ABCB4

Gene Summary

Gene:ABCB4; ATP binding cassette subfamily B member 4
Aliases: GBD1, ICP3, MDR2, MDR3, PGY3, ABC21, MDR2/3, PFIC-3
Location:7q21.12
Summary:The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MDR/TAP subfamily. Members of the MDR/TAP subfamily are involved in multidrug resistance as well as antigen presentation. This gene encodes a full transporter and member of the p-glycoprotein family of membrane proteins with phosphatidylcholine as its substrate. The function of this protein has not yet been determined; however, it may involve transport of phospholipids from liver hepatocytes into bile. Alternative splicing of this gene results in several products of undetermined function. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:phosphatidylcholine translocator ABCB4
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (17)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Retroelements
  • Cholangiocarcinoma
  • ras Proteins
  • Antineoplastic Agents
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Gene Amplification
  • Ovarian Cancer
  • Doxorubicin
  • Genotype
  • Multiple Drug Resistance
  • Gene Expression
  • Up-Regulation
  • Estrogen Receptors
  • Oligonucleotide Array Sequence Analysis
  • Pregnancy Complications
  • ATP-Binding Cassette Transporters
  • ATP Binding Cassette Transporter, Subfamily B
  • Skin Cancer
  • Neoplasm Proteins
  • Transcriptional Activation
  • Vinblastine
  • Breast Cancer
  • RT-PCR
  • Liver Cancer
  • Protein-Serine-Threonine Kinases
  • Young Adult
  • Transcription
  • Epigenetics
  • Paclitaxel
  • Biomarkers, Tumor
  • Single Nucleotide Polymorphism
  • Vincristine
  • Cancer Gene Expression Regulation
  • Cell Survival
  • Drug Resistance
  • Messenger RNA
  • Mutation
  • Gene Expression Profiling
  • Chromosome 7
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: ABCB4 (cancer-related)

Reichert MC, Lammert F
ABCB4 Gene Aberrations in Human Liver Disease: An Evolving Spectrum.
Semin Liver Dis. 2018; 38(4):299-307 [PubMed] Related Publications
ATP-binding cassette subfamily B member 4 (ABCB4) is a phospholipid translocator at the canalicular membrane of the hepatocyte, which "flops" phosphatidylcholine into bile. Dysfunction of this transporter due to

Huang JF, Wen CJ, Zhao GZ, et al.
Overexpression of ABCB4 contributes to acquired doxorubicin resistance in breast cancer cells in vitro.
Cancer Chemother Pharmacol. 2018; 82(2):199-210 [PubMed] Related Publications
PURPOSE: Doxorubicin is one of the most active agents in the first-line therapy for metastatic breast cancer, but its utility is partially limited by the frequent emergence of doxorubicin resistance. In this study, we aimed to investigate the role of ATP-binding cassette sub-family B, member 4 (ABCB4) in acquired doxorubicin resistance in breast cancer cells, as well as its potential mechanism.
METHODS: In doxorubicin-sensitive and -resistant breast cancer cell lines MCF-7 and MDA-MB-231, the expression levels of ABCB4 were detected using real-time quantitative PCR and Western blot analysis, the DNA methylation and histone acetylation status of ABCB4 gene were investigated by bisulfite-sequencing PCR (BSP) and chromatin immunoprecipitation (ChIP) assays, and the doxorubicin sensitivity and intracellular doxorubicin accumulation were observed using cell cytotoxicity assay and flow cytometry. In Madin-Darby Canine Kidney (MDCKII) cells, In vitro transport assay was used to assess the ABCB4-mediated transport of doxorubicin.
RESULTS: ABCB4 was overexpressed in doxorubicin-resistant breast cancer cells compared to their doxorubicin-sensitive counterparts, which was associated with reduced DNA methylation as well as increased histone acetylation at the ABCB4 promoter. ABCB4 could actively pump doxorubicin out of the cells, and knockdown of ABCB4 increased doxorubicin sensitivity and intracellular accumulation in doxorubicin-resistant breast cancer cells.
CONCLUSIONS: Our results indicate that ABCB4 is overexpressed in breast cancer cells with acquired doxorubicin resistance, which could be attributed, at least partially, to the epigenetic modifications of ABCB4 gene. ABCB4 mediates the efflux transport of doxorubicin, and contributes to the acquired resistance of doxorubicin in breast cancer cells.

Hu H, Wang M, Guan X, et al.
Loss of ABCB4 attenuates the caspase-dependent apoptosis regulating resistance to 5-Fu in colorectal cancer.
Biosci Rep. 2018; 38(1) [PubMed] Free Access to Full Article Related Publications
The adenosine triphosphate-binding cassette (ABC) is a large group of proteins involved in material transportation, cellular homeostasis, and closely associated with chemoresistance. ATP-binding cassette protein B4 (ABCB4) is a member of ABCs which has a similar structure to ABCB1, but fewer researches were performed. The present study is aimed to investigate the putative mechanism of ABCB4 in 5-fluorouracil (5-Fu) resistance. Then, we found that ABCB4 was significantly down-regulated in the 5-Fu resistant HCT8 cell lines by polymerase chain reaction (PCR) and Western blot. The knockdown of ABCB4 by small interfering RNA decreased the apoptosis by 5-Fu in resistant HCT8R cell lines without influencing the proliferation. Also, we found a lower expression of cleaved caspase and PARP by Western blot after the knockdown of ABCB4. However, the knockdown of ABCB4 did not influence the proliferation and apoptosis. Furthermore, the histological detection of ABCB4 mRNA level in human colorectal cancer tissues and even in the recurrent tissues after 5-Fu single-agent chemotherapy was employed to provide more concrete evidence that ABCB4 may be a tumor suppressor gene to regulate chemoresistance in colorectal cancer. Moreover, a 109-patient cohort revealed that ABCB4 predicted a poor recurrence-free survival and overall survival. In summary, ABCB4 was down-regulated in the 5-Fu resistant cells and knockdown of ABCB4 alleviated the cell apoptosis and predicts a shorter recurrence-free survival and overall survival.

Xu J, Wu J, Fu C, et al.
Multidrug resistant lncRNA profile in chemotherapeutic sensitive and resistant ovarian cancer cells.
J Cell Physiol. 2018; 233(6):5034-5043 [PubMed] Related Publications
Most ovarian cancer patients are chemosensitive initially, but finally relapse with acquired chemoresistance. Multidrug-resistance is the extremely terrible situation. The mechanism for the acquired chemoresistance of ovarian cancer patients is still not clear. LncRNAs have been recognized as the important regulator of a variety of biological processes, including the multidrug-resistant process. Here, we carried out the lncRNA sequencing of the ovarian cancer cell line A2780 and the paxitaxel resistant cell line A2780/PTX which is also cross resistant to the cisplatin and epirubicin. Through integrating the published data with the cisplatin resistant lncRNAs in ovarian cancer cell line or ovarian cancer patients, 5 up-regulated and 21 down-regulated lncRNAs are considered as the multidrug-resistant lncRNAs. By real-time PCR analysis, we confirmed the 5 up-regulated and 4 down-regulated multidrug resistant lncRNAs were similarly changed in both the multidrug resistant ovarian cancer cell lines and the multidrug resistant colon cancer cell lines. Furthermore, we conducted the lncRNA-mRNA co-expression network to predict the potential multidrug resistant lncRNAs' targets. Interestingly, the multidrug resistant genes ABCB1, ABCB4, ABCC3, and ABCG2 are all co-expressed with lncRNA CTD-2589M5.4. Our results provide the valuable information for the understanding of the lncRNA function in the multidrug resistant process.

Genovese I, Ilari A, Assaraf YG, et al.
Not only P-glycoprotein: Amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins.
Drug Resist Updat. 2017; 32:23-46 [PubMed] Related Publications
The development of drug resistance continues to be a dominant hindrance toward curative cancer treatment. Overexpression of a wide-spectrum of ATP-dependent efflux pumps, and in particular of ABCB1 (P-glycoprotein or MDR1) is a well-known resistance mechanism for a plethora of cancer chemotherapeutics including for example taxenes, anthracyclines, Vinca alkaloids, and epipodopyllotoxins, demonstrated by a large array of published papers, both in tumor cell lines and in a variety of tumors, including various solid tumors and hematological malignancies. Upon repeated or even single dose treatment of cultured tumor cells or tumors in vivo with anti-tumor agents such as paclitaxel and doxorubicin, increased ABCB1 copy number has been demonstrated, resulting from chromosomal amplification events at 7q11.2-21 locus, leading to marked P-glycoprotein overexpression, and multidrug resistance (MDR). Clearly however, additional mechanisms such as single nucleotide polymorphisms (SNPs) and epigenetic modifications have shown a role in the overexpression of ABCB1 and of other MDR efflux pumps. However, notwithstanding the design of 4 generations of ABCB1 inhibitors and the wealth of information on the biochemistry and substrate specificity of ABC transporters, translation of this vast knowledge from the bench to the bedside has proven to be unexpectedly difficult. Many studies show that upon repeated treatment schedules of cell cultures or tumors with taxenes and anthracyclines as well as other chemotherapeutic drugs, amplification, and/or overexpression of a series of genes genomically surrounding the ABCB1 locus, is observed. Consequently, altered levels of other proteins may contribute to the establishment of the MDR phenotype, and lead to poor clinical outcome. Thus, the genes contained in this ABCB1 amplicon including ABCB4, SRI, DBF4, TMEM243, and RUNDC3B are overexpressed in many cancers, and especially in MDR tumors, while TP53TG1 and DMTF1 are bona fide tumor suppressors. This review describes the role of these genes in cancer and especially in the acquisition of MDR, elucidates possible connections in transcriptional regulation (co-amplification/repression) of genes belonging to the same ABCB1 amplicon region, and delineates their novel emerging contributions to tumor biology and possible strategies to overcome cancer MDR.

Paprocka M, Bielawska-Pohl A, Rossowska J, et al.
MRP1 protein expression in leukemic stem cells as a negative prognostic marker in acute myeloid leukemia patients.
Eur J Haematol. 2017; 99(5):415-422 [PubMed] Related Publications
BACKGROUND: It is well established that expression of multi-drug resistance (MDR) proteins (MDR1, BCRP, MDR3, MRP1, and LRP) in leukemic blasts correlates with acute myeloid leukemia (AML) patients' clinical response. Assuming that leukemic stem cells (LSC) are resistant to chemotherapy and responsible for relapse, it might be clinically relevant to evaluate the expression level of MDR proteins in LSC and relate it to the clinical outcome.
METHODS: Bone marrow samples from 26 patients with de novo AML were labeled with antibodies to distinguish CD34+CD38-CD123+ LSC population and with antibodies against MDR1, BCRP, MDR3, MRP1, or LRP proteins. Multicolor flow cytometry was applied to evaluate the expression of MDR proteins in blasts and LSC.
RESULTS: Nine of 26 patients with AML attained CR (30%). High negative correlation was found between MDR1 and LRP expression in blasts and the patient's remission. MDR proteins were expressed more frequently in LSC than in leukemic blasts. High negative correlation was also observed between remission achievement and MRP1 expression in LSC.
CONCLUSIONS: Our data present for the very first time the high negative correlation between MRP1 protein expression in LSC and AML patients' remission. It does strongly suggest that MRP1 expression in LSC is an adverse prognostic marker in patients with de novo AML.

Januchowski R, Sterzyńska K, Zawierucha P, et al.
Microarray-based detection and expression analysis of new genes associated with drug resistance in ovarian cancer cell lines.
Oncotarget. 2017; 8(30):49944-49958 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The present study is to discover a new genes associated with drug resistance development in ovarian cancer.
METHODS: We used microarray analysis to determine alterations in the level of expression of genes in cisplatin- (CisPt), doxorubicin- (Dox), topotecan- (Top), and paclitaxel- (Pac) resistant variants of W1 and A2780 ovarian cancer cell lines. Immunohistochemistry assay was used to determine protein expression in ovarian cancer patients.
RESULTS: We observed alterations in the expression of 22 genes that were common to all three cell lines that were resistant to the same cytostatic drug. The level of expression of 13 genes was upregulated and that of nine genes was downregulated. In the CisPt-resistant cell line, we observed downregulated expression of ABCC6, BST2, ERAP2 and MCTP1; in the Pac-resistant cell line, we observe upregulated expression of ABCB1, EPHA7 and RUNDC3B and downregulated expression of LIPG, MCTP1, NSBP1, PCDH9, PTPRK and SEMA3A. The expression levels of three genes, ABCB1, ABCB4 and IFI16, were upregulated in the Dox-resistant cell lines. In the Top-resistant cell lines, we observed increased expression levels of ABCG2, HERC5, IFIH1, MYOT, S100A3, SAMD4A, SPP1 and TGFBI and decreased expression levels of MCTP1 and PTPRK. The expression of EPHA7, IFI16, SPP1 and TGFBI was confirmed at protein level in analyzed ovarian cancer patients..
CONCLUSIONS: The expression profiles of the investigated cell lines indicated that new candidate genes are related to the development of resistance to the cytostatic drugs that are used in first- and second-line chemotherapy of ovarian cancer.

Mhatre S, Wang Z, Nagrani R, et al.
Common genetic variation and risk of gallbladder cancer in India: a case-control genome-wide association study.
Lancet Oncol. 2017; 18(4):535-544 [PubMed] Related Publications
BACKGROUND: Gallbladder cancer is highly lethal, with notable differences in incidence by geography and ethnic background. The aim of this study was to identify common genetic susceptibility alleles for gallbladder cancer.
METHODS: In this case-control genome-wide association study (GWAS), we did a genome-wide scan of gallbladder cancer cases and hospital visitor controls, both of Indian descent, followed by imputation across the genome. Cases were patients aged 20-80 years with microscopically confirmed primary gallbladder cancer diagnosed or treated at Tata Memorial Hospital, Mumbai, India, and enrolled in the study between Sept 12, 2010, and June 8, 2015. We only included patients who had been diagnosed less than 1 year before the date of enrolment and excluded patients with any other malignancies. We recruited visitor controls aged 20-80 years with no history of cancer visiting all departments or units of Tata Memorial Hospital during the same time period and frequency matched them to cases on the basis of age, sex, and current region of residence. We estimated association using logistic regression, adjusting for age, sex, and five eigenvectors. We recruited samples for a replication cohort from patients visiting Tata Memorial Hospital between Aug 4, 2015, and May 17, 2016, and patients visiting the Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India, between July, 2010, and May, 2015. We used the same inclusion and exclusion criteria for the replication set. We examined three of the most significant single-nucleotide polymorphisms (SNPs) in the replication cohort and did a meta-analysis of the GWAS discovery and replication sets to get combined estimates of association.
FINDINGS: The discovery cohort comprised 1042 gallbladder cancer cases and 1709 controls and the replication cohort contained 428 gallbladder cancer cases and 420 controls. We observed genome-wide significant associations for several markers in the chromosomal region 7q21.12 harbouring both the ABCB1 and ABCB4 genes, with the most notable SNPs after replication and meta-analysis being rs1558375 (GWAS p=3·8 × 10
INTERPRETATION: To our knowledge, this study is the first report of common genetic variation conferring gallbladder cancer risk at genome-wide significance. This finding, along with in-silico and biological evidence indicating the potential functional significance of ABCB1 and ABCB4, underlines the likely importance of these hepatobiliary phospholipid transporter genes in the pathology of gallbladder cancer.
FUNDING: The Tata Memorial Centre and Department of Biotechnology.

Zhou M, Luo J, Chen M, et al.
Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15.
J Hepatol. 2017; 66(6):1182-1192 [PubMed] Related Publications
BACKGROUND & AIMS: Bile acid nuclear receptor farnesoid X receptor (FXR) is a key molecular mediator of many metabolic processes, including the regulation of bile acid, lipid and glucose homeostasis. A significant component of FXR-mediated events essential to its biological activity is attributed to induction of the enteric endocrine hormone fibroblast growth factor (FGF)19 or its rodent ortholog, FGF15. In this report, we compared the properties of human FGF19 and murine FGF15 in the regulation of hepatocarcinogenesis and metabolism in various mouse models of disease.
METHODS: Tumorigenicity was assessed in three mouse models (db/db, diet-induced obese, and multi-drug resistance 2 [Mdr2]-deficient) following continuous exposure to FGF19 or FGF15 via adeno-associated viral-mediated gene delivery. Glucose, hemoglobin A1c and β-cell mass were characterized in db/db mice. Oxygen consumption, energy expenditure, and body composition were evaluated in diet-induced obese mice. Serum levels of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase were assessed in Mdr2-deficient mice. Expression profiles of genes encoding key proteins involved in bile acid synthesis and hepatocarcinogenesis were also determined.
RESULTS: Both FGF15 and FGF19 hormones repressed bile acid synthesis (p<0.001 for both). However, murine FGF15 lacked the protective effects characteristic of human FGF19 in db/db mice with overt diabetes, such as weight-independent HbA1c-lowering and β-cell-protection. Unlike FGF19, FGF15 did not induce hepatocellular carcinomas (HCC) in three mouse models of metabolic diseases (db/db, diet-induced obese, and multi-drug resistance 2 [Mdr2]-deficient mice), even at supra-pharmacological exposure levels.
CONCLUSIONS: Fundamental species-associated differences between FGF19 and FGF15 may restrict the relevance of mouse models for the study of the FXR/FGF19 pathway, and underscore the importance of clinical assessment of this pathway, with respect to both safety and efficacy in humans.
LAY SUMMARY: Activation of the nuclear receptor, FXR, leads to the production of a hormone called fibroblast growth factor 19 (FGF19) and subsequently regulation of multiple metabolic processes. Synthetic activators of FXR have been recently approved or are currently in clinical development for treatment of chronic liver diseases, including primary biliary cholangitis (PBC) and non-alcoholic steatohepatitis (NASH). The safety of these activators was partly assessed in mice exposed for prolonged periods of time. However, the results of this study show that mouse FGF15 and human FGF19 exhibit fundamentally different biological activities in mice. This could raise the concern of relying on rodent models for safety assessment of FXR activators. The potential risk of HCC development in patients treated with FXR agonists may need to be monitored.

Vij M, Shanmugam NP, Reddy MS, et al.
Hepatocarcinogenesis in multidrug-resistant P-glycoprotein 3 deficiency.
Pediatr Transplant. 2017; 21(3) [PubMed] Related Publications
MDR3 is a hepatocyte canalicular membrane protein encoded by the ABCB4 gene located on chromosome 7. MDR3 mediates the translocation of phosphatidylcholine into bile. Severe MDR 3 deficiency typically presents during early childhood with chronic cholestasis evolving to cirrhosis and portal hypertension, requiring liver transplantation. Herein, we report a case of severe MDR3 deficiency in a male child diagnosed with negative MDR3 immunostaining in hepatic canaliculi who underwent LDLT at our centre. We also describe single incidentally detected early well-differentiated HCC in the explant liver. The patient is on regular follow-up and is doing well. Our report shows that MDR3 deficiency may be a risk factor for the development of HCC.

Hontecillas-Prieto L, Garcia-Dominguez DJ, Vaca DP, et al.
Multidrug resistance transporter profile reveals MDR3 as a marker for stratification of blastemal Wilms tumour patients.
Oncotarget. 2017; 8(7):11173-11186 [PubMed] Free Access to Full Article Related Publications
Wilms tumour (WT) is the most common renal tumour in children. Most WT patients respond to chemotherapy, but subsets of tumours develop resistance to chemotherapeutic agents, which is a major obstacle in their successful treatment. Multidrug resistance transporters play a crucial role in the development of resistance in cancer due to the efflux of anticancer agents out of cells. The aim of this study was to explore several human multidrug resistance transporters in 46 WT and 40 non-neoplastic control tissues (normal kidney) from patients selected after chemotherapy treatment SIOP 93-01, SIOP 2001. Our data showed that the majority of the studied multidrug resistance transporters were downregulated or unchanged between tumours and control tissues. However, BCRP1, MDR3 and MRP1 were upregulated in tumours versus control tissues. MDR3 and MRP1 overexpression correlated with high-risk tumours (SIOP classification) (p = 0.0022 and p < 0.0001, respectively) and the time of disease-free survival was significantly shorter in patients with high transcript levels of MDR3 (p = 0.0359). MDR3 and MRP1 play a role in drug resistance in WT treatment, probably by alteration of an unspecific drug excretion system. Besides, within the blastemal subtype, we observed patients with low MDR3 expression were significantly associated with a better outcome than patients with high MDR3 expression. We could define two types of blastemal WT associated with different disease outcomes, enabling the stratification of blastemal WT patients based on the expression levels of the multidrug resistance transporter MDR3.

Sissung TM, Deeken J, Leibrand CR, et al.
Identification of novel SNPs associated with risk and prognosis in patients with castration-resistant prostate cancer.
Pharmacogenomics. 2016; 17(18):1979-1986 [PubMed] Free Access to Full Article Related Publications
AIM: Metabolism and transport play major roles in life-long exposure to endogenous and exogenous carcinogens. We therefore explored associations between polymorphisms in absorption, distribution, metabolism and elimination genes and the risk and prognosis of castration-resistant prostate cancer (CRPC).
MATERIALS & METHODS: A total of 634 genotypes were tested in 74 patients using the Affymetrix DMETv1.0 platform.
RESULTS: No relation to risk was found. Three SNPs were associated with CRPC prognosis in Caucasians: ABCB11 rs7602171G>A (p = 0.003; n = 30; hazard ratio [HR]: 0.307), GSTP1 rs1799811C>T (p = 0.001; n = 38; HR: 0.254) and SLC5A6 rs1395 (p = 0.004; n = 35; HR: 3.15). Two other polymorphisms among Caucasians were associated with interesting trends: ABCB4 rs2302387C>T (p = 0.039) and ABCC5 rs939339A>G (p = 0.018).
CONCLUSION: This exploratory study is the first to show that polymorphisms in several absorption, distribution, metabolism and elimination genes may be associated with CRPC prognosis.

Kong L, Zhou Y, Bu H, et al.
Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice.
J Exp Clin Cancer Res. 2016; 35(1):131 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is associated with inflammation, and roughly 30 % of the global population shows serological evidence of current or past infection with hepatitis B or hepatitis C virus. Resident hepatic macrophages, known as Kupffer cells (KCs), are considered as the specific tumor-associated macrophages (TAMs) of HCC, and can produce various cytokines-most importantly interleukin (IL)-6-to promote tumorigenesis of HCC. However, the roles of KCs and IL-6 in carcinogenesis in the liver are still unclear.
METHODS: We analyzed leukocyte-related peripheral blood data of 192 patients and constructed a mouse model in which the bone marrow was cleared out by irradiation and reconstructed using bone marrow donated from IL-6-deficient mice to further elucidate the hepatic pathological changes in response to toxic challenge and oncogenic gene mutation.
RESULTS: Peripheral monocyte counts and serum IL-6 levels were significantly higher in patients with HCC than in those without HCC. In addition, there was a significant difference in the levels of IL-6 among individuals with different histopathological grades. In mice with selective IL-6 ablation in monocytes/KCs, we observed decreased toxic liver injury, inflammatory infiltration, and systemic inflammation. In Mdr2-deficient mice, which spontaneously developed HCC, the loss of IL-6 in monocytes/KCs resulted in inhibition of IL-6/signal transducer and activator of transcription 3 signaling, decreased serum IL-6 levels, and delayed tumorigenesis.
CONCLUSIONS: Our findings demonstrate that increased TAM-derived IL-6 had an amplifying effect on the inflammation response, thereby promoting the occurrence and development of HCC.

Hansen SN, Ehlers NS, Zhu S, et al.
The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells.
BMC Genomics. 2016; 17:442 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines.
RESULTS: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing concentrations of docetaxel. Whole exome sequencing performed at five successive stages during this process was used to identify single point mutational events, insertions/deletions and copy number alterations associated with the acquisition of docetaxel resistance. Acquired coding variation undergoing positive selection and harboring characteristics likely to be functional were further prioritized using network-based approaches. A number of genomic changes were found to be undergoing evolutionary selection, some of which were likely to be functional. Of the five stages of progression toward resistance, most resistance relevant genomic variation appeared to arise midway towards fully resistant cells corresponding to passage 31 (5 nM docetaxel) for MDA-MB-231 and passage 16 (1.2 nM docetaxel) for MCF-7, and where the cells also exhibited a period of reduced growth rate or arrest, respectively. MCF-7 cell acquired several copy number gains on chromosome 7, including ABC transporter genes, including ABCB1 and ABCB4, as well as DMTF1, CLDN12, CROT, and SRI. For MDA-MB-231 numerous copy number losses on chromosome X involving more than 30 genes was observed. Of these genes, CASK, POLA1, PRDX4, MED14 and PIGA were highly prioritized by the applied network-based gene ranking approach. At higher docetaxel concentration MCF-7 subclones exhibited a copy number loss in E2F4, and the gene encoding this important transcription factor was down-regulated in MCF-7 resistant cells.
CONCLUSIONS: Our study of the evolution of acquired docetaxel resistance identified several genomic changes that might explain development of docetaxel resistance. Interestingly, the most relevant resistance-associated changes appeared to originate midway through the evolution towards fully resistant cell lines. Our data suggest that no single genomic event sufficiently predicts resistance to docetaxel, but require genomic alterations affecting multiple pathways that in concert establish the final resistance stage.

Cort A, Ozben T, Saso L, et al.
Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants.
Oxid Med Cell Longev. 2016; 2016:4251912 [PubMed] Free Access to Full Article Related Publications
Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed.

Dropmann A, Dediulia T, Breitkopf-Heinlein K, et al.
TGF-β1 and TGF-β2 abundance in liver diseases of mice and men.
Oncotarget. 2016; 7(15):19499-518 [PubMed] Free Access to Full Article Related Publications
TGF-β1 is a major player in chronic liver diseases promoting fibrogenesis and tumorigenesis through various mechanisms. The expression and function of TGF-β2 have not been investigated thoroughly in liver disease to date. In this paper, we provide evidence that TGF-β2 expression correlates with fibrogenesis and liver cancer development.Using quantitative realtime PCR and ELISA, we show that TGF-β2 mRNA expression and secretion increased in murine HSCs and hepatocytes over time in culture and were found in the human-derived HSC cell line LX-2. TGF-β2 stimulation of the LX-2 cells led to upregulation of the TGF-β receptors 1, 2, and 3, whereas TGF-β1 treatment did not alter or decrease their expression. In liver regeneration and fibrosis upon CCl4 challenge, the transient increase of TGF-β2 expression was accompanied by TGF-β1 and collagen expression. In bile duct ligation-induced fibrosis, TGF-β2 upregulation correlated with fibrotic markers and was more prominent than TGF-β1 expression. Accordingly, MDR2-KO mice showed significant TGF-β2 upregulation within 3 to 15 months but minor TGF-β1 expression changes. In 5 of 8 hepatocellular carcinoma (HCC)/hepatoblastoma cell lines, relatively high TGF-β2 expression and secretion were observed, with some cell lines even secreting more TGF-β2 than TGF-β1. TGF-β2 was also upregulated in tumors of TGFα/cMyc and DEN-treated mice. The analysis of publically available microarray data of 13 human HCC collectives revealed considerable upregulation of TGF-β2 as compared to normal liver.Our study demonstrates upregulation of TGF-β2 in liver disease and suggests TGF-β2 as a promising therapeutic target for tackling fibrosis and HCC.

Mazarico JM, Sánchez-Arévalo Lobo VJ, Favicchio R, et al.
Choline Kinase Alpha (CHKα) as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors.
Mol Cancer Ther. 2016; 15(2):323-33 [PubMed] Related Publications
Choline kinase α (CHKα) plays a crucial role in the regulation of membrane phospholipid synthesis and has oncogenic properties in vitro. We have analyzed the expression of CHKα in cell lines derived from pancreatic ductal adenocarcinoma (PDAC) and have found increased CHKα expression, associated with differentiation. CHKα protein expression was directly correlated with sensitivity to MN58b, a CHKα inhibitor that reduced cell growth through the induction of apoptosis. Accordingly, CHKα knockdown led to reduced drug sensitivity. In addition, we found that gemcitabine-resistant PDAC cells displayed enhanced sensitivity to CHKα inhibition and, in vitro, MN58b had additive or synergistic effects with gemcitabine, 5-fluorouracil, and oxaliplatin, three active drugs in the treatment of PDAC. Using tissue microarrays, CHKα was found to be overexpressed in 90% of pancreatic tumors. While cytoplasmic CHKα did not relate to survival, nuclear CHKα distribution was observed in 43% of samples and was associated with longer survival, especially among patients with well/moderately differentiated tumors. To identify the mechanisms involved in resistance to CHKα inhibitors, we cultured IMIM-PC-2 cells with increasingly higher concentrations of MN58b and isolated a subline with a 30-fold higher IC50. RNA-Seq analysis identified upregulation of ABCB1 and ABCB4 multidrug resistance transporters, and functional studies confirmed that their upregulation is the main mechanism involved in resistance. Overall, our findings support the notion that CHKα inhibition merits further attention as a therapeutic option in patients with PDAC and that expression levels may predict response.

Mu X, Pradere JP, Affò S, et al.
Epithelial Transforming Growth Factor-β Signaling Does Not Contribute to Liver Fibrosis but Protects Mice From Cholangiocarcinoma.
Gastroenterology. 2016; 150(3):720-33 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: Transforming growth factor-β (TGFβ) exerts key functions in fibrogenic cells, promoting fibrosis development in the liver and other organs. In contrast, the functions of TGFβ in liver epithelial cells are not well understood, despite their high level of responsiveness to TGFβ. We sought to determine the contribution of epithelial TGFβ signaling to hepatic fibrogenesis and carcinogenesis.
METHODS: TGFβ signaling in liver epithelial cells was inhibited by albumin-Cre-, K19-CreERT-, Prom1-CreERT2-, or AAV8-TBG-Cre-mediated deletion of the floxed TGFβ receptor II gene (Tgfbr2). Liver fibrosis was induced by carbon tetrachloride, bile duct ligation, or disruption of the multidrug-resistance transporter 2 gene (Mdr2). Hepatocarcinogenesis was induced by diethylnitrosamine or hepatic deletion of PTEN.
RESULTS: Deletion of Tgfbr2 from liver epithelial cells did not alter liver injury, toxin-induced or biliary fibrosis, or diethylnitrosamine-induced hepatocarcinogenesis. In contrast, epithelial deletion of Tgfbr2 promoted tumorigenesis and reduced survival of mice with concomitant hepatic deletion of Pten, accompanied by an increase in tumor number and a shift from hepatocellular carcinoma to cholangiocarcinoma. Surprisingly, both hepatocyte- and cholangiocyte-specific deletion of Pten and Tgfbr2 promoted the development of cholangiocarcinoma, but with different latencies. The prolonged latency and the presence of hepatocyte-derived cholangiocytes after AAV8-TBG-Cre-mediated deletion of Tgfbr2 and Pten indicated that cholangiocarcinoma might arise from hepatocyte-derived cholangiocytes in this model. Pten deletion resulted in up-regulation of Tgfbr2, and deletion of Tgfbr2 increased cholangiocyte but not hepatocyte proliferation, indicating that the main function of epithelial TGFBR2 is to restrict cholangiocyte proliferation.
CONCLUSIONS: Epithelial TGFβ signaling does not contribute to the development of liver fibrosis or formation of hepatocellular carcinomas in mice, but restricts cholangiocyte proliferation to prevent cholangiocarcinoma development, regardless of its cellular origin.

Vij M, Safwan M, Shanmugam NP, Rela M
Liver pathology in severe multidrug resistant 3 protein deficiency: a series of 10 pediatric cases.
Ann Diagn Pathol. 2015; 19(5):277-82 [PubMed] Related Publications
Multidrug resistance protein 3 (MDR3) is a hepatocyte canalicular membrane protein encoded by the ABCB4/MDR3 gene located on chromosome 7. Several liver diseases are known to be associated with MDR3 deficiency. The basic defect is reduced secretion of biliary phospholipid causing disturbance in the primary bile composition, leading to injury to biliary epithelium inducing cell death and inflammation. Severe MDR3 deficiency typically presents during the first year of life or early childhood, often progressing to chronic liver disease with cirrhosis and portal hypertension, requiring liver transplantation. Negative MDR3 immunostaining is suggestive of MDR3 deficiency. Herein, we report the clinical and histopathologic features of 10 cases (6 male/4 female) in infants and children with severe MDR3 deficiency (age range of 8 months to 7 years) diagnosed with negative MDR3 immunostaining in hepatic canaliculi. Three cases underwent liver transplantation. The cases showed periportal bridging fibrosis to micronodular cirrhosis, ductular proliferation with bile plugs, and lobular canalicular bile stasis with rosetting. All 3 explant livers demonstrated cystically dilated large ducts with crystallization of cholesterol. One case showed well-differentiated hepatocellular carcinoma. We conclude that MDR3 immunostaining on formalin-fixed and paraffin-embedded sections is a useful tool to diagnose severe MDR3 deficiency in pediatric liver cholestatic disease cases where genetic testing is not available.

Stoyanov E, Ludwig G, Mizrahi L, et al.
Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis.
Oncotarget. 2015; 6(13):11047-60 [PubMed] Free Access to Full Article Related Publications
Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2(-/-) (Mdr2/Abcb4-knockout) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation followed by hybridization with "CpG islands" (CGIs) microarrays, we found specific CGIs in 76 genes which were hypermethylated in the Mdr2(-/-) liver compared to age-matched healthy controls. The observed hypermethylation resulted mainly from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2(-/-) liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2(-/-) livers affected either hepatocyte, or non-hepatocyte, or both fractions without a correlation between changes of gene methylation and expression. Our findings demonstrate that chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as useful markers of an increased regenerative activity and of a late precancerous stage in the chronically inflamed liver.

Ella E, Heim D, Stoyanov E, et al.
Specific genomic and transcriptomic aberrations in tumors induced by partial hepatectomy of a chronically inflamed murine liver.
Oncotarget. 2014; 5(21):10318-31 [PubMed] Free Access to Full Article Related Publications
Resection of hepatocellular carcinoma (HCC) tumors by partial hepatectomy (PHx) is associated with promoting hepatocarcinogenesis. We have previously reported that PHx promotes hepatocarcinogenesis in the Mdr2-knockout (Mdr2-KO) mouse, a model for inflammation-mediated HCC. Now, to explore the molecular mechanisms underlying the tumor-promoting effect of PHx, we compared genomic and transcriptomic profiles of HCC tumors developing in the Mdr2-KO mice either spontaneously or following PHx. PHx accelerated HCC development in these mice by four months. PHx-induced tumors had major chromosomal aberrations: all were amplifications affecting multiple chromosomes. Most of these amplifications were located near the acrocentric centromeres of murine chromosomes. Four different chromosomal regions were amplified each in at least three tumors. The human orthologs of these common amplified regions are known to be amplified in HCC. All tumors of untreated mice had chromosomal aberrations, including both deletions and amplifications. Amplifications in spontaneous tumors affected fewer chromosomes and were not located preferentially at the chromosomal edges. Comparison of gene expression profiles revealed a significantly enriched expression of oncogenes, chromosomal instability markers and E2F1 targets in the post-PHx compared to spontaneous tumors. Both tumor groups shared the same frequent amplification at chromosome 18. Here, we revealed that one of the regulatory genes encoded by this amplified region, Crem, was over-expressed in the nuclei of murine and human HCC cells in vivo, and that it stimulated proliferation of human HCC cells in vitro. Our results demonstrate that PHx of a chronically inflamed liver directed tumor development to a discrete pathway characterized by amplification of specific chromosomal regions and expression of specific tumor-promoting genes. Crem is a new candidate HCC oncogene frequently amplified in this model and frequently over-expressed in human HCC.

Kiehl S, Herkt SC, Richter AM, et al.
ABCB4 is frequently epigenetically silenced in human cancers and inhibits tumor growth.
Sci Rep. 2014; 4:6899 [PubMed] Free Access to Full Article Related Publications
Epigenetic silencing through promoter hypermethylation is an important hallmark for the inactivation of tumor-related genes in carcinogenesis. Here we identified the ATP-binding cassette sub-family B member 4 (ABCB4) as a novel epigenetically silenced target gene. We investigated the epigenetic regulation of ABCB4 in 26 human lung, breast, skin, liver, head and neck cancer cells lines and in primary cancers by methylation and expression analysis. Hypermethylation of the ABCB4 CpG island promoter occurred in 16 out of 26 (62%) human cancer cell lines. Aberrant methylation of ABCB4 was also revealed in 39% of primary lung cancer and in 20% of head and neck cancer tissues. In 37% of primary lung cancer samples, ABCB4 expression was absent. For breast cancer a significant hypermethylation occurred in tumor tissues (41%) compared to matching normal samples (0%, p = 0.002). Silencing of ABCB4 was reversed by 5-aza-2'-deoxycytidine and zebularine treatments leading to its reexpression in cancer cells. Overexpression of ABCB4 significantly suppressed colony formation and proliferation of lung cancer cells. Hypermethylation of Abcb4 occurred also in murine cancer, but was not found in normal tissues. Our findings suggest that ABCB4 is a frequently silenced gene in different cancers and it may act tumor suppressivly in lung cancer.

De Ponti A, Wiechert L, Stojanovic A, et al.
Chronic liver inflammation and hepatocellular carcinogenesis are independent of S100A9.
Int J Cancer. 2015; 136(10):2458-63 [PubMed] Related Publications
The S100A8/A9 heterodimer (calprotectin) acts as a danger signal when secreted into the extracellular space during inflammation and tissue damage. It promotes proinflammatory responses and drives tumor development in different models of inflammation-driven carcinogenesis. S100A8/A9 is strongly expressed in several human tumors, including hepatocellular carcinoma (HCC). Apart from this evidence, the role of calprotectin in hepatocyte transformation and tumor microenvironment is still unknown. The aim of this study was to define the function of S100A8/A9 in inflammation-driven HCC. Mice lacking S100a9 were crossed with the Mdr2(-/-) model, a prototype of inflammation-induced HCC formation. S100a9(-/-) Mdr2(-/-) (dKO) mice displayed no significant differences in tumor incidence or multiplicity compared to Mdr2(-/-) animals. Chronic liver inflammation, fibrosis and oval cell activation were not affected upon S100a9 deletion. Our data demonstrate that, although highly upregulated, calprotectin is dispensable in the onset and development of HCC, and in the maintenance of liver inflammation.

Colotti G, Poser E, Fiorillo A, et al.
Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells.
Molecules. 2014; 19(9):13976-89 [PubMed] Free Access to Full Article Related Publications
Sorcin is a penta-EF hand calcium binding protein, which participates in the regulation of calcium homeostasis in cells. Sorcin regulates calcium channels and exchangers located at the plasma membrane and at the endo/sarcoplasmic reticulum (ER/SR), and allows high levels of calcium in the ER to be maintained, preventing ER stress and possibly, the unfolded protein response. Sorcin is highly expressed in the heart and in the brain, and overexpressed in many cancer cells. Sorcin gene is in the same amplicon as other genes involved in the resistance to chemotherapeutics in cancer cells (multi-drug resistance, MDR) such as ABCB4 and ABCB1; its overexpression results in increased drug resistance to a number of chemotherapeutic agents, and inhibition of sorcin expression by sorcin-targeting RNA interference leads to reversal of drug resistance. Sorcin is increasingly considered a useful marker of MDR and may represent a therapeutic target for reversing tumor multidrug resistance.

Vaz AP, Ponnusamy MP, Rachagani S, et al.
Novel role of pancreatic differentiation 2 in facilitating self-renewal and drug resistance of pancreatic cancer stem cells.
Br J Cancer. 2014; 111(3):486-96 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer stem cells (CSCs) contribute towards disease aggressiveness and drug resistance. Specific identification of CSC maintenance genes and targeting can improve the efficiency of currently available treatment modalities. Pancreatic differentiation 2 (PD2) has a major role in the self-renewal of mouse embryonic stem cells. In the present study, we investigated the role of PD2 in pancreatic CSCs.
METHODS: Characterisation of CSCs and non-CSCs from mouse models, pancreatic cancer cells and human tissues by CSC and self-renewal marker analysis using confocal assay. Effect of PD2 knockdown in CSCs (after gemcitabine treatment) was studied by immunoblot and apoptosis assays.
RESULTS: A subpopulation of cells displayed PD2 overexpression in mouse (Kras(G12D); Pdx1-Cre and Kras(G12D); Trp53(R172H/+); Pdx1-Cre) and human pancreatic tumours, which co-express CSC markers. Cancer stem cells exhibited elevated expression of PD2 and self-renewal markers, such as Oct3/4, Shh and β-catenin. Gemcitabine treatment maintained the CSC population with simultaneous maintenance of PD2 and CSC marker expression. Knockdown of PD2 in CSCs resulted in reduced viability of cells and enhanced apoptosis along with abrogated expression of CD133 and MDR2.
CONCLUSIONS: Our results suggest that PD2 is a novel CSC maintenance protein, loss of which renders the CSCs more susceptible to drug-induced cell death.

Januchowski R, Zawierucha P, Ruciński M, et al.
Drug transporter expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.
Biomed Pharmacother. 2014; 68(4):447-53 [PubMed] Related Publications
Ovarian cancer is characterized by the higher mortality among gynecological cancers. In results of MDR development during chemotherapy cancer cells become resistant to further treatment. Microarray techniques can provide information about MDR development at gene expression level. ABC and SLC transporters are most important proteins responsible for this phenomenon. In this study changes of ABC and SLC genes expression pattern in drugs resistant sublines of the A2780 ovarian cancer cell line were demonstrated. The cytostatic resistant sublines were generated by culture of A2780 cell line with an increasing concentration of the indicated drugs. As screening methods, we used Affymetrix U219 Human Genome microarrays. Independent t-tests were used to determinate statistical significances of results. Genes that expression levels were higher than assumed threshold (upregulated above threefold and downregulated under -3 fold) were visualized using scatter plot method, selected and listed in table. Between the ABC genes increased expression of seven genes and decreased expression of three genes were observed. Expression of two genes was increased or decreased depending on the cell line. We observed significant (more than tenfold) increase in expression of four ABC genes: ABCA8, ABCB1, ABCB4 and ABCG2 and decreased expression of ABCA3 gene. We also observed changes in expression of 32 SLC genes. Between them we observe increased expression of 17 genes and decreased expression of 15 genes. Expression of four genes was increased or decreased dependent on cell line. The expression of nine SLC genes increased or decreased very significantly (more than tenfold). Five genes were significantly upregulated: SLC2A9, SLC16A3, SLC16A14, SLC38A4 and SLC39A8. Four additional genes were significantly downregulated: SLC2A14, SLC6A15, SLC8A1 and SLC27A2. Expression profiles of these genes give strong arguments for assumption of correlation between expression of ABC and SLC genes and drug resistance phenomenon. Identifying correlations between specific drug transporters and cytostatic drug resistance will require further investigation.

Januchowski R, Wojtowicz K, Andrzejewska M, Zabel M
Expression of MDR1 and MDR3 gene products in paclitaxel-, doxorubicin- and vincristine-resistant cell lines.
Biomed Pharmacother. 2014; 68(1):111-7 [PubMed] Related Publications
Multiple drug resistance is one of the main reasons for low chemotherapeutic efficiency in cancer patients. The proteins that are most frequently implicated to play a role in this mechanism are transmembrane proteins that are members of the ABC family. The most important ABC protein is MDR1 (ABCB1), which is expressed in over fifty percent of drug-resistant cancers. The phosphatidylcholine transporter, MDR3 (ABCB4), exhibits high homology with MDR1. An increasing body of evidence suggests that MDR3 plays a role in drug resistance. In the present study, we used doxorubicin-, paclitaxel- and vincristine-resistant cancer cell lines. A chemosensitivity assay MTT test was performed to assess drug resistance. Quantitative real-time polymerase chain reaction analyses were performed to determine the mRNA expression levels of the MDR1 and MDR3 genes. We observed dose-dependent responses to doxorubicin, paclitaxel and vincristine in the investigated cell lines. In all of the drug-resistant cell lines that we studied, we observed increased MDR1 and MDR3 transcript levels. In a doxorubicin-resistant variant of the LoVo cell line (LoVoDx), MDR3 was expressed at higher levels than MDR1. We also observed high correlations between MDR3 expression and resistance to doxorubicin and paclitaxel. Our results suggest that MDR3 plays an active and important role in drug resistance in the investigated cell lines.

Vaquero J, Briz O, Herraez E, et al.
Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds.
Biochim Biophys Acta. 2013; 1833(10):2212-9 [PubMed] Related Publications
The success of pharmacological treatments in primary liver cancers is limited by the marked efficacy of mechanisms of chemoresistance already present in hepatocytes. The role of the nuclear receptor FXR is unclear. Although, in non-treated liver tumors, its expression is reduced, the refractoriness to anticancer drugs is high. Moreover, the treatment with cisplatin up-regulates FXR. The aim of this study was to investigate whether FXR is involved in stimulating chemoprotection/chemoresistance in healthy and tumor liver cells. In human hepatocytes, the activation of FXR with the agonist GW4064 resulted in a significant protection against cisplatin-induced toxicity. In human hepatoma Alexander cells, with negligible endogenous expression of FXR, GW4064 also protected against cisplatin-induced toxicity, but only if they were previously transfected with FXR/RXR. Investigation of 109 genes potentially involved in chemoresistance revealed that only ABCB4, TCEA2, CCL14, CCL15 and KRT13 were up-regulated by FXR activation both in human hepatocytes and FXR/RXR-expressing hepatoma cells. In both models, cisplatin, even in the absence of FXR agonists, such as bile acids and GW4064, was able to up-regulate FXR targets genes, which was due to FXR-mediated trans-activation of response elements in the promoter region. FXR-dependent chemoprotection was also efficient against other DNA-damaging compounds, such as doxorubicin, mitomycin C and potassium dichromate, but not against non-genotoxic drugs, such as colchicine, paclitaxel, acetaminophen, artesunate and sorafenib. In conclusion, ligand-dependent and independent activation of FXR stimulates mechanisms able to enhance the chemoprotection of hepatocytes against genotoxic compounds and to reduce the response of liver tumor cells to certain pharmacological treatments.

Shukla R, Upton KR, Muñoz-Lopez M, et al.
Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma.
Cell. 2013; 153(1):101-11 [PubMed] Free Access to Full Article Related Publications
LINE-1 (L1) retrotransposons are mobile genetic elements comprising ~17% of the human genome. New L1 insertions can profoundly alter gene function and cause disease, though their significance in cancer remains unclear. Here, we applied enhanced retrotransposon capture sequencing (RC-seq) to 19 hepatocellular carcinoma (HCC) genomes and elucidated two archetypal L1-mediated mechanisms enabling tumorigenesis. In the first example, 4/19 (21.1%) donors presented germline retrotransposition events in the tumor suppressor mutated in colorectal cancers (MCC). MCC expression was ablated in each case, enabling oncogenic β-catenin/Wnt signaling. In the second example, suppression of tumorigenicity 18 (ST18) was activated by a tumor-specific L1 insertion. Experimental assays confirmed that the L1 interrupted a negative feedback loop by blocking ST18 repression of its enhancer. ST18 was also frequently amplified in HCC nodules from Mdr2(-/-) mice, supporting its assignment as a candidate liver oncogene. These proof-of-principle results substantiate L1-mediated retrotransposition as an important etiological factor in HCC.

Mohelnikova-Duchonova B, Brynychova V, Oliverius M, et al.
Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues.
Pancreas. 2013; 42(4):707-16 [PubMed] Related Publications
OBJECTIVES: The aim of this study was to evaluate transcript levels of all 49 human ATP-binding cassette transporters (ABCs) in one of the most drug-resistant cancers, namely, the pancreatic ductal adenocarcinoma (PDAC). Association of ABCs levels with clinical-pathologic characteristics and KRAS mutation status was followed as well.
METHODS: Tumors and adjacent nonneoplastic tissues were obtained from 32 histologically verified PDAC patients. The transcript profile of ABCs was assessed using quantitative real-time polymerase chain reaction with a relative standard curve. KRAS mutations in exon 2 were assessed by high-resolution melting analysis and sequencing.
RESULTS: Most ABCs were deregulated in PDAC and 10 ABCs were associated with clinical-pathologic characteristics. KRAS mutations did not change the global expression profile of ABCs.
CONCLUSIONS: The expression of ABC transporters was significantly deregulated in PDAC tumors when compared to nonmalignant tissues. The observed up-regulation of ABCB4, ABCB11, ABCC1, ABCC3, ABCC5, ABCC10, and ABCG2 in tumors may contribute to the generally poor treatment response of PDAC. The up-regulation of ABCA1, ABCA7, and ABCG1 implicates a serious impairment of cellular cholesterol homeostasis in PDAC. On the other hand, the observed down-regulation of ABCA3, ABCC6, ABCC7, and ABCC8 suggests a possible role of stem cells in the development and progression of PDAC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ABCB4, Cancer Genetics Web: http://www.cancer-genetics.org/ABCB4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999