower ERCC1 expression. EGFR 19del, EGFR L858R, EGFR rare mut, ALK fus, HER2 mut, ROS1 fus and MET mut were more likely to have TS low expression. Wild-type, EGFR L858R, EGFR rare mut and BRAF mut were associated with lower β-tubulin III expression. In addition, wild-type, RAS mut, ROS1 fus, BRAF and MET mut had higher proportion of PD-L1 high expression. As a pilot validation, 21 wild-type patients with advanced NSCLC showed better depth of response and response rate to taxanes compared with pemetrexed/gemcitabine (31.2%/60.0% vs 26.6%/45.5%). Our study may aid in selecting the optimal salvage regimen after targeted therapy failure, or the chemo-regimen where targeted therapy has not been a routine option. Further validation is warranted.

Kiyozumi Y, Baba Y, Okadome K, et al.
Indoleamine 2, 3-dioxygenase 1 promoter hypomethylation is associated with poor prognosis in patients with esophageal cancer.
Cancer Sci. 2019; 110(6):1863-1871 [PubMed] Free Access to Full Article Related Publications
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a primary enzyme that generates immunosuppressive metabolites. It plays a major role in tumor immunology and is a potential immune-based therapeutic target. We have reported that IDO1 protein expression was associated with an unfavorable clinical outcome in esophageal cancer. Recently, it has been reported that IDO1 expression is regulated by methylation of the IDO1 promoter. Thus, the aim of this study was to examine the relationship between IDO1 expression, IDO1 promoter methylation, and clinicopathological features in esophageal cancer. We first confirmed changes in IDO1 expression levels in vitro by treating cells with 5-azacytidine. We then evaluated the relationship between IDO1 expression levels, IDO1 promoter methylation (bisulfite pyrosequencing), and clinicopathological features using 40 frozen samples and 242 formalin-fixed, paraffin-embedded samples resected from esophageal cancer patients. We treated cell lines with 5-azacytidine, and the resulting hypomethylation induced significantly higher IDO1 expression (P < .001). In frozen samples, IDO1 expression levels correlated inversely with IDO1 promoter methylation levels (R = -0.47, P = .0019). Furthermore, patients in the IDO1 promoter hypomethylation group (n = 67) had a poor prognosis compared with those in the IDO1 promoter hypermethylation group (n = 175) (overall survival, P = .011). Our results showed that IDO1 promoter hypomethylation regulated IDO1 expression and was associated with a poor prognosis in esophageal cancer patients.

Yang MW, Fu XL, Jiang YS, et al.
Clinical significance of programmed death 1/programmed death ligand 1 pathway in gastric neuroendocrine carcinomas.
World J Gastroenterol. 2019; 25(14):1684-1696 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Recently, more and more studies have demonstrated the pivotal role of programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway in the immune evasion of tumors from the host immune system. However, the role of PD-1/PD-L1 pathway in gastric neuroendocrine carcinomas (G-NECs) remains unknown.
AIM: To investigate the expression of PD-1/PD-L1 and role of PD-1/PD-L1 pathway in G-NECs, which occur rarely but are highly malignant and clinically defiant.
METHODS: We investigated the expression of PD-L1 on tumor cells and PD-1
RESULTS: Most of the G-NECs tumor cells exhibited a near-uniform expression pattern of PD-L1, while some showed a tumor-stromal interface enhanced pattern. Of the 43 G-NECs, 21 (48.8%) were classified as a high PD-L1 expression group, and the high expression of PD-L1 was associated with poor overall survival (OS). The high expression of PD-L1 was correlated with abundant PD-1
CONCLUSION: Our data demonstrated for the first time that high expression of PD-L1 in G-NECs is associated with a poor prognosis, while the high expression may be due to the copy number variation of PD-L1 gene or stimulation of TILs. These results provide a basis for the immunotherapy targeting PD-1/PD-L1 pathway in G-NECs.

Wojas-Krawczyk K, Kalinka E, Grenda A, et al.
Beyond PD-L1 Markers for Lung Cancer Immunotherapy.
Int J Mol Sci. 2019; 20(8) [PubMed] Free Access to Full Article Related Publications
Immunotherapy using immune checkpoints inhibitors has become the standard treatment for first and second line therapy in patients with non-small cell lung cancer (NSCLC). However, proper predictive factors allowing precise qualification of NSCLC patients for immunotherapy have not been developed so far. Expression of PD-L1 on tumor cells and tumor mutation burden are used in qualification of patients to first line therapy with pembrolizumab and atezolizumab in combination with ipilimumab in prospective clinical trials. Nevertheless, not all patients with these predictive factors benefit from immunotherapy. Major methodological difficulties in testing of these factors and in the interpretation of test results still exist. Therefore, other predictive factors are sought. Intensive research on the recognition of tumor immunophenotype and gut microbiome in NSCLC patients are underway. The first correlations between the effectiveness of immunotherapy and the intensity of inflammatory response in the tumor, microbiome diversity, and the occurrence of certain bacterial species in gut have been described. The purpose of our manuscript is to draw attention to factors affecting the efficacy of immunotherapy with anti-PD-L1 antibodies in NSCLC patients. Additional markers, for example TMB (tumor mutations burden) or microbiome profile, are needed to more accurately determine which patients will benefit from immunotherapy treatment.

Holland BC, Sood A, Delfino K, et al.
Age and sex have no impact on expression levels of markers of immune cell infiltration and immune checkpoint pathways in patients with muscle-invasive urothelial carcinoma of the bladder treated with radical cystectomy.
Cancer Immunol Immunother. 2019; 68(6):991-997 [PubMed] Related Publications
OBJECTIVES: Advanced age and female sex have been associated with worse outcomes in patients undergoing radical cystectomy for muscle-invasive bladder cancer. A reduced immune response has been implicated as a mechanism. The objective of our study was to analyze the expression patterns of various cellular proteins active in bladder cancer immune pathways, and assess the correlation between age, sex, and the expression of these immune markers.
METHODS: We obtained surgical tissue samples from equally distributed male/female patients with/without lymph node metastasis who had undergone radical cystectomy for urothelial carcinoma (UC) of the bladder (n = 50). Immunohistochemistry (IHC) for CD3 (cluster of differentiation), CD4, CD8, CD56, LAG-3 (lymphocyte-activation gene), TIM-3 (T-cell immunoglobulin and mucin-domain), PD-1 (programmed death) and PD-L1 molecules was performed and scored by a single pathologist (high versus low). Spearman's correlation and Chi square tests investigated the association between age, sex, and IHC results.
RESULTS: Mean age at surgery was 67 years (range 50-78 years); all patients were Caucasians. The following percent of patients scored high for a stain: 18% CD3, 10% CD4, 0% CD8, 0% CD56, 20% LAG-3, 4% TIM-3, 0% PD-1 and 0% PD-L1. There was no association between patients' age, sex, and the expression of any of the immune markers (p > 0.05 for all).
CONCLUSIONS: The association between advanced age, female sex, and worse outcomes in bladder cancer may be independent of the immune pathways active in the disease that we examined in this study.

Bonanno L, Zulato E, Pavan A, et al.
LKB1 and Tumor Metabolism: The Interplay of Immune and Angiogenic Microenvironment in Lung Cancer.
Int J Mol Sci. 2019; 20(8) [PubMed] Free Access to Full Article Related Publications
Liver kinase B1 (

Ugurel S, Spassova I, Wohlfarth J, et al.
MHC class-I downregulation in PD-1/PD-L1 inhibitor refractory Merkel cell carcinoma and its potential reversal by histone deacetylase inhibition: a case series.
Cancer Immunol Immunother. 2019; 68(6):983-990 [PubMed] Related Publications
BACKGROUND: Merkel cell carcinoma (MCC) is an aggressive skin cancer in which PD-1/PD-L1 blockade has shown remarkable response rates. However, a significant proportion of patients shows primary or secondary resistance against PD-1/PD-L1 inhibition, with HLA class-I downregulation and insufficient influx of CD8
CASE PRESENTATIONS: We report four cases of patients with metastatic MCC who did not respond to immunotherapy by PD-1/PD-L1 blockade. Two of the patients received, subsequently, the HDACi panobinostat in combination with PD-1/PD-L1 blockade. Tumor biopsies of the patients were analyzed for cellular and molecular markers of antigen processing and presentation as well as the degree of T-cell infiltration.
RESULTS AND CONCLUSION: Low expression of APM-related genes associated with low HLA class-I surface expression was observed in all MCC patients, progressing on PD-1/PD-L1 blockade. In one evaluable patient, of the two treated with the combination therapy of the HDACi, panobinostat and PD-1/PD-L1 blockade, reintroduction of HLA class-I-related genes, enhanced HLA class-I surface expression, and elevated CD8

Zhang X, Yin X, Zhang H, et al.
Differential expressions of PD-1, PD-L1 and PD-L2 between primary and metastatic sites in renal cell carcinoma.
BMC Cancer. 2019; 19(1):360 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In clinical practice, the detection of biomarkers is mostly based on primary tumors for its convenience in acquisition. However, immune checkpoints may express differently between primary and metastatic tumor. Therefore, we aimed to compare the differential expressions of PD-1, PD-L1 and PD-L2 between the primary and metastatic sites of renal cell carcinoma (RCC).
METHODS: Patients diagnosed with RCC by resection or fine needle aspiration of metastasis were included. Immunohistochemistry (IHC) was applied to detect PD-1, PD-L1 and PD-L2 expressions. SPSS 22.0 was applied to conduct Chi-square, consistency tests and Cox's proportional hazards regression models. GraphPad Prism 6 was used to plot survival curves and R software was used to calculate Predictive accuracy (PA).
RESULTS: In the whole cohort (N = 163), IHC results suggested a higher detection rate of PD-L1 in the metastasis than that of the primary site (χ2 = 4.66, p = 0.03), with a low consistent rate of 32.5%. Among different metastatic tumors, PD-1 was highly expressed in the lung/lymph node (65.3%) and poorly expressed in the brain (10.5%) and visceral metastases (12.5%). PD-L1 was highly expressed in lung/lymph node (37.5%) and the bone metastases (12.2%) on the contrary. In terms of survival analysis, patients with PD-1 expression either in the primary or metastasis had a shorter overall survival (OS) (HR: 1.59, 95% CI 1.08-2.36, p = 0.02). Also, PD-L1 expression in the primary was associated with a shorter OS (HR 2.55, 95% CI 1.06-6.15, p = 0.04). In the multivariate analysis, the predictive accuracy of the whole model for PFS was increased from 0.683 to 0.699 after adding PD-1.
CONCLUSION: PD-1, PD-L1 and PD-L2 were differentially expressed between primary and metastatic tumors. Histopathological examination of these immune check points in metastatic lesions of mRCC should be noticed, and its accurate diagnosis may be one of the effective ways to realize the individualized treatment.

Mu L, Yu W, Su H, et al.
Relationship between the expressions of PD-L1 and tumour-associated fibroblasts in gastric cancer.
Artif Cells Nanomed Biotechnol. 2019; 47(1):1036-1042 [PubMed] Related Publications
Previous studies have focused on the changes of tumour cells in immune escape, and less is known about the effect of tumour microenvironment (TME) on immune escape. Tumour-associated fibroblasts (TAF) is an important part of the TME and has special physiological and biochemical characteristics, but the specific mechanism has not been clarified. In order to investigate the effect of TAF on the expression of PD-L1 in gastric cancer cells, gastric cancer cell lines MNK45, SGC7901 were non-contact co-culturing with TAF 1, 3 and 7 d via transwell. PD-L1 mRNA and protein expression were detected using qRT-PCR and FCM. Then, 95 cases of gastric cancer tissues were selected and evaluated PD-L1 and TAF expressions by immunohistochemical examination. The results showed that the mRNA and protein expression of PD-L1 in the experiment group were significantly higher than that in the control group. PD-L1 expression was associated with massive lymphocyte infiltration, diffuse/mixed histology and intratumoral TAFs in gastric cancers. In conclusion, TAFs promoted the growth in gastric cancer cell lines by increased the PD-L1 expression.

Yan T, Cui H, Zhou Y, et al.
Multi-region sequencing unveils novel actionable targets and spatial heterogeneity in esophageal squamous cell carcinoma.
Nat Commun. 2019; 10(1):1670 [PubMed] Free Access to Full Article Related Publications
Esophageal squamous cell carcinoma (ESCC) ranks fourth among cancer-related deaths in China due to the lack of actionable molecules. We performed whole-exome and T-cell receptor (TCR) repertoire sequencing on multi-regional tumors, normal tissues and blood samples from 39 ESCC patients. The data revealed 12.8% of ERBB4 mutations at patient level and functional study supported its oncogenic role. 18% of patients with early BRCA1/2 variants were associated with high-level contribution of signature 3, which was validated in an independent large cohort (n = 508). Furthermore, knockdown of BRCA1/2 dramatically increased sensitivity to cisplatin in ESCC cells. 5% of patients harbored focal high-level amplification of CD274 that led to massive expression of PD-L1, and might be more sensitive to immune checkpoint blockade. Finally, we found a tight correlation between genomic and TCR repertoire intra-tumor heterogeneity (ITH). Collectively, we reveal high-level ITH in ESCC, identify several potential actionable targets and may provide novel insight into ESCC treatment.

Drapkin BJ, Farago AF
Unexpected Synergy Reveals New Therapeutic Strategy in SCLC.
Trends Pharmacol Sci. 2019; 40(5):295-297 [PubMed] Related Publications
DNA damage repair (DDR) inhibition and immune checkpoint blockade (ICB) have each individually shown modest clinical activity in small cell lung cancer (SCLC). Recently, Sen and colleagues (Cancer Discov. 2019;https://doi.org/10.1158/2159-8290.CD-18-1020) demonstrated that DDR inhibition can activate the stimulator of interferon genes (STING) innate immune pathway, providing strong rationale for combining DDR inhibition and ICB to treat SCLC.

Liu S, Han Z, Trivett AL, et al.
Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma.
Cancer Immunol Immunother. 2019; 68(7):1059-1071 [PubMed] Free Access to Full Article Related Publications
Lung cancer is currently the leading cause of cancer-related mortality with very limited effective therapy. Screening of a variety of traditional Chinese medicines (TCMs) for their capacity to inhibit the proliferation of human lung cancer A549 cells and to induce the in vitro maturation of human DCs led to the identification of cryptotanshinone (CT), a compound purified from the TCM Salvia miltiorrhiza Bunge. Here, CT was shown to inhibit the proliferation of mouse Lewis lung carcinoma (LLC) cells by upregulating p53, downregulating cyclin B1 and Cdc2, and, consequently, inducing G2/M cell-cycle arrest of LLC cells. In addition, CT promoted maturation of mouse and human DCs with upregulation of costimulatory and MHC molecules and stimulated DCs to produce TNFα, IL-1β, and IL-12p70, but not IL-10 in vitro. CT-induced maturation of DCs depended on MyD88 and also involved the activation of NF-κB, p38, and JNK. CT was effective in the treatment of LLC tumors and, when used in combination with low doses of anti-PD-L1, cured LLC-bearing mice with the induction of subsequent anti-LLC long-term specific immunity. CT treatment promoted T-cell infiltration and elevated the expression of genes typical of Th1 polarization in LLC tumor tissue. The therapeutic effect of CT and low doses of anti-PD-L1 was reduced by depletion of CD4 and CD8 T cells. This paper provides the first report that CT induces immunological antitumor activities and may provide a new promising antitumor immunotherapeutic.

Singal G, Miller PG, Agarwala V, et al.
Association of Patient Characteristics and Tumor Genomics With Clinical Outcomes Among Patients With Non-Small Cell Lung Cancer Using a Clinicogenomic Database.
JAMA. 2019; 321(14):1391-1399 [PubMed] Article available free on PMC after 09/10/2019 Related Publications
Importance: Data sets linking comprehensive genomic profiling (CGP) to clinical outcomes may accelerate precision medicine.
Objective: To assess whether a database that combines EHR-derived clinical data with CGP can identify and extend associations in non-small cell lung cancer (NSCLC).
Design, Setting, and Participants: Clinical data from EHRs were linked with CGP results for 28 998 patients from 275 US oncology practices. Among 4064 patients with NSCLC, exploratory associations between tumor genomics and patient characteristics with clinical outcomes were conducted, with data obtained between January 1, 2011, and January 1, 2018.
Exposures: Tumor CGP, including presence of a driver alteration (a pathogenic or likely pathogenic alteration in a gene shown to drive tumor growth); tumor mutation burden (TMB), defined as the number of mutations per megabase; and clinical characteristics gathered from EHRs.
Main Outcomes and Measures: Overall survival (OS), time receiving therapy, maximal therapy response (as documented by the treating physician in the EHR), and clinical benefit rate (fraction of patients with stable disease, partial response, or complete response) to therapy.
Results: Among 4064 patients with NSCLC (median age, 66.0 years; 51.9% female), 3183 (78.3%) had a history of smoking, 3153 (77.6%) had nonsquamous cancer, and 871 (21.4%) had an alteration in EGFR, ALK, or ROS1 (701 [17.2%] with EGFR, 128 [3.1%] with ALK, and 42 [1.0%] with ROS1 alterations). There were 1946 deaths in 7 years. For patients with a driver alteration, improved OS was observed among those treated with (n = 575) vs not treated with (n = 560) targeted therapies (median, 18.6 months [95% CI, 15.2-21.7] vs 11.4 months [95% CI, 9.7-12.5] from advanced diagnosis; P < .001). TMB (in mutations/Mb) was significantly higher among smokers vs nonsmokers (8.7 [IQR, 4.4-14.8] vs 2.6 [IQR, 1.7-5.2]; P < .001) and significantly lower among patients with vs without an alteration in EGFR (3.5 [IQR, 1.76-6.1] vs 7.8 [IQR, 3.5-13.9]; P < .001), ALK (2.1 [IQR, 0.9-4.0] vs 7.0 [IQR, 3.5-13.0]; P < .001), RET (4.6 [IQR, 1.7-8.7] vs 7.0 [IQR, 2.6-13.0]; P = .004), or ROS1 (4.0 [IQR, 1.2-9.6] vs 7.0 [IQR, 2.6-13.0]; P = .03). In patients treated with anti-PD-1/PD-L1 therapies (n = 1290, 31.7%), TMB of 20 or more was significantly associated with improved OS from therapy initiation (16.8 months [95% CI, 11.6-24.9] vs 8.5 months [95% CI, 7.6-9.7]; P < .001), longer time receiving therapy (7.8 months [95% CI, 5.5-11.1] vs 3.3 months [95% CI, 2.8-3.7]; P < .001), and increased clinical benefit rate (80.7% vs 56.7%; P < .001) vs TMB less than 20.
Conclusions and Relevance: Among patients with NSCLC included in a longitudinal database of clinical data linked to CGP results from routine care, exploratory analyses replicated previously described associations between clinical and genomic characteristics, between driver mutations and response to targeted therapy, and between TMB and response to immunotherapy. These findings demonstrate the feasibility of creating a clinicogenomic database derived from routine clinical experience and provide support for further research and discovery evaluating this approach in oncology.

Klein S, Mauch C, Wagener-Ryczek S, et al.
Immune-phenotyping of pleomorphic dermal sarcomas suggests this entity as a potential candidate for immunotherapy.
Cancer Immunol Immunother. 2019; 68(6):973-982 [PubMed] Related Publications
BACKGROUND: Pleomorphic dermal sarcomas (PDS) are sarcomas of the skin with local recurrences in up to 28% of cases, and distant metastases in up to 20%. Although recent evidence provides a strong rational to explore immunotherapeutics in solid tumors, nothing is known about the immune environment of PDS.
METHODS: In the current study, a comprehensive immune-phenotyping of 14 PDS using RNA and protein expression analyses, as well as quantitative assessment of immune cells using an image-analysis tool was performed.
RESULTS: Three out of 14 PDS revealed high levels of CD8-positive tumor-infiltrating T-lymphocytes (TILs), also showing elevated levels of immune-related cytokines such as IL1A, IL2, as well as markers that were very recently linked to enhanced response of immunotherapy in malignant melanoma, including CD27, and CD40L. Using a multivariate analysis, we found a number of differentially expressed genes in the CD8-high group including: CD74, LYZ and HLA-B, while the remaining cases revealed enhanced levels of immune-suppressive cytokines including CXCL14. The "CD8-high" PDS showed strong MHC-I expression and revealed infiltration by PD-L1-, PD-1- and LAG-3-expressing immune cells. Tumor-associated macrophages (TAMs) predominantly consisted of CD68 + , CD163 + , and CD204 + M2 macrophages showing an accentuation at the tumor invasion front.
CONCLUSIONS: Together, we provide first explorative evidence about the immune-environment of PDS tumors that may guide future decisions whether individuals presenting with advanced PDS could qualify for immunotherapeutic options.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD274, Cancer Genetics Web: http://www.cancer-genetics.org/CD274.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999