CASP9

Gene Summary

Gene:CASP9; caspase 9
Aliases: MCH6, APAF3, APAF-3, PPP1R56, ICE-LAP6
Location:1p36.21
Summary:This gene encodes a member of the cysteine-aspartic acid protease (caspase) family. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive proenzymes which undergo proteolytic processing at conserved aspartic residues to produce two subunits, large and small, that dimerize to form the active enzyme. This protein can undergo autoproteolytic processing and activation by the apoptosome, a protein complex of cytochrome c and the apoptotic peptidase activating factor 1; this step is thought to be one of the earliest in the caspase activation cascade. This protein is thought to play a central role in apoptosis and to be a tumor suppressor. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2013]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:caspase-9
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (21)
Pathways:What pathways are this gene/protein implicaed in?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CASP9 (cancer-related)

Qian Z, Yang J, Liu H, et al.
The miR-1204 regulates apoptosis in NSCLC cells by targeting DEK.
Folia Histochem Cytobiol. 2019; 57(2):64-73 [PubMed] Related Publications
INTRODUCTION: This study endeavors to analyze the effects of miR-1204 on the expression of DEK oncogene in non-small cell lung cancer (NSCLC) cell lines and to study the molecular mechanisms of these effects.
MATERIAL AND METHODS: The miR-1204 mimics and inhibitors were transfected into the (A549 and SPC) NSCLC cells. Then the mRNA levels, cell viability, apoptosis rate, morphology and caspase activity were determined. The expression of apoptosis-related proteins Bcl-2 and Bax was also analyzed.
RESULTS: In NSCLC cell lines (A549 and SPC), DEK mRNA levels were down-regulated in miR-1204 overex-pression group. In miR-1204 inhibition group, the expression of DEK mRNA showed an opposite trend. The overexpression of miR-1204 increases the apoptosis rate in NSCLC cells. The Bcl-2 levels in the miR-1204 over-expression group were decreased, while the Bax level was increased. In the miR-1204 inhibition group, expression of Bcl-2 and Bax showed opposite trends. Cell staining revealed cell's morphological changes; the apoptosis in the miR-1204 overexpression group revealed significant morphological features, such as brighter nuclei and nu-clear condensation. Results indicated a typical characteristic of apoptosis in the miR-1204 overexpression group. Caspase-9 and Caspase-3 were involved in the apoptosis pathway, which was mediated by miR-1204 and DEK.
CONCLUSIONS: The miR-1204 induces apoptosis of NSCLC cells by inhibiting the expression of DEK. The mech-anism of apoptosis involves down-regulation of Bcl-2 and up-regulation of Bax expression. Moreover, the apoptosis was mediated by mitochondria-related caspase 9/3 pathway.

Ercan S, Arinc S, Yilmaz SG, et al.
Investigation of Caspase 9 Gene Polymorphism in Patients With Non-small Cell Lung Cancer.
Anticancer Res. 2019; 39(5):2437-2441 [PubMed] Related Publications
BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is one of the most common forms of lung cancer and the leading cause of cancer-related deaths in the world. Caspase 9 (CASP9) plays a central role in the intrinsic apoptotic pathway. The aim of the study was to investigate the role of caspase 9 gene polymorphism in patients with non-small cell lung cancer.
MATERIALS AND METHODS: The study included 96 NSCLC cases and 67 controls. CASP9 Ex5+32 G>A polymorphism was investigated by real-time polymerase chain reaction.
RESULTS: There was a significant difference between the groups in the frequency of CASP9 genotypes (p=0.008). The number of the carriers of the ancestral GG genotype, was significantly higher in the NSCLC group than in the control (p=0.009). The heterozygote GA genotype and mutant A allele frequency were significantly higher in the control group compared to the NSCLC group (p=0.005, p=0.009, respectively). Serum CASP9 levels were significantly lower in the patients group than in the control group (p<0.0001).
CONCLUSION: CASP9 Ex5+32 GG genotype was a risk factor whereas the variant A allele could be a risk-reducing factor for NSCLC.

Zhang L, Zhang X, Wang X, et al.
MicroRNA-224 Promotes Tumorigenesis through Downregulation of Caspase-9 in Triple-Negative Breast Cancer.
Dis Markers. 2019; 2019:7378967 [PubMed] Free Access to Full Article Related Publications
Triple-negative breast cancer (TNBC) harbors genetic heterogeneity and generally has more aggressive clinical outcomes. As such, there is urgency in identifying new prognostic targets and developing novel therapeutic strategies. In this study, miR-224 was overexpressed in breast cancer cell lines and TNBC primary cancer samples. Knockdown of miR-224 in MDA-MB-231 cancer cells reduced cell proliferation, migration, and invasion. Through integrating in silico prediction algorithms with KEGG pathway and Gene Ontology analyses,

Zhang Y, He Y, Lu LL, et al.
miRNA-192-5p impacts the sensitivity of breast cancer cells to doxorubicin via targeting peptidylprolyl isomerase A.
Kaohsiung J Med Sci. 2019; 35(1):17-23 [PubMed] Related Publications
The administration of doxorubicin (DOX) is one of the first-line treatments of breast cancer. However, acquisition of resistance remains the major obstacle restricting the clinical application of DOX. MicroRNAs (miRNAs) are small, noncoding RNAs which play crucial role in epigenetic regulation. Recent studies have shown that miRNAs are associated with tumor chemoresistance. Here we aim to explore the role of miRNA-192-5p in resistance to DOX in breast cancer cells. Normal human breast epithelial cell line MCF-10A, breast cancer cell line Michigan Cancer Foundation-7 (MCF-7), and DOX-resistant breast cancer cell line MCF-7/ADR were used here. The expression of miR-192-5p was examined by qPCR, and the expression of peptidylprolyl isomerase A (PPIA) was examined by qPCR and Western blot. The effects of miR-192-5p overexpression on the sensitivity to DOX were confirmed by Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and Annexin-V/PI assay. Downstream molecular mechanisms, including PPIA, BAD, CASP9, Bcl-2, and c-Jun N-terminal kinase (JNK) activation, were detected by Western blot and qPCR. Luciferase reporter assay was used to validate the association between miR-192-5p and PPIA. miR-192-5p was downregulated while PPIA was upregulated in MCF-7/ADR cells. Functionally, miR-192-5p overexpression increased sensitivity to DOX by promoting cell apoptosis. Mechanistically, miR-192-5p overexpression performed its function by activating JNK, augmenting BAD and caspase9 expression, and suppressing Bcl-2 and PPIA expression. Luciferase assay validated that PPIA was a direct target of miR-192-5p. miR-192-5p sensitizes breast cancer cells to DOX by targeting PPIA, suggesting that miR-192-5p might serve as a novel target for reversing DOX resistance and controlling breast tumor growth.

Fard NN, Noorbazargan H, Mirzaie A, et al.
Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer.
Artif Cells Nanomed Biotechnol. 2018; 46(sup3):S1047-S1058 [PubMed] Related Publications
Silver nanoparticles (AgNPs) were synthesized using Artemisia oliveriana extract, and their physicochemical characteristics were studied. The antioxidant and antimicrobial activities of the AgNPs, as well as their anticancer effects on the lung cancer cell line (A549), using 1,1-diphenyl-2-picrylhydrazyl (DPPH), MIC and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) techniques respectively demonstrated that the synthesized AgNPs mainly affected the gram-positive bacteria rather than the gram-negative bacteria, and exhibited significant cellular toxicity on the A549 cell line. Further, the cellular uptake of the AgNPs results indicated that the AgNPs accumulated within the cell. Moreover, their impact on the expression of apoptotic genes including Bax, Bcl-2, caspase-3 (CASP3), caspase-9 (CASP9) and miR-192 using real-time PCR demonstrated substantial increase in the expression of all mentioned genes (p<.001). Finally, the apoptotic effects of the AgNPs through DNA fragmentation test, flow cytometry and cell cycle analysis indicated the induction of apoptosis in the A549 cell line. The results revealed that the AgNPs synthesized using A. oliveriana extract have potential biological applications.

Li D, Liu J, Wang X, et al.
Biological Potential and Mechanism of Prodigiosin from
Int J Mol Sci. 2018; 19(11) [PubMed] Free Access to Full Article Related Publications
Tripyrrole molecules have received renewed attention due to reports of numerous biological activities, including antifungal, antibacterial, antiprotozoal, antimalarial, immunosuppressive, and anticancer activities. In a screen of bacterial strains with known toxicities to termites, a red pigment-producing strain, HDZK-BYSB107, was isolated from

Enkhbat T, Nishi M, Yoshikawa K, et al.
Epigallocatechin-3-gallate Enhances Radiation Sensitivity in Colorectal Cancer Cells Through Nrf2 Activation and Autophagy.
Anticancer Res. 2018; 38(11):6247-6252 [PubMed] Related Publications
BACKGROUND/AIM: Epigallocatechin-3-gallate (EGCG) is a major polyphenolic component of green tea. EGCG plays a potential role in radio-sensitizing cancer cells. The combined effect of EGCG and radiation was investigated in a colorectal cancer cell line, focusing on nuclear factor (erythroid-derived 2)-like 2 (Nrf2) autophagy signalling.
MATERIALS AND METHODS: HCT-116 cells were treated with 12.5 μM EGCG for different periods of time, 2 Gy radiation, or both. Cell viability was determined with the WST-8 assay. The number of colonies was determined with the colony formation assay. mRNA expression of LC3 and caspase-9 was analyzed with quantitative real-time polymerase chain reaction.
RESULTS: Combination treatment with EGCG and radiation significantly decreased the growth of HCT-116 cells. The number of colonies was reduced to 34.2% compared to the control group. Immunofluorescence microscopy images showed that nuclear translocation of Nrf2 was significantly increased when cells were treated with the combination of EGCG and radiation compared to the control and single-treatment groups. Combined treatment with EGCG and radiation significantly induced LC3 and caspase-9 mRNA expression.
CONCLUSION: EGCG increased the sensitivity of colorectal cancer cells to radiation by inhibiting cell proliferation and inducing Nrf2 nuclear translocation and autophagy.

Yao Z, Wan Y, Li B, et al.
Berberine induces mitochondrial‑mediated apoptosis and protective autophagy in human malignant pleural mesothelioma NCI‑H2452 cells.
Oncol Rep. 2018; 40(6):3603-3610 [PubMed] Related Publications
Increasing evidence shows that berberine has antitumor effects against a number of tumor cells. In the present study, we evaluated the effect of berberine on the proliferation of the human malignant pleural mesothelioma (MPM) cell line NCI‑H2452, and explored the therapeutic potential and underlying mechanisms of this agent. Our results showed that berberine inhibited the proliferation of NCI‑H2452 cells in a dose‑ and time‑dependent manner and could induce apoptosis, possibly through a caspase‑9‑dependent intrinsic mitochondrial pathway. In addition, autophagy was induced by berberine, which was characterized by the accumulation of LC3‑II and decreased p62 expression. We used inhibitors of apoptosis and autophagy, and an inducer of autophagy, to evaluate the significance of autophagy in berberine‑induced cell death. The results demonstrated that apoptosis is the primary route through which berberine induces NCI‑H2452 cell death. Berberine‑induced autophagy may be an adaptive response to antitumor agents and have a protective role in MPM cells. Inhibition of autophagy enhanced berberine‑induced apoptosis. Therefore, inhibition of autophagy may be an effective treatment strategy in the management of MPM. In conclusion, berberine is a potent antitumor agent for treating MPM, and it induces mitochondrial‑mediated apoptosis and protective autophagy in human NCI‑H2452 MPM cells.

Talib WH, Al Kury LT
Parthenolide inhibits tumor-promoting effects of nicotine in lung cancer by inducing P53 - dependent apoptosis and inhibiting VEGF expression.
Biomed Pharmacother. 2018; 107:1488-1495 [PubMed] Related Publications
The correlation between cigarette smoking and the onset of non-small cell lung cancer is well documented. Enhanced proliferation, angiogenesis induction, and resistance to apoptosis were reported as direct results associated with exposure to nicotine (the active ingredient of cigarettes). Parthenolide is a sesquiterpene lactone with anticancer activity against different cancer types. In this study, we tested the ability of parthenolide to inhibit the proliferating effect of nicotine in lung cancer cell lines. MTT assay was used to measure cell survival of A549 and H526 cells treated with nicotine, parthenolide, and their combination. Angiogenesis inhibition was measured using VEGF detection kit and apoptosis induction was evaluated by measuring caspase-3 activity. Real time PCR assay was used to detect the change in expression of several genes associated with cell proliferation and apoptosis (CASP3, CASP7, CASP8, CASP9, P53, GADD45, BAX, BIM, Bcl-2, TOPO I, and TOPO II). Parthenolide inhibited lung cancer cells in a concentration-dependent manner and decreased the proliferation stimulating effect of nicotine. Caspase-3 activity and VEGF assays evidenced an apoptosis-inducing and VEGF- inhibiting effects of parthenolide. The real time PCR assay demonstrated that parthenolide down-regulated the expression of Bcl-2 and up-regulated the expression of E2F1, P53, GADD45, BAX, BIM, and CASP 3,7,8,9, which indicates an activation of P53- dependent apoptosis pathway in response to parthenolide. Furthermore, this pathway remained active in the presence of nicotine suggesting the ability of parthenolide to exclude the anti-apoptotic effect of nicotine. Our results indicate that parthenolide inhibits nicotine proliferating effect on lung cancer. The anticancer effect of parthenolide is mediated by angiogenesis inhibition and activation of P53- dependent apoptosis. Parthenolide is a promising natural product for inhibiting and treating nicotine-associated lung cancer. However, further studied on more lung cancer cell lines and on protein level are needed to fully understand its mechanisms of action.

Akrivou MG, Demertzidou VP, Theodoroula NF, et al.
Uncovering the pharmacological response of novel sesquiterpene derivatives that differentially alter gene expression and modulate the cell cycle in cancer cells.
Int J Oncol. 2018; 53(5):2167-2179 [PubMed] Related Publications
The present study aimed to assess the pharmacological anticancer profile of three natural and five synthetic sesquiterpenes developed by total chemical synthesis. To this end, their properties at the cellular and molecular level were evaluated in a panel of normal and cancer cell lines. The results obtained by performing cytotoxicity assays and gene expression analysis by reverse transcription-quantitative polymerase chain reaction showed that: i) Among the sesquiterpene derivatives analyzed, VDS58 exhibited a notable anticancer profile within attached (U-87 MG and MCF-7) and suspension (K562 and MEL-745) cancer cell cultures; however, U-87 MG cells were able to recover their proliferation capacity rapidly after 48 h of exposure; ii) gene expression profiling of U-87 MG cells, in contrast to K562 cells, showed a transient induction of cyclin-dependent kinase inhibitor 1A (CDKN1) expression; iii) the expression levels of transforming growth factor β1 (TGFB1) increased after 12 h of exposure of U-87 MG cells to VDS58 and were maintained at this level throughout the treatment period; iv) in K562 cells exposed to VDS58, TGFB1 expression levels were upregulated for 48 h and decrease afterwards; and v) the re-addition of VDS58 in U-87 MG cultures pretreated with VDS58 resulted in a notable increase in the expression of caspases (CASP3 and CASP9), BCL2‑associated agonist of cell death (BAD), cyclin D1, CDK6, CDKN1, MYC proto-oncogene bHLH transcription factor (MYC), TGFB1 and tumor suppressor protein p53. This upregulation persisted only for 24 h for the majority of genes, as afterwards, only the expression of TGFB1 and MYC was maintained at high levels. Through bioinformatic pathway analysis of RNA-Seq data of parental U-87 MG and K562 cells, substantial variation was reported in the expression profiles of the genes involved in the regulation of the cell cycle. This was associated with the differential pharmacological profiles observed in the same cells exposed to VDS58. Overall, the data presented in this study provide novel insights into the molecular mechanisms of action of sesquiterpene derivatives by dysregulating the expression levels of genes associated with the cell cycle of cancer cells.

Nenasheva VV, Stepanenko EA, Makarova IV, et al.
Expression of the human TRIM14 and its mutant form (P207L) promotes apoptosis in transgenic loaches.
Mol Biol Rep. 2018; 45(6):2087-2093 [PubMed] Related Publications
The tripartite-motif (TRIM)14 protein, one of the TRIM family members, was shown to participate in the antiviral and antibacterial defence. Besides, it appears to play an essential role in the processes of oncogenesis. In some types of human tumour cells, TRIM14 has been shown to inhibit apoptosis, while in others-the overexpression of TRIM14 promotes apoptosis. However, whether TRIM14 mediates apoptosis in the normal cells remains unknown. In the present study, we investigated the possible participation of the human TRIM14 gene and its mutant form (620C > T) in the induction of apoptosis in the transgenic larvae loach Misgurnus fossilis L. We observed that the expression of both forms of TRIM14 gene was accompanied by the increase of the frequency of pyknotic nuclei in fish embryos compared to control groups. Accordingly, using the TUNEL assay, the enhanced apoptosis was revealed upon expression of both forms of TRIM14 gene. The transcription of proapoptotic genes (bax, tp53, and casp9) was significantly increased in transgenic loaches expressing human wild-type TRIM14, but remained unchanged upon expression of its mutant form. In addition, the transcription of c-myc was upregulated in transgenic loaches expressing both forms. Thus, it can be assumed that during embryonic development TRIM14 has a proapoptotic effect on the cells via the activation of c-myc, tp53, and bax genes. Apparently, the mutant TRIM14 directs apoptosis via c-myc by p53-independent mechanism.

Xiong DD, Qin Y, Xu WQ, et al.
A Network Pharmacology-Based Analysis of Multi-Target, Multi-Pathway, Multi-Compound Treatment for Ovarian Serous Cystadenocarcinoma.
Clin Drug Investig. 2018; 38(10):909-925 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: Pharmacological control against ovarian serous cystadenocarcinoma has received increasing attention. The purpose of this study was to investigate multi-drug treatments as synergetic therapy for ovarian serous cystadenocarcinoma and to explore their mechanisms of action by the network pharmacology method.
METHODS: Genes acting on ovarian serous cystadenocarcinoma were first collected from GEPIA and DisGeNET. Gene Ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway, Reactome pathway, and Disease Ontology analyses were then conducted. A connectivity map analysis was employed to identify compounds as treatment options for ovarian serous cystadenocarcinoma. Targets of these compounds were obtained from the Search Tool for Interacting Chemicals (STITCH). The intersections between the ovarian serous cystadenocarcinoma-related genes and the compound targets were identified. Finally, the Kyoto Encyclopedia of Genes and Genomes and Reactome pathways in which the overlapped genes participated were selected, and a correspondence compound-target pathway network was constructed.
RESULTS: A total of 541 ovarian serous cystadenocarcinoma-related genes were identified. The functional enrichment and pathway analyses indicated that these genes were associated with critical tumor-related pathways. Based on the connectivity map analysis, five compounds (resveratrol, MG-132, puromycin, 15-delta prostaglandin J2, and valproic acid) were determined as treatment agents for ovarian serous cystadenocarcinoma. Next, 48 targets of the five compounds were collected. Following mapping of the 48 targets to the 541 ovarian serous cystadenocarcinoma-related genes, we identified six targets (PTGS1, FOS, HMOX1, CASP9, PPARG, and ABCB1) as therapeutic targets for ovarian serous cystadenocarcinoma by the five compounds. By analysis of the compound-target pathway network, we found the synergistic anti-ovarian serous cystadenocarcinoma potential and the underlying mechanisms of action of the five compounds.
CONCLUSION: In summary, latent drugs against ovarian serous cystadenocarcinoma were acquired and their target actions and pathways were determined by the network pharmacology strategy, which provides a new prospect for medicamentous therapy for ovarian serous cystadenocarcinoma. However, further in-depth studies are indispensable to increase the validity of this study.

Qin D, Li H, Xie H
Ultrasound‑targeted microbubble destruction‑mediated miR‑205 enhances cisplatin cytotoxicity in prostate cancer cells.
Mol Med Rep. 2018; 18(3):3242-3250 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRNAs) are non‑coding ~20 nucleotides long sequences that function in the initiation and development of a number of cancers. Ultrasound‑targeted microbubble destruction (UTMD) is an effective method for microRNA delivery. The aim of the present study was to investigate the potential roles of UTMD‑mediated miRNA (miR)‑205 delivery in the development of prostate cancer (PCa). In the present study, miR‑205 expression was examined by reverse transcription‑quantitative polymerase chain reaction assay. miR‑205 mimics were transfected into PC‑3 cells using the UTMD method, and the PC‑3 cells were also treated with cisplatin. Cell proliferation, apoptosis, migration and invasion abilities were detected using Cell Counting kit‑8, flow cytometry, wound healing and Transwell assays, respectively. In addition, the protein expression levels of caspase‑9, cleaved‑caspase 9, cytochrome c (cytoc), epithelial (E)‑cadherin, matrix metalloproteinase‑9 (MMP‑9), phosphorylated (p)‑extracellular signal‑regulated kinase (ERK) and ERK were measured by western blot analysis. The results of the present study demonstrated that miR‑205 expression was low in human PCa cell lines compared with healthy cells and that UTMD‑mediated miR‑205 delivery inhibited PCa cell proliferation, migration and invasion, and promoted apoptosis modulated by cisplatin compared with UTMD‑mediated miR‑negative control group and miR‑205‑treated group. Furthermore, it was demonstrated that UTMD‑mediated miR‑205 transfection increased the expression of caspase‑9, cleaved‑caspase 9, cytochrome c and E‑cadherin, and decreased the expression of MMP‑9 and p‑ERK. Therefore, UTMD‑mediated miR‑205 delivery may be a promising method for the treatment of PCa.

Albayrak G, Konac E, Ugras Dikmen A, Bilen CY
FOXA1 knock-out via CRISPR/Cas9 altered Casp-9, Bax, CCND1, CDK4, and fibronectin expressions in LNCaP cells.
Exp Biol Med (Maywood). 2018; 243(12):990-994 [PubMed] Free Access to Full Article Related Publications
Prostate cancer is one of the most common types of cancer in men and the leading cause of death in developed countries. With the aid of molecular and genetic profiling of cancers, cancer molecular subtypes are paving the way for tailored cancer therapy. FOXA1 has been identified as one of the seven molecular subtypes of prostate cancer. FOXA1 is involved in a variety of metabolic process such as glucose homeostasis and deregulation of its expression is crucial in prostate cancer progression. In this study, we investigated the effects of FOXA1 gene knock-out on the expression levels of various cancer cell metabolism and cell cycle-related protein expressions. FOXA1 gene was knocked-out by using CRISPR/Cas9 technique. While FOXA1 gene knock-out significantly altered Casp-9, Bax, CCND1, CDK4, and fibronectin protein expressions (P < 0.05, fold change: ∼40, 4.5, 2.5, 4.5, and 4, respectively), it did not affect the protein expression levels of Casp-3, Bcl-2, survivin, β-catenin, c-Myc, and GSK-3B. Knocking-out FOXA1 gene in androgen-dependent LNCaP prostate cancer cells inhibited CCND1 protein expression. Our pre-clinical results demonstrate the importance of FOXA1 as a drug target in the treatment of prostate cancer. Impact statement Knock-out studies offer a unique way of studying the function of genes especially for developmentally lethal genes. FOXA1 has prominent roles both in breast and prostate cancer pathogenesis due to its role in ER receptor signaling pathway. FOXA1 has also been identified as one of the seven molecular subtypes of primary prostate cancer. In the present study, we used an efficient gene knock-out method, CRISPR/Cas9, in order to investigate FOXA1 function on LNCaP prostate cancer cells in vitro. FOXA1 knock-out altered cell-cycle regulator CCND1 protein expression levels. Therefore, our results suggest that FOXA1 might be a plausible drug target for prostate cancer treatment.

Iplik ES, Ertugrul B, Candan G, et al.
ROS related enzyme levels and its association to molecular signaling pathway in the development of head and neck cancer.
Cell Mol Biol (Noisy-le-grand). 2018; 64(7):24-29 [PubMed] Related Publications
Given the prevalence and annual incidence of cancer, head and neck cancer is affecting more than 600,000 people each year. In this research, it was decided to investigate that which genes are involved and how MPO, NQO1, SOD2 enzyme levels effective to develop of head and neck cancer and for the first time at the tissue level. 35 tumor tissues in all head and neck anatomy and their surrounding tissue (70 in total) were enclosed the research that received surgery. Determination of the apoptosis genes expression levels (Mtch1, Akt1, Caspase3, Caspase9, Bcl2, Mdm2, mTOR) were determined by RT-PCR techniques and the same patients' sample used for ROS associated oxidant-antioxidant system by using MPO, NQO1, SOD2 enzyme levels using ELISA method. According to statistical results, caspase 9 gene was found statistically high expressed in early stage in contrast to late stage (p=0,013). Level of SOD2, NQO1 and MPO was determined and only MPO level was found significantly important on tumor tissues p=0,008).  Specially, our findings for high expression of Cas9 on early stage were thought to be the target for treatment with its well-known initiator role of the apoptosis. Our results suggest that the higher level of MPO in tumor tissues and indicates that it has some role on pathology of head and neck cancers. We believe that, our research will lead the proposal in-vivo studies and will open new areas on therapeutic targets.

Sindhu R, Manonmani HK
l-asparaginase induces intrinsic mitochondrial-mediated apoptosis in human gastric adenocarcinoma cells and impedes tumor progression.
Biochem Biophys Res Commun. 2018; 503(4):2393-2399 [PubMed] Related Publications
l-asparagine essentially regulates growth and proliferation of cancer cells. l-asparaginase is an anti-cancer enzyme that deprives the cancer cells of l-asparagine. The purpose of this study was to explore the mechanism of a novel l-asparaginase from Pseudomonas fluorescens on l-asparagine deprivation mediated anti-proliferation, apoptosis in human gastric adenocarcinoma cells and to evaluate inhibition of angiogenesis. We observed that, the presence of extracellular l-asparagine was essential for the growth of AGS cells. l-asparagine deprivation by l-asparaginase induced metabolic stress, cytotoxicity and apoptosis by G0 phase cell-cycle arrest, modulated the mitochondrial membrane integrity, accelerated caspase-3 activation and instigated DNA damage. The RT-PCR analysis of pro-apoptosis genes: bak1, bax, bbc3, bik, pmaip1, bnip3l, apaf1, casp3, casp7 and casp9 were significantly higher (P < 0.05), while anti-apoptotic markers xiap, bid, mcl1, and death receptor genes tnf and tradd were significantly down-regulated (P < 0.05). Additionally, higher protein expressions of p53, caspase-3 and TEM analysis showing modulations in mitochondria confirmed intrinsic apoptosis pathway. The enzyme impeded tumor progression through inhibition of cell migration and vascular remodelling of endothelial cells. Our findings suggests that the action of l-asparaginase alters mitochondrial membrane permeability and auxiliary activates intrinsic apoptosis. Therefore, this mechanistic approach might be considered as a targeted enzymotherapy against gastric adenocarcinoma.

Chen J
miRNA‑195 suppresses cell proliferation of ovarian cancer cell by regulating VEGFR2 and AKT signaling pathways.
Mol Med Rep. 2018; 18(2):1666-1673 [PubMed] Related Publications
The present study aimed to investigate the functional effects of microRNA‑195 on ovarian cancer cells and the underling mechanism involved. Reverse transcription‑quantitative polymerase chain reaction was used to measure the expression of microRNA‑195 in patients with ovarian cancer. Cell proliferation and apoptosis were measured with MTT assay and flow cytometry, respectively. Caspase‑3/9 activity, vascular endothelial growth factor receptor (VEGFR)2 and phosphorylated protein kinase B (p‑AKT) protein expression were analyzed using caspase‑3/9 activity kits and western blot analysis. The expression of microRNA‑195 was downregulated in ovarian cancer, compared with the normal control group. Furthermore, microRNA‑195 suppresses cell proliferation and induced apoptosis of ovarian cancer cells. In addition, microRNA‑195 suppressed VEGFR2 and p‑AKT protein expression in ovarian cancer cells. The inhibition of VEGFR2 and p‑AKT increased the functional effects of microRNA‑195 on apoptosis of ovarian cancer cells. The results demonstrated that microRNA‑195 suppresses cell proliferation of ovarian cancer cells through regulation of VEGFR2 and AKT signaling pathways.

Vania L, Rebelo TM, Ferreira E, Weiss SFT
Knock-down of LRP/LR promotes apoptosis in early and late stage colorectal carcinoma cells via caspase activation.
BMC Cancer. 2018; 18(1):602 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer remains one of the leading causes of death around the world, where incidence and mortality rates are at a constant increase. Tumourigenic cells are characteristically seen to over-express the 37 kDa/67 kDa laminin receptor (LRP/LR) compared to their normal cell counterparts. This receptor has numerous roles in tumourigenesis including metastasis, angiogenic enhancement, telomerase activation, cell viability and apoptotic evasion. This study aimed to expose the role of LRP/LR on the cellular viability of early (SW-480) and late (DLD-1) stage colorectal cancer cells.
METHODS: siRNA were used to down-regulate the expression of LRP/LR in SW-480 and DLD-1 cells which was assessed using western blotting. Subsequently, cell survival was evaluated using the MTT cell survival assay and confocal microscopy. Thereafter, Annexin V-FITC/PI staining and caspase activity assays were used to investigate the mechanism underlying the cell death observed upon LRP/LR knockdown. The data was analysed using Student's t-test with a confidence interval of 95%, with p-values of less than 0.05 seen as significant.
RESULTS: Here we reveal that siRNA-mediated knock-down of LRP led to notable decreases in cell viability through increased levels of apoptosis, apparent by compromised membrane integrity and significantly high caspase-3 activity. Down-regulated LRP resulted in a significant increase in caspase-8 and -9 activity in both cell lines.
CONCLUSIONS: These findings show that the receptor is critically implicated in apoptosis and that LRP/LR down-regulation induces apoptosis in early and late stage colorectal cancer cells through both apoptotic pathways. Thus, this study suggests that siRNA-mediated knock-down of LRP could be a possible therapeutic strategy for the treatment of early and late stage colorectal carcinoma.

Asadi M, Shanehbandi D, Asvadi Kermani T, et al.
Expression Level of Caspase Genes in Colorectal Cancer
Asian Pac J Cancer Prev. 2018; 19(5):1277-1280 [PubMed] Free Access to Full Article Related Publications
Background: Caspases proteins are protease enzymes involved in the initiation and execution of apoptosis process. Regulation of apoptosis process plays an important role in the normal biological events and development. In addition to developmental abnormalities, dysregulated apoptosis system may lead to tumorigenesis, autoimmunity, and other serious health problems. Aberrant regulation of apoptosis may also be the paramount cause of chemoresistance during cancer therapy. It is aimed through this study to evaluate the transcript levels of Caspase 3, 8, and 9 in tumoral tissues from patients with colorectal cancer (CRC) and compare it with normal marginal tissues. Methods: Fifty tumor tissues and their matched marginal tissues, as control group, were obtained from CRC patients. Total mRNA of all tissue samples was extracted and cDNA was synthesized. Using SYBR Green PCR master mix and Real-time gene expression technique, the transcript level of target genes was quantified. Results: Experiments indicated that mRNA expressions of caspase 9 and 3 were downregulated in tumoral tissues from CRC patients in comparison to marginal tissues. In contrast, tumoral tissues expressed mRNA of caspase 8 higher than normal marginal tissues. Modified transcript levels of caspase 3, 8, and 9 were correlated with the clinical manifestations of the patients. Conclusions: Alteration in the mRNA level of caspase genes may be involved in the development of CRC.

Kusaczuk M, Krętowski R, Naumowicz M, et al.
Silica nanoparticle-induced oxidative stress and mitochondrial damage is followed by activation of intrinsic apoptosis pathway in glioblastoma cells.
Int J Nanomedicine. 2018; 13:2279-2294 [PubMed] Free Access to Full Article Related Publications
Introduction: Recently, the focus of oncological research has been on the optimization of therapeutic strategies targeted at malignant diseases. Nanomedicine utilizing silicon dioxide nanoparticles (SiNPs) is one such strategy and is rapidly developing as a promising tool for cancer diagnosis, imaging, and treatment. Nevertheless, little is known about the mechanisms of action of SiNPs in brain tumors.
Materials and methods: Here, we explored the effects of 5-15 nm SiNPs in the human glioblastoma cell line LN229. In this respect, MTT assays, microscopic observations, flow cytometry analyses, and luminescent assays were performed. Moreover, RT-qPCR and Western blot analyses were done to determine gene and protein expressions.
Results: We demonstrated that SiNPs triggered evident cytotoxicity, with microscopic observations of the nuclei, annexin V-fluorescein isothiocyanate/propidium iodide staining, and elevated caspase 3/7 activity, suggesting that SiNPs predominantly induced apoptotic death in LN229 cells. We further showed the occurrence of oxidative stress induced by enhanced reactive oxygen-species generation. This effect was followed by deregulated expression of genes encoding the antioxidant enzymes SOD1, SOD2, and CAT, and impaired mitochondria function. SiNP- induced mitochondrial dysfunction was characterized by membrane-potential collapse, ATP depletion, elevated expression of
Conclusions: Altogether, our data indicate that in LN229 cells, SiNPs evoke cell death via activation of the intrinsic apoptosis pathway and suggest that other aspects of cellular function may also be affected. As such, SiNPs represent a potentially promising agent for facilitating further progress in brain cancer therapy. However, further exploration of SiNP long-term toxicity and molecular effects is necessary prior to their widespread application.

Iwai N, Yasui K, Tomie A, et al.
Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma.
Int J Oncol. 2018; 53(1):237-245 [PubMed] Related Publications
The aberrant expression or alteration of microRNAs (miRNAs/miRs) contributes to the development and progression of cancer. In the present study, the functions of miR-96-5p in hepatocellular carcinoma (HCC) were investigated. It was identified that miR-96-5p expression was significantly upregulated in primary HCC tumors compared with their non-tumorous counterparts. A copy number gain was frequently observed at chromosomal region 7q32.2 in which the MIR96 locus is located, suggesting that gene amplification may be one of the mechanisms by which miR-96-5p expression is increased in HCC. Transfection of miR-96-5p mimic into HCC cells decreased the expression of CASP9, which encodes caspase-9, the essential initiator caspase in the mitochondrial apoptotic pathway, at the mRNA and protein levels. A putative binding site for miR-96-5p was identified in the CASP9 3'-untranslated region, and the results of a luciferase assay indicated that CASP9 is a potential direct target of miR-96-5p. The miR-96-5p mimic increased resistance to doxorubicin- and ultraviolet-induced apoptosis through the decrease in caspase-9 expression in HCC cells. Transfection of miR-96-5p inhibitor enhanced the cytotoxic effect of doxorubicin by increasing caspase-9 expression in the HCC cells, suggesting a synergistic effect between the miR-96-5p inhibitor and doxorubicin. In conclusion, the results of the present study suggest that miR-96-5p, which is frequently upregulated in HCC, inhibits apoptosis by targeting CASP9. Therefore, miR-96-5p may be a potential therapeutic target for HCC.

Chowchaikong N, Nilwarangkoon S, Laphookhieo S, et al.
p38 inhibitor inhibits the apoptosis of cowanin-treated human colorectal adenocarcinoma cells.
Int J Oncol. 2018; 52(6):2031-2040 [PubMed] Related Publications
Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided important information on the molecular mechanisms underlying its antitumor activity.

Orlando D, Miele E, De Angelis B, et al.
Adoptive Immunotherapy Using PRAME-Specific T Cells in Medulloblastoma.
Cancer Res. 2018; 78(12):3337-3349 [PubMed] Related Publications
Medulloblastoma is the most frequent malignant childhood brain tumor with a high morbidity. Identification of new therapeutic targets would be instrumental in improving patient outcomes. We evaluated the expression of the tumor-associated antigen PRAME in biopsies from 60 patients with medulloblastoma. PRAME expression was detectable in 82% of tissues independent of molecular and histopathologic subgroups. High PRAME expression also correlated with worse overall survival. We next investigated the relevance of PRAME as a target for immunotherapy. Medulloblastoma cells were targeted using genetically modified T cells with a PRAME-specific TCR (SLL TCR T cells). SLL TCR T cells efficiently killed medulloblastoma HLA-A*02

Bowler E, Porazinski S, Uzor S, et al.
Hypoxia leads to significant changes in alternative splicing and elevated expression of CLK splice factor kinases in PC3 prostate cancer cells.
BMC Cancer. 2018; 18(1):355 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mounting evidence suggests that one of the ways that cells adapt to hypoxia is through alternative splicing. The aim of this study was firstly to examine the effect of hypoxia on the alternative splicing of cancer associated genes using the prostate cancer cell line PC3 as a model. Secondly, the effect of hypoxia on the expression of several regulators of splicing was examined.
METHODS: PC3 cells were grown in 1% oxygen in a hypoxic chamber for 48 h, RNA extracted and sent for high throughput PCR analysis at the RNomics platform at the University of Sherbrooke, Canada. Genes whose exon inclusion rate PSI (ψ) changed significantly were identified, and their altered exon inclusion rates verified by RT-PCR in three cell lines. The expression of splice factors and splice factor kinases in response to hypoxia was examined by qPCR and western blotting. The splice factor kinase CLK1 was inhibited with the benzothiazole TG003.
RESULTS: In PC3 cells the exon inclusion rate PSI (ψ) was seen to change by > 25% in 12 cancer-associated genes; MBP, APAF1, PUF60, SYNE2, CDC42BPA, FGFR10P, BTN2A2, UTRN, RAP1GDS1, PTPN13, TTC23 and CASP9 (caspase 9). The expression of the splice factors SRSF1, SRSF2, SRSF3, SAM68, HuR, hnRNPA1, and of the splice factor kinases SRPK1 and CLK1 increased significantly in hypoxia. We also observed that the splice factor kinase CLK3, but not CLK2 and CLK4, was also induced in hypoxic DU145 prostate, HT29 colon and MCF7 breast cancer cell lines. Lastly, we show that the inhibition of CLK1 in PC3 cells with the benzothiazole TG003 increased expression of the anti-apoptotic isoform caspase 9b.
CONCLUSIONS: Significant changes in alternative splicing of cancer associated genes occur in prostate cancer cells in hypoxic conditions. The expression of several splice factors and splice factor kinases increases during hypoxia, in particular the Cdc-like splice factor kinases CLK1 and CLK3. We suggest that in hypoxia the elevated expression of these regulators of splicing helps cells adapt through alternative splicing of key cancer-associated genes. We suggest that the CLK splice factor kinases could be targeted in cancers in which hypoxia contributes to resistance to therapy.

Liu C, Xing G, Wu C, et al.
Inhibition of Expression of the S100A8 Gene Encoding the S100 Calcium-Binding Protein A8 Promotes Apoptosis by Suppressing the Phosphorylation of Protein Kinase B (Akt) in Endometrial Carcinoma and HEC-1A Cells.
Med Sci Monit. 2018; 24:1836-1846 [PubMed] Free Access to Full Article Related Publications
BACKGROUND The aim of this study was to investigate the expression and silencing of the S100A8 gene, which encodes the S100 calcium-binding protein A8 (S100A8), and apoptosis and phosphorylation of protein kinase B (Akt) in tissue samples of endometrial carcinoma and HEC-1A endometrial adenocarcinoma cells in vitro. MATERIAL AND METHODS Immunohistochemistry (IHC) was used to detect expression of the S100A8 protein in 74 tissue samples of endometrial cancer and 22 normal endometrial tissue samples. A stable S100A8 gene knockdown cell line was constructed using lentiviral packing short hairpin RNA (shRNA) transfected into HEC-1A cells. S100A8 mRNA and S100A8 protein levels were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. The effects of expression of the S100A8 gene by endometrial cancer cells was investigated by the MTT assay, cell cycle and apoptotic assays, qRT-PCR, and Western blotting. RESULTS IHC showed high levels of expression of S100A8 protein in endometrial carcinoma tissues, and HEC-1A adenocarcinoma cells (in G1 and G2). Increased expression of S100A8 protein was found endometrial cancer tissues compared with normal endometrial tissues (79.7% vs. 4.5%). S100A8 gene knockdown reduced cell proliferation in the HEC-1A cells compared with control cells, induced cell apoptosis, inhibited the phosphorylation of protein kinase B (Akt), and induced the expression of pro-apoptotic genes, including the cytochrome C gene, CYCS, BAD, BAX, FOXO1, FOXO3, CASP9, and CASP3. CONCLUSIONS In endometrial carcinoma cells, down-regulation of the S100A8 gene induced cell apoptosis via inhibition of the phosphorylated or active form of protein kinase B (Akt).

Ferrero H, Díaz-Gimeno P, Sebastián-León P, et al.
Dysregulated genes and their functional pathways in luteinized granulosa cells from PCOS patients after cabergoline treatment.
Reproduction. 2018; 155(4):373-381 [PubMed] Related Publications
Polycystic ovarian syndrome (PCOS) is a common reproductive disorder frequently associated with a substantial risk factor for ovarian hyperstimulation syndrome (OHSS). Dopamine receptor 2 (D2) agonists, like cabergoline (Cb2), have been used to reduce the OHSS risk. However, lutein granulosa cells (LGCs) from PCOS patients treated with Cb2 still show a deregulated dopaminergic tone (decreased D2 expression and low dopamine production) and increased vascularization compared to non-PCOS LGCs. Therefore, to understand the PCOS ovarian physiology, it is important to explore the mechanisms that underlie syndrome based on the therapeutic effects of Cb2. Here, LGCs from non-PCOS and PCOS patients were cultured with hCG in the absence/presence of Cb2 (

Albayrak G, Konac E, Dikmen AU, Bilen CY
Memantine induces apoptosis and inhibits cell cycle progression in LNCaP prostate cancer cells.
Hum Exp Toxicol. 2018; 37(9):953-958 [PubMed] Related Publications
Deregulated cancer cell metabolism plays an important role in cancer progression. Cancer cell metabolism has been in the centre of attention in therapeutical cancer cell targeting. Repurposed chemical agents, such as metformin and aspirin, have been studied extensively as preventive and therapeutic agents. Metformin is Food and Drug administration (FDA)-approved antidiabetic drug cheaper than other chemotherapeutic agents that were shown to have anticancer effects. Memantine is an FDA-approved Alzheimer's drug. Drug repositioning studies offer wide range of benefits, such as reduced time, cost and risk over de novo drug discovery. Therefore, we aimed to target glucose and glutamine metabolism in androgen-dependent LNCaP cells by using metformin and memantine and investigate these agents' effects on prostate cancer cell proliferation in vitro. We evaluated the effects of metformin and memantine on the protein expression levels of genes that play significant roles in apoptosis and cell cycle progression (Casp3, Casp9, Bcl-2, Survivin, Bax, c-Myc, HIF1A, CCND1, CDK4 and GAPDH) by Western blotting. Alzheimer's drug memantine exerted cytotoxic effects at 0.25 mM and metformin at 2.5 mM. We identified for the first time that memantine exerts antineoplastic activity (0.25 mM) by triggering Bax-dependent pathway of apoptosis. In addition to that both molecules have shown similar patterns on pro- and anti-apoptotic protein expression levels, such as Bcl-2, Casp3, Survivin and Bax. Our preclinic results indicate that memantine might be used as a new repositioned drug in cancer treatment. Beyond targeting glucose metabolism, glutamine metabolism also holds great promise for a potential treatment option.

Takamura T, Horinaka M, Yasuda S, et al.
FGFR inhibitor BGJ398 and HDAC inhibitor OBP-801 synergistically inhibit cell growth and induce apoptosis in bladder cancer cells.
Oncol Rep. 2018; 39(2):627-632 [PubMed] Related Publications
In advanced bladder cancer, cisplatin-based chemotherapy has been the standard treatment for many years, but there are many problems in terms of side-effects. Recently, a number of clinical trials using molecular-targeted agents have been conducted, and new therapies are expected that could replace conventional cytotoxic chemotherapy. We herein report that concurrent treatment with fibroblast growth factor receptor (FGFR) inhibitor BGJ398 and the novel histone deacetylase (HDAC) inhibitor OBP-801/YM753/spiruchostatin A synergistically inhibited cell growth and markedly induced apoptosis in high-grade bladder cancer cells. This combination activated caspase-3, -8 and -9, and the pan-caspase inhibitor zVAD-fmk significantly reduced the apoptotic response to the combined treatment. The combination upregulated the expression of Bim, one of the pro-apoptotic molecules. In the present study, Bim siRNA efficiently reduced apoptosis induced by the co-treatment of BGJ398 and OBP-801. Therefore, the apoptosis induced by the combination was shown to be at least partially dependent on Bim. Taken together, these results suggest that the combination of BGJ398 and OBP-801 is a novel high potential therapeutic strategy for muscle-invasive bladder cancer.

Allavena G, Cuomo F, Baumgartner G, et al.
Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation.
Autophagy. 2018; 14(2):252-268 [PubMed] Free Access to Full Article Related Publications
Macroautophagy/autophagy inhibition under stress conditions is often associated with increased cell death. We found that under nutrient limitation, activation of CASP8/caspase-8 was significantly increased in autophagy-deficient lung cancer cells, which precedes mitochondria outer membrane permeabilization (MOMP), CYCS/cytochrome c release, and activation of CASP9/caspase-9, indicating that under such conditions the activation of CASP8 is a primary event in the initiation of apoptosis as well as essential to reduce clonogenic survival of autophagy-deficient cells. Starvation leads to suppression of CFLAR proteosynthesis and accumulation of CASP8 in SQSTM1 puncta. Overexpression of CFLARs reduces CASP8 activation and apoptosis during starvation, while its silencing promotes efficient activation of CASP8 and apoptosis in autophagy-deficient U1810 lung cancer cells even under nutrient-rich conditions. Similar to starvation, inhibition of protein translation leads to efficient activation of CASP8 and cell death in autophagy-deficient lung cancer cells. Thus, here for the first time we report that suppressed translation leads to activation of CASP8-dependent apoptosis in autophagy-deficient NSCLC cells under conditions of nutrient limitation. Our data suggest that targeting translational machinery can be beneficial for elimination of autophagy-deficient cells via the CASP8-dependent apoptotic pathway.

Wang Y, Xia C, Lun Z, et al.
Crosstalk between p38 MAPK and caspase-9 regulates mitochondria-mediated apoptosis induced by tetra-α-(4-carboxyphenoxy) phthalocyanine zinc photodynamic therapy in LoVo cells.
Oncol Rep. 2018; 39(1):61-70 [PubMed] Free Access to Full Article Related Publications
Photodynamic therapy (PDT) is considered to be an advancing antitumor technology. PDT using hydrophilic/lipophilic tetra‑α-(4-carboxyphenoxy) phthalocyanine zinc (TαPcZn-PDT) has exhibited antitumor activity in Bel-7402 hepatocellular cancer cells. However, the manner in which p38 MAPK and caspase-9 are involved in the regulation of mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo human colon carcinoma cells remains unclear. Therefore, in the present study, a siRNA targeting p38 MAPK (siRNA-p38 MAPK) and the caspase‑9 specific inhibitor z-LEHD-fmk were used to examine the crosstalk between p38 MAPK and caspase-9 during mitochondria-mediated apoptosis in the TαPcZn-PDT‑treated LoVo cells. The findings revealed that the TαPcZn-PDT treatment of LoVo cells resulted in the induction of apoptosis, the formation of p38 MAPK/caspase-9 complexes, the activation of p38 MAPK, caspase-9, caspase-3 and Bid, the downregulation of Bcl-2, the reduction of mitochondrial membrane potential (ΔΨm), the upregulation of Bax and the release of apoptosis-inducing factor (AIF) and cytochrome c (Cyto c). By contrast, siRNA‑p38 MAPK or z-LEHD-fmk both attenuated the effects of TαPcZn-PDT in the LoVo cells. Furthermore, the results revealed that siRNA-p38 MAPK had more significant inhibitory effects on apoptosis and mitochondria compared with the effects of z-LEHD-fmk in TαPcZn-PDT-treated LoVo cells. These findings indicated that p38 MAPK plays the major regulatory role in the crosstalk between p38 MAPK and caspase-9 and that direct interaction between p38 MAPK and caspase-9 may regulate mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CASP9, Cancer Genetics Web: http://www.cancer-genetics.org/CASP9.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999