CAST

Gene Summary

Gene:CAST; calpastatin
Aliases: BS-17, PLACK
Location:5q15
Summary:The protein encoded by this gene is an endogenous calpain (calcium-dependent cysteine protease) inhibitor. It consists of an N-terminal domain L and four repetitive calpain-inhibition domains (domains 1-4), and it is involved in the proteolysis of amyloid precursor protein. The calpain/calpastatin system is involved in numerous membrane fusion events, such as neural vesicle exocytosis and platelet and red-cell aggregation. The encoded protein is also thought to affect the expression levels of genes encoding structural or regulatory proteins. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jun 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:calpastatin
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CAST (cancer-related)

Vo TM, Burchett R, Brun M, et al.
Effects of nuclear factor I phosphorylation on calpastatin (
J Biol Chem. 2019; 294(4):1173-1188 [PubMed] Free Access to Full Article Related Publications
Malignant glioma (MG) is the most lethal primary brain tumor. In addition to having inherent resistance to radiation treatment and chemotherapy, MG cells are highly infiltrative, rendering focal therapies ineffective. Genes involved in MG cell migration and glial cell differentiation are up-regulated by hypophosphorylated nuclear factor I (NFI), which is dephosphorylated by the phosphatase calcineurin in MG cells. Calcineurin is cleaved and thereby activated by calpain proteases, which are, in turn, inhibited by calpastatin (CAST). Here, we show that the

Das R, Feng FY, Selth LA
Long non-coding RNAs in prostate cancer: Biological and clinical implications.
Mol Cell Endocrinol. 2019; 480:142-152 [PubMed] Related Publications
Prostate cancer (PCa) is a major health issue in the Western world. Current clinical imperatives for this disease include better stratification of indolent versus aggressive disease to enable improved patient management, as well as the identification of more effective therapies for the prevention and treatment of metastatic and therapy-resistant PCa. The advent of next-generation transcriptomics led to the identification of an important class of molecules, long non-coding RNAs (lncRNAs). LncRNAs have critical functions in normal physiology, but their dysregulation has also been implicated in the development and progression of a variety of cancers, including PCa. Importantly, a subset of lncRNAs are highly prostate-specific, suggesting potential for utility as both biomarkers and therapeutic targets. In this review, we summarise the biology of lncRNAs and their mechanisms of action in the development and progression of prostate cancer. Additionally, we cast a critical eye over the potential for this class of molecules to impact on clinical practice.

Ren XY, Wen X, Li YQ, et al.
TIPE3 hypermethylation correlates with worse prognosis and promotes tumor progression in nasopharyngeal carcinoma.
J Exp Clin Cancer Res. 2018; 37(1):227 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Increasing evidence recognizes that DNA methylation abnormalities play critical roles in cancer development. Our previous genome-wide methylation profile showed that tumor necrosis factor-alpha-induced protein 8 like 3 (TIPE3) was hypermethylated in nasopharyngeal carcinoma (NPC). However, the relationship between TIPE3 methylation and its mRNA expression, as well as its biological roles in NPC are unknown.
METHODS: Bisulfite pyrosequencing and quantitative RT-PCR were performed to quantify the TIPE3 methylation and expression levels. Kaplan-Meier curves and Cox regression analysis were used to estimate the correlation between TIPE3 methylation levels and survival in two patient cohorts collected from two hospitals (n = 441). The MTT, colony formation, Transwell migration and invasion assays, and xenograft tumor growth and lung metastatic colonization models were used to identify the functions of TIPE3 on NPC cells.
RESULTS: We found that TIPE3 CpG island (CGI) was hypermethylated and its mRNA levels were downregulated in many cancers, including NPC. TIPE3 downregulation was associated with its CGI hypermethylation. Furthermore, NPC patients with high TIPE3 CGI methylation levels had poorer clinical outcomes than those with low methylation levels. The TIPE3 CGI methylation level was an independent prognostic factor. Moreover, restoring TIPE3 expression significantly inhibited NPC cell proliferation, migration and invasion in vitro, and suppressed tumor growth and lung metastatic colonization in vivo, while silencing TIPE3 acted in an opposite way.
CONCLUSIONS: TIPE3 downregulation correlates with its CGI hypermethylation in several solid cancers. TIPE3 acts as a tumor suppressor in NPC, providing a further insight into NPC progression and representing a potential prognostic biomarker for NPC.

D'Souza AM, Jiang Y, Cast A, et al.
Gankyrin Promotes Tumor-Suppressor Protein Degradation to Drive Hepatocyte Proliferation.
Cell Mol Gastroenterol Hepatol. 2018; 6(3):239-255 [PubMed] Free Access to Full Article Related Publications
Background & Aims: Uncontrolled liver proliferation is a key characteristic of liver cancer; however, the mechanisms by which this occurs are not well understood. Elucidation of these mechanisms is necessary for the development of better therapy. The oncogene Gankyrin (Gank) is overexpressed in both hepatocellular carcinoma and hepatoblastoma. The aim of this work was to determine the role of Gank in liver proliferation and elucidate the mechanism by which Gank promotes liver proliferation.
Methods: We generated Gank liver-specific knock-out (GLKO) mice and examined liver biology and proliferation after surgical resection and liver injury.
Results: Global profiling of gene expression in GLKO mice showed significant changes in pathways involved in liver cancer and proliferation. Investigations of liver proliferation after partial hepatectomy and CCl
Conclusions: These studies show that Gank promotes hepatocyte proliferation by elimination of TSPs. This work provides background for the development of Gank-mediated therapy for the treatment of liver cancer. RNA sequencing data can be accessed in the NCBI Gene Expression Omnibus: GSE104395.

Zhenjiang L, Rao M, Luo X, et al.
Cytokine Networks and Survivin Peptide-Specific Cellular Immune Responses Predict Improved Survival in Patients With Glioblastoma Multiforme.
EBioMedicine. 2018; 33:49-56 [PubMed] Free Access to Full Article Related Publications
PURPOSE: We investigated serum cytokine and T-cell responses directed against tumour-associated antigens (TAAs) in association with survival of patients with glioblastoma multiforme (GBM).
PATIENTS AND METHODS: Peripheral blood from 205 treatment-naïve patients with glioma (GBM = 145; non-GBM = 60) was obtained on the day of surgery to measure (i) circulating T-cells reacting to viral antigens and TAAs, in the presence or absence of cytokine conditioning with IL-2/IL-15/IL-21 or IL-2/IL-7, and (ii) serum cytokine levels (IL-4, IL-5, IL-6, TNF-α, IFN-γ and IL-17A). Patients were followed-up for at least 1000 days post-surgery. Survivin protein and gene expression in resected GBM tumour tissue were confirmed by immunohistochemistry and real-time polymerase chain reaction, respectively. Antigen-specific T-cell responses were gauged by ICS (intracellular cytokine production). Associations between patient survival and immunological reactivity patterns were analysed using univariate and multivariate statistics.
RESULTS: Approximately 2% of patients with GBM and 18% of patients with non-GBM glioma, were alive beyond 1000 days of surgery. Univariate analysis indicated that the combination of three cytokines (IL-4/IL-5/IL-6, p = .0022; IFN-γ/TNF-α/IL-17A, p = .0083) but not a 'partial' combination of these cytokines, the IFN-γ immune response to EBV-EBNA-1 (p < .0001) as well as T-cell responses to the survivin
CONCLUSION: Serum cytokine patterns and lymphocyte reactivity to survivin

Murray D, Mirzayans R, McBride WH
Defenses against Pro-oxidant Forces - Maintenance of Cellular and Genomic Integrity and Longevity.
Radiat Res. 2018; 190(4):331-349 [PubMed] Free Access to Full Article Related Publications
There has been enormous recent progress in understanding how human cells respond to oxidative stress, such as that caused by exposure to ionizing radiation. We have witnessed a significant deciphering of the events that underlie how antioxidant responses counter pro-oxidant damage to key biological targets in all cellular compartments, including the genome and mitochondria. These cytoprotective responses include: 1. The basal cellular repertoire of antioxidant capabilities and its supporting cast of facilitator enzymes; and 2. The inducible phase of the antioxidant response, notably that mediated by the Nrf2 transcription factor. There has also been frenetic progress in defining how reactive electrophilic species swamp existing protective mechanisms to augment DNA damage, events that are embodied in the cellular "DNA-damage response", including cell cycle checkpoint activation and DNA repair, which occur on a time scale of hours to days, as well as the implementation of cellular responses such as apoptosis, autophagy, senescence and reprograming that extend the time period of damage sensing and response into weeks, months and years. It has become apparent that, in addition to the initial oxidative insult, cells typically undergo further waves of secondary reactive oxygen/nitrogen species generation, DNA damage and signaling and that these may reemerge long after the initial events have subsided, probably being driven, at least in part, by persisting DNA damage. These reactive oxygen/nitrogen species are an integral part of the pathological consequences of radiation exposure and may persist across multiple cell divisions. Because of the pervasive nature of oxidative stress, a cell will manifest different responses in different subcellular compartments and to different levels of stress injury. Aspects of these compartmentalized responses can involve the same proteins (such as ATM, p53 and p21) but in different functional guises, e.g., in cytoplasmic versus nuclear responses or in early- versus late-phase events. Many of these responses involve gene activation and new protein synthesis as well as a plethora of post-translational modifications of both basal and induced response proteins. It is these responses that we focus on in this review.

Giardina T, Robinson C, Grieu-Iacopetta F, et al.
Implementation of next generation sequencing technology for somatic mutation detection in routine laboratory practice.
Pathology. 2018; 50(4):389-401 [PubMed] Related Publications
The introduction of next generation sequencing (NGS) in the routine diagnostic setting is still in the development phase and has been limited by its complexity. Targeted NGS offers an attractive alternative to performing multiple single target assays and is very useful in meeting the increasing clinical demand for testing of multiple genetic aberrations in cancer specimens. To this end, we carried out a blinded validation study on 113 tumours in a diagnostic laboratory and compared mutation results from targeted NGS with those from Sanger sequencing, pyrosequencing, competitive allele specific TaqMan polymerase chain reaction (CAST PCR) and Cobas assays. DNA was extracted from formalin fixed, paraffin embedded (FFPE) tissue samples that included core biopsies, resections and cytology samples from three common and one rare cancer types [non-small cell lung cancer (NSCLC), colorectal cancer (CRC), malignant melanoma (MM) and gastrointestinal stromal tumour (GIST)]. Libraries were prepared using the TruSight Tumour 26 gene panel and NGS was carried out on the MiSeq instrument. Results from NGS were concordant with the mutational status determined by other platforms in 107 of the 113 cases tested (94.7%). The sequencing quality for NGS failed in four of the six false negative cases, while a further two samples gave false negative results because the c-KIT mutations were located outside the range of the NGS panel. One NSCLC sample contained an EGFR mutation previously detected by the Cobas assay. Reanalysis of the NGS data for this sample using a cut-off allele frequency of 1% revealed the mutation had an allele frequency of 2%, which was below the recommended software-determined threshold of 3%. NGS detected 113 additional mutations that were not previously known from analysis by the conventional methods. Twenty-six of these have known clinical importance, 37 have potential clinical significance, while 50 were novel mutations with unknown clinical significance. NGS detected variants using inputs of 10-20 ng of FFPE extracted DNA and from specimens with a tumour cell content less than 50%, for which when possible we recommend microdissection. We conclude that results from targeted NGS are highly concordant with those from other mutation testing platforms. Targeted NGS is suitable for a range of sample types received in the diagnostic pathology laboratory, including those with limited material or with low tumour cell content (TCC). This work has allowed us to determine the quality parameter settings required in order to obtain robust mutation data by NGS.

Evans DG, Howell SJ, Howell A
Personalized prevention in high risk individuals: Managing hormones and beyond.
Breast. 2018; 39:139-147 [PubMed] Related Publications
Increasing numbers of women are being identified at 'high-risk' of breast cancer, defined by The National Institute of Health and Care Excellence (NICE) as a 10-year risk of ≥8%. Classically women have been so identified through family history based risk algorithms or genetic testing of high-risk genes. Recent research has shown that assessment of mammographic density and single nucleotide polymorphisms (SNPs), when combined with established risk factors, trebles the number of women reaching the high risk threshold. The options for risk reduction in such women include endocrine chemoprevention with the selective estrogen receptor modulators tamoxifen and raloxifene or the aromatase inhibitors anastrozole or exemestane. NICE recommends offering anastrozole to postmenopausal women at high-risk of breast cancer as cost effectiveness analysis showed this to be cost saving to the National Health Service. Overall uptake to chemoprevention has been disappointingly low but this may improve with the improved efficacy of aromatase inhibitors, particularly the lack of toxicity to the endometrium and thrombogenic risks. Novel approaches to chemoprevention under investigation include lower dose and topical tamoxifen, denosumab, anti-progestins and metformin. Although oophorectomy is usually only recommended to women at increased risk of ovarian cancer it has been shown in numerous studies to reduce breast cancer risks in the general population and in those with mutations in BRCA1/2. However, recent evidence from studies that have confined analysis to true prospective follow up have cast doubt on the efficacy of oophorectomy to reduce breast cancer risk in BRCA1 mutation carriers, at least in the short-term.

Dai X, Guo G, Zou P, et al.
(S)-crizotinib induces apoptosis in human non-small cell lung cancer cells by activating ROS independent of MTH1.
J Exp Clin Cancer Res. 2017; 36(1):120 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for approximately 80-85% of all lung cancers and is usually diagnosed at an advanced stage with poor prognosis. Targeted therapy has produced unprecedented outcomes in patients with NSCLC as a number of oncogenic drivers have been found. Crizotinib, a selective small-molecule inhibitor, has been widely used for the treatment of NSCLC patients with ALK gene rearrangements. A recent study has also shown that (S)-enantiomer of crizotinib exhibits anticancer activity by targeting the protein mutT homologue (MTH1). Since this discovery, contradictory studies have cast a doubt on MTH1 as a therapeutic target of (S)-crizotinib.
METHODS: NCI-H460, H1975, and A549 cells and immunodeficient mice were chosen as a model to study the (S)-crizotinib treatment. The changes induced by (S)-crizotinib treatment in cell viability, apoptosis as well as ROS, and endoplasmic reticulum stress pathway in the cells were analyzed by MTT assay, FACSCalibur, Western blotting, ROS imaging and electron microscopy.
RESULTS: Here, we report that MTH1 does not affect survival of NSCLC cells. We found that (S)-crizotinib induces lethal endoplasmic reticulum stress (ER) response in cultured NSCLC cells by increasing intracellular levels of reactive oxygen species (ROS). Blockage of ROS production markedly reversed (S)-crizotinib-induced ER stress and cell apoptosis, independent of MTH1. We confirmed these findings in NSCLC xenograft studies and showed that (S)-crizotinib-induced ER stress and cell apoptosis.
CONCLUSIONS: Our results reveal a novel antitumor mechanism of (S)-crizotinib in NSCLC which involves activation of ROS-dependent ER stress apoptotic pathway and is independent of MTH1 inhibition.

Zhang Y, Zhu C, Sun B, et al.
Integrated High Throughput Analysis Identifies GSK3 as a Crucial Determinant of p53-Mediated Apoptosis in Lung Cancer Cells.
Cell Physiol Biochem. 2017; 42(3):1177-1191 [PubMed] Related Publications
BACKGROUND/AIMS: p53 dysfunction is frequently observed in lung cancer. Although restoring the tumour suppressor function of p53 is recently approved as a putative strategy for combating cancers, the lack of understanding of the molecular mechanism underlying p53-mediated lung cancer suppression has limited the application of p53-based therapies in lung cancer.
METHODS AND RESULTS: Using RNA sequencing, we determined the transcriptional profile of human non-small cell lung carcinoma A549 cells after treatment with two p53-activating chemical compounds, nutlin and RITA, which could induce A549 cell cycle arrest and apoptosis, respectively. Bioinformatics analysis of genome-wide gene expression data showed that distinct transcription profiles were induced by nutlin and RITA and 66 pathways were differentially regulated by these two compounds. However, only two of these pathways, 'Adherens junction' and 'Axon guidance', were found to be synthetic lethal with p53 re-activation, as determined via integrated analysis of genome-wide gene expression profile and short hairpin RNA (shRNA) screening. Further functional protein association analysis of significantly regulated genes associated with these two synthetic lethal pathways indicated that GSK3 played a key role in p53-mediated A549 cell apoptosis, and then gene function study was performed, which revealed that GSK3 inhibition promoted p53-mediated A549 cell apoptosis in a p53 post-translational activity-dependent manner.
CONCLUSION: Our findings provide us with new insights regarding the mechanism by which p53 mediates A549 apoptosis and may cast light on the development of more efficient p53-based strategies for treating lung cancer.

Lewis K, Valanejad L, Cast A, et al.
RNA Binding Protein CUGBP1 Inhibits Liver Cancer in a Phosphorylation-Dependent Manner.
Mol Cell Biol. 2017; 37(16) [PubMed] Free Access to Full Article Related Publications
Despite intensive investigations, mechanisms of liver cancer are not known. Here, we identified an important step of liver cancer, which is the neutralization of tumor suppressor activities of an RNA binding protein, CUGBP1. The translational activity of CUGBP1 is activated by dephosphorylation at Ser302. We generated CUGBP1-S302A knock-in mice and found that the reduction of translational activity of CUGBP1 causes development of a fatty liver phenotype in young S302A mice. Examination of liver cancer in diethylnitrosamine (DEN)-treated CUGBP1-S302A mice showed these mice develop much more severe liver cancer that is associated with elimination of the mutant CUGBP1. Searching for mechanisms of this elimination, we found that the oncoprotein gankyrin (Gank) preferentially binds to and triggers degradation of dephosphorylated CUGBP1 (de-ph-S302-CUGBP1) or S302A mutant CUGBP1. To test the role of Gank in degradation of CUGBP1, we generated mice with liver-specific deletion of Gank. In these mice, the tumor suppressor isoform of CUGBP1 is protected from Gank-mediated degradation. Consistent with reduction of CUGBP1 in animal models, CUGBP1 is reduced in patients with pediatric liver cancer. Thus, this work presents evidence that de-ph-S302-CUGBP1 is a tumor suppressor protein and that the Gank-UPS-mediated reduction of CUGBP1 is a key event in the development of liver cancer.

Genchi GG, Sinibaldi E, Ceseracciu L, et al.
Ultrasound-activated piezoelectric P(VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells.
Nanomedicine. 2018; 14(7):2421-2432 [PubMed] Related Publications
Piezoelectric films of poly(vinylidenedifluoride-trifluoroethylene) (P(VDF-TrFE)) and of P(VDF-TrFE)/boron nitride nanotubes (BNNTs) were prepared by cast-annealing and used for SaOS-2 osteoblast-like cell culture. Films were characterized in terms of surface and bulk features, and composite films demonstrated enhanced piezoresponse compared to plain polymeric films (d

Guadagni S, Fiorentini G, Clementi M, et al.
MGMT methylation correlates with melphalan pelvic perfusion survival in stage III melanoma patients: a pilot study.
Melanoma Res. 2017; 27(5):439-447 [PubMed] Free Access to Full Article Related Publications
Approximately 25% of melanoma patients with locoregional metastases are nonresponsive to new molecular target therapy and immunotherapy. When metastases are located in the pelvis, melphalan hypoxic perfusion can be an optional treatment. Because methylation of MGMT promoter increases the efficacy of alkylating agents, studies on melanoma outcome of patients treated with melphalan regional chemotherapy should consider this epigenetic change. This study aims to evaluate whether the survival of stage III melanoma patients treated with melphalan regional chemotherapy may be correlated with MGMT methylation status. The metastatic tissues of 27 stage III melanoma patients with locoregional metastases located in the pelvis subjected to melphalan hypoxic pelvic perfusion were examined. The methylation status of the MGMT promoter was investigated by MS-MLPA probes analysis and the presence of the BRAF V600E mutation was analyzed by CAST-PCR. The median survival times were estimated using the Kaplan-Meier curves and were stratified according to the clinicopathological characteristics of patients and lesions. The overall median survival time was 17 months. The 1-year, 3-year, and 5-year survival rates were 66.7, 18.5, and 7.4%, respectively. Disease stage, burden, and percentage of MGMT methylation significantly affected survival. We estimated an MGMT promoter methylation cut-off of at least 14%, which was significantly associated with a longer survival after melphalan regional chemotherapy. Our data suggest that MGMT promoter methylation could be an important factor in determining which melanoma patients should receive melphalan regional chemotherapy, but its prognostic significance in the routine clinical setting needs to be clarified in a larger study.

Hu W, Yang Y, Zhang L, et al.
Post surgery circulating free tumor DNA is a predictive biomarker for relapse of lung cancer.
Cancer Med. 2017; 6(5):962-974 [PubMed] Free Access to Full Article Related Publications
Cancer cells release DNA fragments into plasma as circulating free DNA (cfDNA). However, quantitative measurement of tumor-derived DNA in cfDNA remains challenge. The purpose of this study was to quantitatively assess tumor-derived DNA in lung cancer patients. By optimizing competitive allele-specific TaqMan PCR (CAST-PCR), we assessed the copy number of mutated Kirsten rat sarcoma viral oncogene homolog (KRAS) and epidermal growth factor receptor (EGFR) alleles in the pre/post surgery plasma of 168 lung cancer patients. An absolute quantitative PCR method was developed to assess the number of total cfDNA. All mutations detected in tumors were also found in the plasma after surgery. At the time of 30 days after surgery, EGFR mutation of circulating cell-free DNA was detected only in two patients who recurred in 4 months after surgery. Compared to that of normal control at 30 days after surgery, five patients who recurred in 4 months had significantly higher circulating cell-free DNA (P < 0.001), whereas six patients who recurred after 4 months (P = 0.207) and five patients without recurrence (P = 0.901) demonstrated significantly lower circulating cell-free DNA. Our findings suggest that cfDNA analysis in plasma is an alternative and supplement to tissue analysis and hold promise for clinical application. Stratification of patients according to cfDNA levels at 30 days after surgery might be helpful in selecting lung cancer patients for adjuvant therapy after surgery.

Hall LL, Byron M, Carone DM, et al.
Demethylated HSATII DNA and HSATII RNA Foci Sequester PRC1 and MeCP2 into Cancer-Specific Nuclear Bodies.
Cell Rep. 2017; 18(12):2943-2956 [PubMed] Free Access to Full Article Related Publications
This study reveals that high-copy satellite II (HSATII) sequences in the human genome can bind and impact distribution of chromatin regulatory proteins and that this goes awry in cancer. In many cancers, master regulatory proteins form two types of cancer-specific nuclear bodies, caused by locus-specific deregulation of HSATII. DNA demethylation at the 1q12 mega-satellite, common in cancer, causes PRC1 aggregation into prominent Cancer-Associated Polycomb (CAP) bodies. These loci remain silent, whereas HSATII loci with reduced PRC1 become derepressed, reflecting imbalanced distribution of UbH2A on these and other PcG-regulated loci. Large nuclear foci of HSATII RNA form and sequester copious MeCP2 into Cancer-Associated Satellite Transcript (CAST) bodies. Hence, HSATII DNA and RNA have an exceptional capacity to act as molecular sponges and sequester chromatin regulatory proteins into abnormal nuclear bodies in cancer. The compartmentalization of regulatory proteins within nuclear structure, triggered by demethylation of "junk" repeats, raises the possibility that this contributes to further compromise of the epigenome and neoplastic progression.

Graham NA, Minasyan A, Lomova A, et al.
Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures.
Mol Syst Biol. 2017; 13(2):914 [PubMed] Free Access to Full Article Related Publications
Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including

Misra S, Selvam AK, Wallenberg M, et al.
Selenite promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells.
Oncotarget. 2016; 7(46):74686-74700 [PubMed] Free Access to Full Article Related Publications
Selective targeting of the PML/RARα oncoprotein demonstrates a successful molecular targeted therapy in acute promyelocytic leukemia (APL) with a typical t(15:17) chromosomal translocation. The zinc-thiolate coordination is critical for structural stability of zinc finger proteins, including the PML moiety of PML/RARα. Based on the known interaction of redox-active selenium compounds with thiolate ligands of zinc, we herein have investigated the abrogatory effects of selenite alone or in combination with all-trans retinoic acid on PML/RARα and the possible effects on differentiation in these cells. At pharmacological concentrations, selenite inhibited the proliferation and survival of APL originated NB4 cells. In combination with ATRA, it potentiated the differentiation of NB4 cells without any differentiating effects of its own as a single agent. Concordant with our hypothesis, PML/RARα oncoprotein expression was completely abrogated by selenite. Increased expression of RARα, PU.1 and FOXO3A transcription factors in the combined treatment suggested the plausible basis for increased differentiation in these cells. We show that selenite at clinically achievable dose targets PML/RARα oncoprotein for degradation and potentiates differentiation of promyelocytic leukemic cells in combination with ATRA. The present investigation reveals the hitherto unknown potential of selenite in targeted abrogation of PML/RARα in APL cells with prospective therapeutic value.

Starska K, Forma E, Jóźwiak P, et al.
Gene/protein expression of CAPN1/2-CAST system members is associated with ERK1/2 kinases activity as well as progression and clinical outcome in human laryngeal cancer.
Tumour Biol. 2016; 37(10):13185-13203 [PubMed] Related Publications
Recent evidence indicates the involvement of calpains (CAPNs), a family of cysteine proteases, in cancer development and progression, as well as the insufficient response to cancer therapies. The contribution of CAPNs and regulatory calpastatin (CAST) and ERK1/2 kinases to aggressiveness, disease course, and outcome in laryngeal cancer remains elusive. This study was aimed to evaluate the CAPN1/2-CAST-ERK1/2 enzyme system mRNA/protein level and to investigate whether they can promote the dynamic of tumor growth and prognosis. The mRNA expression of marker genes was determined in 106 laryngeal cancer (SCLC) cases and 73 non-cancerous adjacent mucosa (NCLM) controls using quantitative real-time PCR. The level of corresponding proteins was analyzed by Western Blot. SLUG expression, as indicator of pathological advancement was determined using IHC staining. Significant increases of CAPN1/2-CAST-ERK1/2 levels of mRNA/protein were noted in SCLC compared to NCLM (p < 0.05). As a result, a higher level of CAPN1 and ERK1 genes was related to larger tumor size, more aggressive and deeper growth according to TFG scale and SLUG level (p < 0.05). There were also relationships of CAPN1/2 and ERK1 with incidences of local/nodal recurrences (p < 0.05). An inverse association for CAPN1/2, CAST, and ERK1/2 transcripts was determined with regard to overall survival (p < 0.05). In addition, a higher CAPN1 and phospho-ERK1 protein level was related to higher grade and stage (p < 0.05) and was found to promote worse prognosis. This is the first study to show that activity of CAPN1/2- CAST-ERK1/2 axis may be an indicator of tumor phenotype and unfavorable outcome in SCLC.

Maguire O, Chen GL, Hahn TE, et al.
Quantifying MHC dextramer-induced NFAT activation in antigen-specific T cells as a functional response parameter.
Methods. 2017; 112:75-83 [PubMed] Free Access to Full Article Related Publications
MHC-multimers are reagents used for the detection and enumeration of antigen-specific T cells (ASTs). These reagents exploit the mechanism by which T cell receptors (TCR) on cytotoxic CD8 T cells recognize specific antigens in the context of a major histocompatibility complex (MHC) molecule during antigen presentation. MHC-multimers are fluorescently-labeled dextran polymers that carry MHC Class I molecules and peptide sequences that can be modified to represent specific cognate sequences of the antigen of interest with dextramers having a 10-fold multiplicity of the MHC/peptide combination within a single multimer. Since the binding of antigen-specific dextramers mimics antigen presentation to the TCR, the present study sought to determine whether this TCR engagement on the AST was sufficient to elicit a functional T cell response. The effect of binding of CMV specific dextramers on the activation of the NFAT signal transduction cascade was assessed in peripheral blood from bone marrow transplant recipients previously determined to be positive for CMV-ASTs (CASTs). NFAT activation was quantified by measuring nuclear translocation of NFAT1 in CD8+ CASTs and CD8+ non-CASTs by imaging flow cytometry. Our results demonstrate that an increase in the nuclear localization of NFAT1 was detectable in the CASTs following the CMV-dextramer binding and could be observed as early as 10min post-exposure. The NFAT1 activation correlated with a downstream functional response in the form of interferon gamma production. Sample preparation, temperature, and duration of dextramer exposure were important parameters affecting the dextramer-induced NFAT activation with 2h exposure in whole blood at room temperature being the optimal of the conditions tested. Intra- and inter-individual heterogeneity was observed with regards to the NFAT activation in the CASTs. Importantly, no effect of the dextramers was observed in the CD8+ non-CASTs, and therefore dextramer negative cell populations. Exposure to PMA/ionomycin following dextramer exposure resulted in a homogeneous NFAT activation in both the dextramer-positive but NFAT1 nonresponsive CAST and non-CAST cells. Thus, the data demonstrate that binding of antigen-specific dextramers to ASTs specifically results in activation of NFAT, that the NFAT activation correlates with a downstream functional response and that the response can be heterogeneous. This functional parameter may provide insight to the issue whether enumeration alone of ASTs is a sufficient parameter to assess an individual's immune status against a specific antigen.

Fang J, Liu X, Bolanos L, et al.
A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes.
Nat Med. 2016; 22(7):727-34 [PubMed] Free Access to Full Article Related Publications
Despite the high response rates of individuals with myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)) to treatment with lenalidomide (LEN) and the recent identification of cereblon (CRBN) as the molecular target of LEN, the cellular mechanism by which LEN eliminates MDS clones remains elusive. Here we performed an RNA interference screen to delineate gene regulatory networks that mediate LEN responsiveness in an MDS cell line, MDSL. We identified GPR68, which encodes a G-protein-coupled receptor that has been implicated in calcium metabolism, as the top candidate gene for modulating sensitivity to LEN. LEN induced GPR68 expression via IKAROS family zinc finger 1 (IKZF1), resulting in increased cytosolic calcium levels and activation of a calcium-dependent calpain, CAPN1, which were requisite steps for induction of apoptosis in MDS cells and in acute myeloid leukemia (AML) cells. In contrast, deletion of GPR68 or inhibition of calcium and calpain activation suppressed LEN-induced cytotoxicity. Moreover, expression of calpastatin (CAST), an endogenous CAPN1 inhibitor that is encoded by a gene (CAST) deleted in del(5q) MDS, correlated with LEN responsiveness in patients with del(5q) MDS. Depletion of CAST restored responsiveness of LEN-resistant non-del(5q) MDS cells and AML cells, providing an explanation for the superior responses of patients with del(5q) MDS to LEN treatment. Our study describes a cellular mechanism by which LEN, acting through CRBN and IKZF1, has cytotoxic effects in MDS and AML that depend on a calcium- and calpain-dependent pathway.

Lara-Padilla E, Miliar-Garcia A, Gomez-Lopez M, et al.
Neural Transdifferentiation: MAPTau Gene Expression in Breast Cancer Cells.
Asian Pac J Cancer Prev. 2016; 17(4):1967-71 [PubMed] Related Publications
BACKGROUND: In tumor cells, aberrant differentiation programs have been described. Several neuronal proteins have been found associated with morphological neuronal-glial changes in breast cancer (BCa). These neuronal proteins have been related to mechanisms that are involved in carcinogenesis; however, this regulation is not well understood. Microtubule-associated protein-tau (MAP-Tau) has been describing in BCa but not its variants. This finding could partly explain the neuronal-glial morphology of BCa cells. Our aim was to determine mRNA expression of MAP-tau variants 2, 4 and 6 in breast cancer cell lines.
MATERIALS AND METHODS: Cultured cell lines MCF-10A, MDA-MB-231, SKBR3 and T47D were observed under phase-contrast microscopy for neural morphology and analyzed for gene expression of MAP-Tau transcript variants 2, 4 and 6 by real-time PCR.
RESULTS: Regarding morphology like neural/glial cells, T47D line shown more cells with these features than MDA-MB-231 and SKBR. In another hand, we found much greater mRNA expression of MAP-Tau transcript variants 2, and to a lesser extent 4 and 6, in T47D cells than the other lines. In conclusion, regulation of MAP- Tau could bring about changes in cytoskeleton, cell morphology and motility; these findings cast further light on neuronal transdifferentiation in BCa.

Isaacs JS
Hsp90 as a "Chaperone" of the Epigenome: Insights and Opportunities for Cancer Therapy.
Adv Cancer Res. 2016; 129:107-40 [PubMed] Related Publications
The cellular functions of Hsp90 have historically been attributed to its ability to chaperone client proteins involved in signal transduction. Although numerous stimuli and the signaling cascades they activate contribute to cancer progression, many of these pathways ultimately require transcriptional effectors to elicit tumor-promoting effects. Despite this obvious connection, the majority of studies evaluating Hsp90 function in malignancy have focused upon its regulation of cytosolic client proteins, and particularly members of receptor and/or kinase families. However, in recent years, Hsp90 has emerged as a pivotal orchestrator of nuclear events. Discovery of an expanding repertoire of Hsp90 clients has illuminated a vital role for Hsp90 in overseeing nuclear events and influencing gene transcription. Hence, this chapter will cast a spotlight upon several regulatory themes involving Hsp90-dependent nuclear functions. Highlighted topics include a summary of chaperone-dependent regulation of key transcription factors (TFs) and epigenetic effectors in malignancy, as well as a discussion of how the complex interplay among a subset of these TFs and epigenetic regulators may generate feed-forward loops that further support cancer progression. This chapter will also highlight less recognized indirect mechanisms whereby Hsp90-supported signaling may impinge upon epigenetic regulation. Finally, the relevance of these nuclear events is discussed within the framework of Hsp90's capacity to enable phenotypic variation and drug resistance. These newly acquired insights expanding our understanding of Hsp90 function support the collective notion that nuclear clients are major beneficiaries of Hsp90 action, and their impairment is likely responsible for many of the anticancer effects elicited by Hsp90-targeted approaches.

Kierulf-Vieira KS, Sandberg CJ, Grieg Z, et al.
Wnt inhibition is dysregulated in gliomas and its re-establishment inhibits proliferation and tumor sphere formation.
Exp Cell Res. 2016; 340(1):53-61 [PubMed] Related Publications
Evidence indicates that the growth of glioblastoma (GBM), the most common and malignant primary brain cancer, is driven by glioma stem cells (GSCs) resistant to current treatment. As Wnt-signaling is pivotal in stem cell maintenance, we wanted to explore its role in GSCs with the objective of finding distinct signaling mechanisms that could serve as potential therapeutic targets. We compared gene expression in GSCs (n=9) and neural stem cells from the adult human brain (ahNSC; n=3) to identify dysregulated genes in the Wnt signaling pathway. This identified a six-gene Wnt signature present in all nine primary GSC cultures, and the combined expression of three of these genes (SFRP1, SFRP4 and FZD7) reduced median survival of glioma patients from 38 to 17 months. Treatment with recombinant SFRP1 protein in primary cell cultures downregulated nuclear β-catenin and decreased in vitro proliferation and sphere formation in a dose-dependent manner. Furthermore, expressional and functional analysis of SFRP1-treated GSCs revealed that SFRP1 halts cell cycling and induces apoptosis. These observations demonstrate that Wnt signaling is dysregulated in GSC, and that inhibition of the Wnt pathway could serve as a therapeutic strategy in the treatment of GBM.

Barbano R, Pasculli B, Coco M, et al.
Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients.
Sci Rep. 2015; 5:18592 [PubMed] Free Access to Full Article Related Publications
BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients' samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAF(V600E) and BRAF(V600K) mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method.

Kinomura M, Shimada N, Nishikawa M, et al.
Parathyroid Hormone-related Peptide-producing Multiple Myeloma and Renal Impairment.
Intern Med. 2015; 54(23):3029-33 [PubMed] Related Publications
A 68-year-old man was hospitalized and examined for renal impairment. A laboratory analysis showed hypercalcemia. Although the serum parathyroid hormone and serum 1-25(OH)2 vitamin D3 levels were not elevated, the serum parathyroid hormone-related peptide (PTHrP) level was increased. Immunoelectrophoresis of the urine and bone marrow aspiration indicated multiple myeloma (MM). He was diagnosed with the coexistence of cast nephropathy and light chain deposition disease by a renal biopsy. Notably, PTHrP expression was detected in the myeloma cells based on immunohistochemistry and in situ hybridization. It is therefore important to examine the PTHrP concentration in MM patients with hypercalcemia.

Eng KH, Schiller E, Morrell K
On representing the prognostic value of continuous gene expression biomarkers with the restricted mean survival curve.
Oncotarget. 2015; 6(34):36308-18 [PubMed] Free Access to Full Article Related Publications
MOTIVATION: Researchers developing biomarkers for cancer prognosis from quantitative gene expression data are often faced with an odd methodological discrepancy: while Cox's proportional hazards model, the appropriate and popular technique, produces a continuous and relative risk score, it is hard to cast the estimate in clear clinical terms like median months of survival and percent of patients affected. To produce a familiar Kaplan-Meier plot, researchers commonly make the decision to dichotomize a continuous (often unimodal and symmetric) score. It is well known in the statistical literature that this procedure induces significant bias.
RESULTS: We illustrate the liabilities of common techniques for categorizing a risk score and discuss alternative approaches. We promote the use of the restricted mean survival (RMS) and the corresponding RMS curve that may be thought of as an analog to the best fit line from simple linear regression.
CONCLUSIONS: Continuous biomarker workflows should be modified to include the more rigorous statistical techniques and descriptive plots described in this article. All statistics discussed can be computed via standard functions in the Survival package of the R statistical programming language. Example R language code for the RMS curve is presented in the appendix.

Mardin BR, Drainas AP, Waszak SM, et al.
A cell-based model system links chromothripsis with hyperploidy.
Mol Syst Biol. 2015; 11(9):828 [PubMed] Free Access to Full Article Related Publications
A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has remained elusive. We developed an integrative method termed "complex alterations after selection and transformation (CAST)," enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively parallel sequencing. We employed this methodology to characterize catastrophic SR formation processes, their temporal sequence, and their impact on gene expression and cell division. Our in vitro system uncovered a propensity of chromothripsis to occur in cells with damaged telomeres, and in particular in hyperploid cells. Analysis of primary medulloblastoma cancer genomes verified the link between hyperploidy and chromothripsis in vivo. CAST provides the foundation for mechanistic dissection of complex DNA rearrangement processes.

Khandelwal A, Bacolla A, Vasquez KM, Jain A
Long non-coding RNA: A new paradigm for lung cancer.
Mol Carcinog. 2015; 54(11):1235-51 [PubMed] Related Publications
Lung cancer is the leading cause of cancer-related deaths worldwide. Recent advances in whole genome transcriptome analysis have enabled the identification of numerous members of a novel class of non-coding RNAs, i.e., long non-coding RNAs (lncRNAs), which play important roles in a wide range of biological processes and whose deregulation causes human disease, including cancer. Herein we provide a comprehensive survey of lncRNAs associated with lung cancer, with particular focus on the functions that either facilitate or inhibit the progression of lung cancer and the pathways involved. Emerging data on the use of lncRNAs as biomarkers for the diagnosis and prognosis of cancer are also discussed. We cast this information within the wider perspective of lncRNA biogenesis and molecular functions in the cell. Relationships that exist between lncRNAs, genome-wide transcription, and lung cancer are discussed. Deepening our understanding on these processes is critical not only from a mechanistic standpoint, but also for the development of novel biomarkers and effective therapeutic targets for cancer patients.

Mikosik A, Henc I, Ruckemann-Dziurdzińska K, et al.
Increased μ-Calpain Activity in Blasts of Common B-Precursor Childhood Acute Lymphoblastic Leukemia Correlates with Their Lower Susceptibility to Apoptosis.
PLoS One. 2015; 10(8):e0136615 [PubMed] Free Access to Full Article Related Publications
Childhood acute lymphoblastic leukemia (ALL) blasts are characterized by inhibited apoptosis promoting fast disease progress. It is known that in chronic lymphocytic and acute myeloid leukemias the reduced apoptosis is strongly related with the activity of calpain-calpastatin system (CCS) composed of cytoplasmic proteases--calpains--performing the modulatory proteolysis of key proteins involved in cell proliferation and apoptosis, and of their endogenous inhibitor--calpastatin. Here, the CCS protein abundance and activity was for the first time studied in childhood ALL blasts and in control bone marrow CD19+ B cells by semi-quantitative flow cytometry and western blotting of calpastatin fragments resulting from endogenous calpain activity. Significantly higher μ-calpain (CAPN1) gene transcription, protein amounts and activity (but not those of m-calpain), with calpastatin amount and transcription of its gene (CAST) greatly varying were observed in CD19(+) ALL blasts compared to control cells. Significant inverse relation between the amount/activity of calpain and spontaneous apoptosis was noted. Patients older than 10 years (considered at higher risk) displayed increased amounts and activities of blast calpain. Finally, treatment of blasts with the tripeptide calpain inhibitors II and IV significantly and in dose-dependent fashion increased the percentage of blasts entering apoptosis. Together, these findings make the CCS a potential new predictive tool and therapeutic target in childhood ALL.

Stangeland B, Mughal AA, Grieg Z, et al.
Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
Oncotarget. 2015; 6(28):26192-215 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CAST, Cancer Genetics Web: http://www.cancer-genetics.org/CAST.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999