SREBF1

Gene Summary

Gene:SREBF1; sterol regulatory element binding transcription factor 1
Aliases: SREBP1, bHLHd1
Location:17p11.2
Summary:This gene encodes a basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factor that binds to the sterol regulatory element-1 (SRE1), which is a motif that is found in the promoter of the low density lipoprotein receptor gene and other genes involved in sterol biosynthesis. The encoded protein is synthesized as a precursor that is initially attached to the nuclear membrane and endoplasmic reticulum. Following cleavage, the mature protein translocates to the nucleus and activates transcription. This cleaveage is inhibited by sterols. This gene is located within the Smith-Magenis syndrome region on chromosome 17. Alternative promoter usage and splicing result in multiple transcript variants, including SREBP-1a and SREBP-1c, which correspond to RefSeq transcript variants 2 and 3, respectively. [provided by RefSeq, Nov 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:sterol regulatory element-binding protein 1
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (43)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cancer Gene Expression Regulation
  • MicroRNAs
  • Chromosome 17
  • Lipid Metabolism
  • Breast Cancer
  • AKT1
  • Transcriptional Activation
  • Enzymologic Gene Expression Regulation
  • Fatty Acid Synthases
  • Intracellular Signaling Peptides and Proteins
  • Promoter Regions
  • Fatty Acid Synthase, Type I
  • Androgen Receptors
  • Receptors, LDL
  • Gene Knockdown Techniques
  • fas Receptor
  • CCAAT-Enhancer-Binding Proteins
  • Signal Transduction
  • RNA Interference
  • Hepatocellular Carcinoma
  • Hep G2 Cells
  • Messenger RNA
  • DNA-Binding Proteins
  • Oligonucleotide Array Sequence Analysis
  • Xenograft Models
  • Sterol Regulatory Element Binding Protein 2
  • Sterol Regulatory Element Binding Protein 1
  • Transcription Factors
  • Transfection
  • Cell Proliferation
  • Up-Regulation
  • Prostate Cancer
  • Lipogenesis
  • Liver Cancer
  • Cholesterol
  • siRNA
  • Apoptosis
  • Gene Expression Profiling
  • Drug Resistance
  • Young Adult
Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SREBF1 (cancer-related)

Perone Y, Farrugia AJ, Rodríguez-Meira A, et al.
SREBP1 drives Keratin-80-dependent cytoskeletal changes and invasive behavior in endocrine-resistant ERα breast cancer.
Nat Commun. 2019; 10(1):2115 [PubMed] Free Access to Full Article Related Publications
Approximately 30% of ERα breast cancer patients relapse with metastatic disease following adjuvant endocrine therapies. The connection between acquisition of drug resistance and invasive potential is poorly understood. In this study, we demonstrate that the type II keratin topological associating domain undergoes epigenetic reprogramming in aromatase inhibitors (AI)-resistant cells, leading to Keratin-80 (KRT80) upregulation. KRT80 expression is driven by de novo enhancer activation by sterol regulatory element-binding protein 1 (SREBP1). KRT80 upregulation directly promotes cytoskeletal rearrangements at the leading edge, increased focal adhesion and cellular stiffening, collectively promoting cancer cell invasion. Shearwave elasticity imaging performed on prospectively recruited patients confirms KRT80 levels correlate with stiffer tumors. Immunohistochemistry showed increased KRT80-positive cells at relapse and, using several clinical endpoints, KRT80 expression associates with poor survival. Collectively, our data uncover an unpredicted and potentially targetable direct link between epigenetic and cytoskeletal reprogramming promoting cell invasion in response to chronic AI treatment.

Syafruddin SE, Rodrigues P, Vojtasova E, et al.
A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma.
Nat Commun. 2019; 10(1):1152 [PubMed] Free Access to Full Article Related Publications
Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.

Shi Z, Zhou Q, Gao S, et al.
Silibinin inhibits endometrial carcinoma via blocking pathways of STAT3 activation and SREBP1-mediated lipid accumulation.
Life Sci. 2019; 217:70-80 [PubMed] Related Publications
AIMS: To seek new conservative treatments for young women with early-stage endometrial carcinoma (EC) who desire to retain fertility, we investigated the effects and the underlying mechanism of silibinin in EC, which exhibits promising anti-cancer and tumour-suppressing properties in many malignant tumours.
MAIN METHODS: Through relevant experiments such as MTT assay, cell colony formation assay and subcutaneous xenograft experiment, we showed that silibinin inhibited the proliferation of EC cells and tumours. Silibinin significantly induced cell cycle arrest and promoted apoptosis in vitro. In vivo TUNEL assay confirmed the apoptotic effect caused by silibinin. STAT3 is activated in the development of tumours. Silibinin notably inhibited the expression of STAT3 phosphorylation and regulated the expression of downstream genes involved in cell cycle and apoptosis at protein and mRNA levels in EC cells. Furthermore, silibinin decreased the expression of intranuclear SREBP1, which is a key regulator of lipid metabolism in the nucleus, and reduced the lipid accumulation in EC cells. Downregulation of the expression levels of SREBP1 and its downstream genes associated with lipid metabolism was also observed in silibinin-treated EC cells.
KEY FINDINGS: The results revealed that a novel anticancer drug, silibinin, markedly suppressed cell proliferation, cell cycle progression, apoptosis inhibition and lipid accumulation by blocking STAT3 and SERBP1 signalling pathways in EC cells.
SIGNIFICANCE: Silibinin has anti-tumour characteristics and inhibits abnormal lipid metabolism in EC. This compound is expected to contribute to the conservative and adjuvant treatment of EC and should therefore be investigated further.

Zhang X, Wu J, Wu C, et al.
The LINC01138 interacts with PRMT5 to promote SREBP1-mediated lipid desaturation and cell growth in clear cell renal cell carcinoma.
Biochem Biophys Res Commun. 2018; 507(1-4):337-342 [PubMed] Related Publications
Clear cell renal cell carcinoma (ccRCC), the most common type of kidney malignancy, is an incurable disease characterized by multiple metabolic abnormalities, especially lipid accumulation and desaturation. Though great progresses have been made in understanding the mechanisms of ccRCC, metabolic abnormalities remain largely unclear. Here, we found lncRNA LINC01138 is highly expressed in ccRCC and is associated with poor patient survival. LINC01138 regulates ccRCC growth through sterol regulatory element-binding protein 1 (SREBP1)-mediated lipid desaturation. Mechanistically, we demonstrated that LINC01138 interacts with PRMT5 to increase arginine methylation and protein stability of SREBP1, promoting lipid desaturation and cell proliferation in ccRCC. Our study identified LINC01138 as a novel regulator of metabolic abnormalities in ccRCC, providing a potential therapeutic target for metabolic therapy.

Huang SY, Huang GJ, Wu HC, et al.
Molecules. 2018; 23(10) [PubMed] Free Access to Full Article Related Publications
Recent research suggests that the activation of lipid biosynthesis (lipogenesis) is linked with prostate cancer (PCa) malignancy. Sterol regulatory element-binding protein-1 (SREBP-1) is a key transcriptional regulator controlling lipogenesis. Moreover, androgen receptor (AR) has been well defined to play an important role in lethal PCa aggressiveness from androgen-responsive to castration-resistant status. In this study, we showed that the quality-assured

Pattanayak SP, Bose P, Sunita P, et al.
Bergapten inhibits liver carcinogenesis by modulating LXR/PI3K/Akt and IDOL/LDLR pathways.
Biomed Pharmacother. 2018; 108:297-308 [PubMed] Related Publications
Oxysterol receptors LXRs (α and β) are recently reported to be one of the novel and potential therapeutic targets in reducing cell proliferation and tumor growth in different system model. Activation of LXRs is correlated with modification of PI3K/Akt pathway. LXRs are also found to play a critical role in maintaining lipid homeostatais by regulating ABCA1, IDOL, SREBP1, LDLR and also certain lipogenic genes such as FASN and SCD1. In the present study a potential furanocoumarin, Bergapten (BeG) has been evaluated for its anticancer property on Hepatocellular Carcinoma (HCC) on LXR axis. The molecular docking analysis was carried out for BeG on LXR (α & β) using Maestro tool and compared with reference ligands. This was followed by in vitro (HepG2 cell lines) and in vivo (on NDEA induced HCC in Wistar albino rats) anticancer evaluation of BeG. The docking results revealed polar and hydrophobic interactions of BeG with LXR (α,β). The in vitro studies revealed the potential of BeG in lowering the accumulation of lipid droplets in HepG2 cells which was correlated with increase in LXR (α,β) protein expressions. Furthermore, the in vivo studies demonstrated the potential of BeG in ameliorating the cancer induced alterations in body weight, liver weight and significant restoration of the changes in mRNA and protein expressions of LXR(α,β), ABCA1, IDOL, SREBP1 and LDLR. BeG also modulated the expressions of PI3K, Akt and certain lipogenic genes like FASN and SCD1 and reduced the lipid droplets level in liver cancer cells. These results provide evidence and validates the critical role of BeG in maintaining the lipid homeostasis and justifies its anticancer potential against NDEA-induced HCC.

Du T, Sikora MJ, Levine KM, et al.
Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer.
Breast Cancer Res. 2018; 20(1):106 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Invasive lobular breast carcinoma (ILC) is a histological subtype of breast cancer that is characterized by loss of E-cadherin and high expression of estrogen receptor alpha (ERα). In many cases, ILC is effectively treated with adjuvant aromatase inhibitors (AIs); however, acquired AI resistance remains a significant problem.
METHODS: To identify underlying mechanisms of acquired anti-estrogen resistance in ILC, we recently developed six long-term estrogen-deprived (LTED) variant cell lines from the human ILC cell lines SUM44PE (SUM44; two lines) and MDA-MB-134VI (MM134; four lines). To better understand mechanisms of AI resistance in these models, we performed transcriptional profiling analysis by RNA-sequencing followed by candidate gene expression and functional studies.
RESULTS: MM134 LTED cells expressed ER at a decreased level and lost growth response to estradiol, while SUM44 LTED cells retained partial ER activity. Our transcriptional profiling analysis identified shared activation of lipid metabolism across all six independent models. However, the underlying basis of this signature was distinct between models. Oxysterols were able to promote the proliferation of SUM44 LTED cells but not MM134 LTED cells. In contrast, MM134 LTED cells displayed a high expression of the sterol regulatory element-binding protein 1 (SREBP1), a regulator of fatty acid and cholesterol synthesis, and were hypersensitive to genetic or pharmacological inhibition of SREBPs. Several SREBP1 downstream targets involved in fatty acid synthesis, including FASN, were induced, and MM134 LTED cells were more sensitive to etomoxir, an inhibitor of the rate-limiting enzyme in beta-oxidation, than their respective parental control cells. Finally, in silico expression analysis in clinical specimens from a neo-adjuvant endocrine trial showed a significant association between the increase of SREBP1 expression and lack of clinical response, providing further support for a role of SREBP1 in the acquisition of endocrine resistance in breast cancer.
CONCLUSIONS: Our characterization of a unique series of AI-resistant ILC models identifies the activation of key regulators of fatty acid and cholesterol metabolism, implicating lipid-metabolic processes driving estrogen-independent growth of ILC cells. Targeting these changes may prove a strategy for prevention and treatment of endocrine resistance for patients with ILC.

Min X, Wen J, Zhao L, et al.
Role of hepatoma-derived growth factor in promoting de novo lipogenesis and tumorigenesis in hepatocellular carcinoma.
Mol Oncol. 2018; 12(9):1480-1497 [PubMed] Free Access to Full Article Related Publications
Although identified as a growth factor, the mechanism by which hepatoma-derived growth factor (HDGF) promotes cancer development remains unclear. We found that nuclear but not cytoplasmic HDGF is closely associated with prognosis of hepatocellular carcinoma (HCC). RNA-sequencing analysis further demonstrated that the nuclear role of HDGF involved regulation of transcription of lipid metabolism genes. HDGF-induced expression of lipogenic genes was mainly associated with activation of sterol regulatory element binding protein (SREBP) transcription factor. Coexpression of SREBP-1 and nuclear HDGF predicts poor prognosis for HCC. In addition, by changing the first amino acid of the PWWP domain from proline to alanine, the type of PWWP domain changed from P- to A-type, resulting in inability to induce SREBP-1-mediated gene transcription. The type of PWWP domain affects the recruitment of the C-terminal binding protein-1 transcriptional repressor on the promoter of the lipogenic gene. Our data indicate that HDGF acts as a coactivator of SREBP1-mediated transcription of lipogenic genes. The PWWP domain is crucial for HDGF to promote lipogenesis. Moreover, transcriptional regulation of nuclear HDGF plays important roles in the development of HCC.

Talebi A, Dehairs J, Rambow F, et al.
Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy.
Nat Commun. 2018; 9(1):2500 [PubMed] Free Access to Full Article Related Publications
Whereas significant anti-tumor responses are observed in most BRAF

Audet-Walsh É, Vernier M, Yee T, et al.
SREBF1 Activity Is Regulated by an AR/mTOR Nuclear Axis in Prostate Cancer.
Mol Cancer Res. 2018; 16(9):1396-1405 [PubMed] Related Publications
Reprogramming of cellular metabolism is an important feature of prostate cancer, including altered lipid metabolism. Recently, it was observed that the nuclear fraction of mTOR is essential for the androgen-mediated metabolic reprogramming of prostate cancer cells. Herein, it is demonstrated that the androgen receptor (AR) and mTOR bind to regulatory regions of sterol regulatory element-binding transcription factor 1 (SREBF1) to control its expression, whereas dual activation of these signaling pathways also promotes SREBF1 cleavage and its translocation to the nucleus. Consequently, SREBF1 recruitment to regulatory regions of its target genes is induced upon treatment with the synthetic androgen R1881, an effect abrogated upon inhibition of the mTOR signaling pathway. In turn, pharmacologic and genetic inhibition of SREBF1 activity impairs the androgen-mediated induction of the key lipogenic genes fatty acid synthase (

Li H, Xiang L, Yang N, et al.
Zhiheshouwu ethanol extract induces intrinsic apoptosis and reduces unsaturated fatty acids via SREBP1 pathway in hepatocellular carcinoma cells.
Food Chem Toxicol. 2018; 119:169-175 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is the major incidence and one of the most life-threatening cancer. How to conquer HCC is a worldwide issue for patients. Zhiheshouwu (Polygoni multiflori Radix Praeparata) is a Chinese medicinal herb exhibiting both lowering lipid and inhibiting cancer cells. However, it remains a matter if its inhibiting cancer cells is related to its lowering lipid. In this study, we investigate the effects of Zhiheshouwu ethanolic extract (HSWE) on apoptosis and the underlying mechanisms in Bel-7402 cells. The results showed that HSWE inhibited the proliferation with an increased level of ALT and AST in Bel-7402 cells. The decreased mitochondrial membrane potential (ΔΨm) was observed in HSWE-treated Bel-7402 cells. The flow cytometry results showed that HSWE triggered apoptosis. Since mitochondrial injury is characterized as intrinsic apoptotic cell death, these data indicated that HSWE may induce intrinsic apoptosis in Bel-7402 cells. In addition, HSWE decreased the production of unsaturated fatty acids, and inhibited the mRNA and protein of SCD1 and its up-stream factor, sterol-regulatory element binding proteins 1 (SREBP1), a master transcriptional regulator of lipogenic gene. Taken together, these data suggest that HSWE induces an intrinsic apoptosis, and reduced unsaturated fatty acids by blocking SREBP1 in hepatocellular carcinoma cells.

Yang Y, Jiang H, Xiao L, Yang X
MicroRNA-33b-5p is overexpressed and inhibits GLUT4 by targeting HMGA2 in polycystic ovarian syndrome: An in vivo and in vitro study.
Oncol Rep. 2018; 39(6):3073-3085 [PubMed] Related Publications
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease, but its pathogenesis remains largely unknown. The present study explored the role of microRNA‑33b‑5p (miR‑33b‑5p) in PCOS pathogenesis, with a particular focus on its role in regulating glucose transporter 4 (GLUT4). A rat model of PCOS was developed by injecting female SD rats with insulin and HCG. miR‑33b‑5p, GLUT4, sterol regulatory element‑binding protein 1 (SREBF1), and high mobility group A2 (HMGA2) expression in rat ovarian tissues was examined by qRT‑PCR and immunohistochemistry. The effect of a high dose of either glucose or insulin on miR‑33b‑5p, GLUT4, SREBF1 and HMGA2 expression was also examined in cultured adipocytes by qRT‑PCR and western blotting. Additionally, the luciferase reporter assay and chromatin immunoprecipitation (ChIP) were used to explore the role of miR‑33b‑5p in regulating HMGA2, SREBF‑1 and/or GLUT4. Elevated levels of miR‑33b‑5p expression were detected in the ovarian tissues of insulin resistant PCOS rats, and those levels were negatively correlated with those of GLUT4, HMGA2 and SREBF1 expression (P<0.05). Immunohistochemistry studies revealed that GLUT4, SREBF1, and HMGA2 expression levels in the ovarian tissues of insulin resistant PCOS rats were significantly lower than those in other groups of rats. In cultured adipocytes, excess extracellular glucose or insulin increased miR‑33b‑5p expression but reduced GLUT4, SREBF1 and HMGA2 expression, whereas the levels of GLUT4, SREBF1 and HMGA2 were elevated by inhibition of miR‑33b‑5. HMGA2 could directly bind to the 5'‑promoter region of GLUT4 and promote its expression, and could also promote SREBF1 expression. Moreover, SREBF1 could also directly bind to the 5'‑promoter region of GLUT4 and promote its expression. Our findings revealed that miR‑33b‑5p was overexpressed in the ovarian tissues of insulin resistant PCOS rats, and thus may play an important role in the development of insulin resistance in PCOS patients. miR‑33b‑5p can inhibit GLUT4 production by targeting HMGA2, and in addition, HMGA2 and SREBF1 are important molecules involved in modulating GLUT4 expression.

Wang C, Tong Y, Wen Y, et al.
Hepatocellular Carcinoma-Associated Protein TD26 Interacts and Enhances Sterol Regulatory Element-Binding Protein 1 Activity to Promote Tumor Cell Proliferation and Growth.
Hepatology. 2018; 68(5):1833-1850 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Increased lipogenesis has been reported to play a critical role in HCC progression. However, the underlying mechanism contributing to lipogenesis increase in HCC remains elusive. Here, we show that HCC-associated protein TD26 (TD26) was highly expressed in HCC tumor tissues compared to matched normal tissues. From the clinicopathologic analyses of two independent HCC cohorts, we demonstrate that TD26 expression was positively correlated with tumor size and was an independent predictor of overall survival (OS) and recurrence-free survival (RFS) in HCC patients. Our metabolomics assays demonstrate that TD26 had no effect on glycometabolism, but significantly increased lipogenesis in HCC cells. In addition, our functional assays indicate that TD26 promoted HCC cell proliferation and tumor growth. We further demonstrate that TD26-mediated increase in lipogenesis and tumor cell proliferation was SREBP1 dependent. Mechanistically, we demonstrate that, through its C-terminus (amino acids [aa] from 121 to 198), TD26 interacted with the truncated nuclear sterol regulatory element-binding protein 1 (SREBP1) form (nSREBP1), but not full-length SREBP1 (flSREBP1), to block adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-mediated inhibition on SREBP1 activity, resulting in increased lipogenesis, elevated tumor cell proliferation, and enhanced tumor progression. Conclusion: We propose that TD26 is a positive regulator on SREBP1 transactivity, and the interaction between TD26 and SREBP1 can serve as a potential therapeutic target for HCC treatment.

Liao T, Wang YJ, Hu JQ, et al.
Histone methyltransferase KMT5A gene modulates oncogenesis and lipid metabolism of papillary thyroid cancer in vitro.
Oncol Rep. 2018; 39(5):2185-2192 [PubMed] Related Publications
KMT5A (known as PR-Set7/9, SETD8 and SET8), a member of the SET domain containing methyltransferase family specifically targeting H4K20 for methylation, has been implicated in multiple biological processes. In the present study, we identified that KMT5A was elevated in 50 pairs of papillary thyroid cancer tissue samples and in cell lines K1 and TPC-1 by qRT-PCR and western blotting, as well as by immunohistochemical staining. CCK-8 assay and flow cytometric analysis revealed that inhibition of KMT5A attenuated proliferation and induced apoptosis. Transwell assays revealed that cell migration and invasion were suppressed in KMT5A-knockdown cells. Moreover, the inhibition of KMT5A arrested the cell cycle in the G1/S phase of papillary thyroid cancer cells. The TCGA data revealed that elevated KMT5A expression was significantly correlated with extrathyroidal extension, lymph node metastasis and advanced pathological stage of papillary thyroid cancer. Furthermore, we observed that inhibition of KMT5A suppressed the expression of SREBP1, SCD, FASN and ACC, key molecules involved in lipid metabolism and decreased the level of malondialdehyde in papillary thyroid cancer cells. In conclusion, KMT5A may be a novel oncogenic factor, specifically a regulator for lipid metabolism in papillary thyroid carcinoma.

Presler M, Wojtczyk-Miaskowska A, Schlichtholz B, et al.
Increased expression of the gene encoding stearoyl-CoA desaturase 1 in human bladder cancer.
Mol Cell Biochem. 2018; 447(1-2):217-224 [PubMed] Free Access to Full Article Related Publications
Bladder cancer is a common disease and a significant cause of death worldwide. There is thus great interest in identifying a diagnostic and prognostic biomarker, as well as gaining an understanding of the molecular basis of bladder cancer. Stearoyl-CoA desaturase 1 gene (SCD1) is highly overexpressed in many human cancers. However, the expression of SCD1 has not yet been investigated in patients with bladder cancer. Here, we document that (a) the SCD1 is highly overexpressed in human bladder cancer; (b) high expression of SCD1 is more frequently observed in the late stage of disease and patients with lymph node metastasis; (c) bladder cancer patients with a higher SCD1 mRNA level have a poorer survival rate than those with normal SCD1 expression. Overall, this is the first report to indicate an association between SCD1 mRNA level and clinical indicators of human bladder cancer. Our study has provided evidence supporting the potential role of SCD1 as a biomarker for human bladder cancer prognosis.

Zaatiti H, Abdallah J, Nasr Z, et al.
Tumorigenic proteins upregulated in the MYCN-amplified IMR-32 human neuroblastoma cells promote proliferation and migration.
Int J Oncol. 2018; 52(3):787-803 [PubMed] Free Access to Full Article Related Publications
Childhood neuroblastoma is one of the most common types of extra-cranial cancer affecting children with a clinical spectrum ranging from spontaneous regression to malignant and fatal progression. In order to improve the clinical outcomes of children with high-risk neuroblastoma, it is crucial to understand the tumorigenic mechanisms that govern its malignant behaviors. MYCN proto-oncogene, bHLH transcription factor (MYCN) amplification has been implicated in the malignant, treatment-evasive nature of aggressive, high-risk neuroblastoma. In this study, we used a SILAC approach to compare the proteomic signatures of MYCN-amplified IMR-32 and non-MYCN-amplified SK-N-SH human neuroblastoma cells. Tumorigenic proteins, including fatty-acid binding protein 5 (FABP5), L1-cell adhesion molecule (L1-CAM), baculoviral IAP repeat containing 5 [BIRC5 (survivin)] and high mobility group protein A1 (HMGA1) were found to be significantly upregulated in the IMR-32 compared to the SK-N-SH cells and mapped to highly tumorigenic pathways including, MYC, MYCN, microtubule associated protein Tau (MAPT), E2F transcription factor 1 (E2F1), sterol regulatory element binding transcription factor 1 or 2 (SREBF1/2), hypoxia-inducible factor 1α (HIF-1α), Sp1 transcription factor (SP1) and amyloid precursor protein (APP). The transcriptional knockdown (KD) of MYCN, HMGA1, FABP5 and L1-CAM significantly abrogated the proliferation of the IMR-32 cells at 48 h post transfection. The early apoptotic rates were significantly higher in the IMR-32 cells in which FABP5 and MYCN were knocked down, whereas cellular migration was significantly abrogated with FABP5 and HMGA1 KD compared to the controls. Of note, L1-CAM, HMGA1 and FABP5 KD concomitantly downregulated MYCN protein expression and MYCN KD concomitantly downregulated L1-CAM, HMGA1 and FABP5 protein expression, while survivin protein expression was significantly downregulated by MYCN, HMGA1 and FABP5 KD. In addition, combined L1-CAM and FABP5 KD led to the concomitant downregulation of HMGA1 protein expression. On the whole, our data indicate that this inter-play between MYCN and the highly tumorigenic proteins which are upregulated in the malignant IMR-32 cells may be fueling their aggressive behavior, thereby signifying the importance of combination, multi-modality targeted therapy to eradicate this deadly childhood cancer.

Huang LH, Chung HY, Su HM
Docosahexaenoic acid reduces sterol regulatory element binding protein-1 and fatty acid synthase expression and inhibits cell proliferation by inhibiting pAkt signaling in a human breast cancer MCF-7 cell line.
BMC Cancer. 2017; 17(1):890 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Fatty acid synthase (FASN), the major enzyme in de novo fatty acid synthesis, is highly expressed in breast cancer and its expression is reduced by polyunsaturated fatty acids (PUFAs) in liver. We previously found a positive association between rat mammary tumor levels of the n-6 PUFA arachidonic acid (AA) and tumor weight. We examined the roles of the major n-3 PUFA, docosahexaenoic acid (DHA, 22:6n-3), and the major n-6 PUFA, AA, in FASN expression in, and proliferation of, human breast cancer MCF-7 cells.
METHODS: The cells were treated for 48 h with BSA or 60 μM BSA-bound DHA, AA, or oleic acid (OA, 18:1n-9), then were incubated with or without estradiol or insulin. Western blot and
RESULTS: DHA, but neither AA nor OA, inhibits estradiol-induced and insulin-induced expression of the precursor of sterol regulatory element binding protein-1 (p-SREBP-1), its mature form (m-SREBP-1), and FASN. Estradiol or insulin stimulation increased the pAkt/Akt and pS6/S6 ratios, expression of p-SREBP-1, m-SREBP-1, and FASN, and cell proliferation, and these effects were decreased by DHA. The DHA-induced decrease in FASN expression resulted from reduced pAkt/Akt signaling and not pERK1/2/ERK1/2 signaling. In addition, DHA enhanced the inhibitory effect of LY294002 on pAkt signaling and expression of p-SREBP-1, m-SREBP-1, and FASN. However, addition of rapamycin, an inhibitor of the mTOR signaling pathways, 1 h before addition of estradiol or insulin increased the pAkt/Akt ratio and FASN expression, and this effect was inhibited by addition of DHA 48 h before rapamycin.
CONCLUSION: We conclude that, in MCF-7 cells, DHA inhibits pAKT signaling and thus expression of p-SREBP-1, m-SREBP-1, and FASN and cell proliferation.

Yang H, Zhang X, Liu F, et al.
SREBP1-driven lipid desaturation supports clear cell renal cell carcinoma growth through regulation of NF-κB signaling.
Biochem Biophys Res Commun. 2018; 495(1):1383-1388 [PubMed] Related Publications
Clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancers, is an incurable and lethal disease. Although great progresses have been made in understanding the mechanism of ccRCC, metabolic reprogramming in ccRCC remains largely unclear. Here, we showed that lipid desatutation might be a metabolic hallmark of ccRCC. We demonstrated sterol regulatory element-binding protein 1 (SREBP1) is overexpressed in ccRCC cell lines and positively correlated with NF-κB activation. Further, SREBP1 is required for lipid desaturation and cell growth in ccRCC. Mechanistically, we demonstrated that SREBP1-driven lipid desaturation promotes NF-κB activation. Our finding reveals a crucial roles for SREBP1 in lipid desaturation of ccRCC through regulation of NF-κB signaling, which provides not only new insights in regulatory mode of NF-κB signaling but also a novel target for potential metabolic therapies.

Facchini G, Ignarro RS, Rodrigues-Silva E, et al.
Toxic effects of phytol and retinol on human glioblastoma cells are associated with modulation of cholesterol and fatty acid biosynthetic pathways.
J Neurooncol. 2018; 136(3):435-443 [PubMed] Related Publications
Glioblastoma (GBM) is the most common primary brain tumor. Genetic mutations may reprogram the metabolism of neoplastic cells. Particularly, alterations in cholesterol and fatty acid biosynthetic pathways may favor biomass synthesis and resistance to therapy. Therefore, compounds that interfere with those pathways, such as phytol (PHY) and retinol (RET), may be appropriate for cytotoxic approaches. We tested the effect of PHY or RET on the viability of human GBM cell lines (U87MG, A172 and T98G). Since the compounds showed a dose-dependent cytotoxic effect, additional analyses were performed with IC

Kang S, Huang J, Lee BK, et al.
Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120).
Biochim Biophys Acta Mol Cell Biol Lipids. 2018; 1863(2):105-116 [PubMed] Related Publications
Protective effect of omega-3 polyunsaturated fatty acids (n-3 PUFA) on non-alcoholic fatty liver disease has been demonstrated. FFA4 (also known as GPR120; a G protein-coupled receptor) has been suggested to be a target of n-3 PUFA. FFA4 expression in hepatocytes has also been reported from liver biopsies in child fatty liver patients. In order to assess the functional role of FFA4 in hepatic steatosis, we used an in vitro model of liver X receptor (LXR)-mediated hepatocellular steatosis. FFA4 expression was confirmed in Hep3B and HepG2 human hepatoma cells. T0901317 (a specific LXR activator) induced lipid accumulation and docosahexaenoic acid (DHA; a representative n-3 PUFA) inhibited lipid accumulation. This DHA-induced inhibition was blunted by treatment of AH7614 (a FFA4 antagonist) and by transfection of FFA4 siRNA. SREBP-1c (a key transcription factor of lipogenesis) was induced by treatment with T0901317, and SREBP-1c induction was also inhibited by DHA at mRNA and protein levels. DHA-induced suppression of SREBP-1c expression was also blunted by FFA4-knockdown. Furthermore, DHA inhibited T0901317-induced lipid accumulation in primary hepatocytes from wild type mice, but not in those from FFA4 deficient mice. In addition, DHA-induced activations of G

Yang X, Wu F, Chen J, et al.
GP73 regulates Hepatic Steatosis by enhancing SCAP-SREBPs interaction.
Sci Rep. 2017; 7(1):14932 [PubMed] Free Access to Full Article Related Publications
Elevated Golgi phosphoprotein 2 (GP73, also known as GOLPH2 or GOLM1) expression in serum and liver, which can be induced by viral infection and cytokine treatments, is intimately connected with liver disease, including acute hepatitis, cirrhosis and hepatocellular carcinoma (HCC). However, its pathogenic roles in hepatic diseases have never been clarified in detail. Here, we showed that the upregulated GP73 is indispensable for SREBPs activation and lipogenesis. Notably, GP73 overexpression enhanced SCAP-SREBPs binding and its Golgi trafficking even under cholesterol sufficiency. Consistent with these functional findings, GP73 blockage could alleviate tunicamycin-induced liver steatosis by reducing SREBPs activation. A significant positive correlation of GP73 with genes in lipid metabolism pathway was also identified in liver cancer based on data from The Cancer Genome Atlas (TCGA) dataset. Our findings revealed previously unrecognized role of GP73 in lipid metabolism.

Sodi VL, Bacigalupa ZA, Ferrer CM, et al.
Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation.
Oncogene. 2018; 37(7):924-934 [PubMed] Free Access to Full Article Related Publications
Elevated O-GlcNAcylation is associated with disease states such as diabetes and cancer. O-GlcNAc transferase (OGT) is elevated in multiple cancers and inhibition of this enzyme genetically or pharmacologically inhibits oncogenesis. Here we show that O-GlcNAcylation modulates lipid metabolism in cancer cells. OGT regulates expression of the master lipid regulator the transcription factor sterol regulatory element binding protein 1 (SREBP-1) and its transcriptional targets both in cancer and lipogenic tissue. OGT regulates SREBP-1 protein expression via AMP-activated protein kinase (AMPK). SREBP-1 is critical for OGT-mediated regulation of cell survival and of lipid synthesis, as overexpression of SREBP-1 rescues lipogenic defects associated with OGT suppression, and tumor growth in vitro and in vivo. These results unravel a previously unidentified link between O-GlcNAcylation, lipid metabolism and the regulation of SREBP-1 in cancer and suggests a crucial role for O-GlcNAc signaling in transducing nutritional state to regulate lipid metabolism.

Ray U, Roy SS
Aberrant lipid metabolism in cancer cells - the role of oncolipid-activated signaling.
FEBS J. 2018; 285(3):432-443 [PubMed] Related Publications
Metabolic activity of malignant cells is very different from that of their nontransformed equivalents, which establishes metabolic reprogramming as an important hallmark of every transformed cell. In particular, the current arena of research in this field aims to understand the regulatory effect of oncogenic signaling on metabolic rewiring in transformed cells in order to exploit this for therapeutic benefit. Alterations in lipid metabolism are one of the main aspects of metabolic rewiring of transformed cells. Up-regulation of several lipogenic enzymes has been reported to be a characteristic of various cancer types. Lysophosphatidic acid (LPA), a simple byproduct of the lipid biosynthesis pathway, has gained immense importance due to its elevated level in several cancers and associated growth-promoting activity. Importantly, a current study revealed its role in increased de novo lipid synthesis through up-regulation of sterol regulatory element-binding protein 1, a master regulator of lipid metabolism. This review summarizes the recent insights in the field of oncolipid LPA-mediated signaling in regard to lipid metabolism in cancers. Future work in this domain is required to understand the up-regulation of the de novo synthesis pathway and the role of its end products in malignant cells. This will open a new arena of research toward the development of specific metabolic inhibitors that can add to the pre-existing chemotherapeutics in order to increase the efficacy of clinical output in cancer patients.

Fan XX, Leung EL, Xie Y, et al.
Suppression of Lipogenesis via Reactive Oxygen Species-AMPK Signaling for Treating Malignant and Proliferative Diseases.
Antioxid Redox Signal. 2018; 28(5):339-357 [PubMed] Related Publications
AIMS: Systemic diseases often have common characteristics. The aim of this study was to investigate the feasibility of targeting common pathological metabolism to inhibit the progression of malignant and proliferative diseases.
RESULTS: Gefitinib-resistant (G-R) nonsmall-cell lung cancer (NSCLC) and rheumatoid arthritis (RA) were studied as conditions representative of malignant and proliferative diseases, respectively. Strong lipogenic activity and high expression of sterol regulatory element-binding protein 1 (SREBP1) were found in both G-R NSCLC cells and synovial fibroblasts from RA patients (RASFs). Berberine (BBR), an effective suppressor of SREBP1 and lipogenesis regulated through reactive oxygen species (ROS)/AMPK pathway, selectively inhibited the growth of G-R NSCLC cells and RASFs but not that of normal cells. It effectively caused mitochondrial dysfunction, activated ROS/AMPK pathway, and finally suppressed cellular lipogenesis and cell proliferation. Addition of ROS blocker, AMPK inhibitor, and palmitic acid significantly reduced the effect of BBR. In an in vivo study, treatment of BBR led to significant inhibition of mouse tumor xenograft growth and remarkably slowed down the development of adjuvant-induced arthritis in rats. Innovation and Conclusion: Targeting ROS/AMPK/lipogenesis signaling pathway selectively inhibited the growth of G-R NSCLC cells and the progress of RASFs in vitro and in vivo, which provides a new avenue for treating malignancies and proliferative diseases. Antioxid. Redox Signal. 28, 339-357.

Pashaei E, Pashaei E, Ahmady M, et al.
Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy.
PLoS One. 2017; 12(6):e0179543 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prostate cancer (PCa) is a leading reason of death in men and the most diagnosed malignancies in the western countries at the present time. After radical prostatectomy (RP), nearly 30% of men develop clinical recurrence with high serum prostate-specific antigen levels. An important challenge in PCa research is to identify effective predictors of tumor recurrence. The molecular alterations in microRNAs are associated with PCa initiation and progression. Several miRNA microarray studies have been conducted in recurrence PCa, but the results vary among different studies.
METHODS: We conducted a meta-analysis of 6 available miRNA expression datasets to identify a panel of co-deregulated miRNA genes and overlapping biological processes. The meta-analysis was performed using the 'MetaDE' package, based on combined P-value approaches (adaptive weight and Fisher's methods), in R version 3.3.1.
RESULTS: Meta-analysis of six miRNA datasets revealed miR-125A, miR-199A-3P, miR-28-5P, miR-301B, miR-324-5P, miR-361-5P, miR-363*, miR-449A, miR-484, miR-498, miR-579, miR-637, miR-720, miR-874 and miR-98 are commonly upregulated miRNA genes, while miR-1, miR-133A, miR-133B, miR-137, miR-221, miR-340, miR-370, miR-449B, miR-489, miR-492, miR-496, miR-541, miR-572, miR-583, miR-606, miR-624, miR-636, miR-639, miR-661, miR-760, miR-890, and miR-939 are commonly downregulated miRNA genes in recurrent PCa samples in comparison to non-recurrent PCa samples. The network-based analysis showed that some of these miRNAs have an established prognostic significance in other cancers and can be actively involved in tumor growth. Gene ontology enrichment revealed many target genes of co-deregulated miRNAs are involved in "regulation of epithelial cell proliferation" and "tissue morphogenesis". Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these miRNAs regulate cancer pathways. The PPI hub proteins analysis identified CTNNB1 as the most highly ranked hub protein. Besides, common pathway analysis showed that TCF3, MAX, MYC, CYP26A1, and SREBF1 significantly interact with those DE miRNA genes. The identified genes have been known as tumor suppressors and biomarkers which are closely related to several cancer types, such as colorectal cancer, breast cancer, PCa, gastric, and hepatocellular carcinomas. Additionally, it was shown that the combination of DE miRNAs can assist in the more specific detection of the PCa and prediction of biochemical recurrence (BCR).
CONCLUSION: We found that the identified miRNAs through meta-analysis are candidate predictive markers for recurrent PCa after radical prostatectomy.

Sun Y, He W, Luo M, et al.
Role of transgelin-2 in diabetes-associated pancreatic ductal adenocarcinoma.
Oncotarget. 2017; 8(30):49592-49604 [PubMed] Free Access to Full Article Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor prognosis. Diabetes is a significant risk factor for PDAC and >50% of PDAC patients have concomitant diabetes. How diabetes influences the initiation and progression of PDAC remains elusive. Here, we show that transgelin-2 is dominantly expressed in PDAC tissues compared with adjacent normal tissues. The high level of transgelin-2 indicates poor survival of patients with PDAC. Remarkably, transgelin-2 expression is correlated with diabetic status. Hyperinsulinemia is frequently observed in type 2 diabetes. Our results indicate that upregulation of transgelin-2 is induced by insulin via sterol regulatory element-binding protein (SREBP)-1-mediated transcription in PDAC cells. Transgelin-2 is a novel target of SREBP-1. Our data support a novel mechanism in diabetes-associated PDAC by which transgelin-2 mediates proliferation of PDAC cells upon insulin stimulation. The insulin/SREBP-1/transgelin-2 network should be further explored as a diagnostic marker or a novel therapeutic target for diabetes-associated PDAC.

Skrypnik K, Suliburska J, Skrypnik D, et al.
The genetic basis of obesity complications.
Acta Sci Pol Technol Aliment. 2017 Jan-Mar; 16(1):83-91 [PubMed] Related Publications
Intensive research is currently being performed into the genetic background of excess body mass compli- cations such as diabetes, cardiovascular disorders, especially atherosclerosis and coronary heart disease. Chronic inflammation is an important process in the pathogenesis of obesity, wherein there is an aberrant ex- pression of genes encoding adipokines. Visceral tissue is characterized by a higher expression and secretion of interleukin-8, interleukin-1ß and plasminogen activator inhibitor 1 in the subcutaneous tissue secretion of leptin prevails. An important complication of obesity is obstructive sleep apnea, often observed in Prader- Willi syndrome. The genetic background of sleep apnea may be a polymorphism of the SREBF1 gene. The consequence of excess body mass is metabolic syndrome, which may be related to the occurrence of the rs926198 variant of gene encoding caveolin-1. The genes of transcription factor TCF7L2 and PPAR-γ2 take part in the pathogenesis of diabetes development. It has been demonstrated that oncogenes FOS, FOSB, and JUN may be co-responsible not only for obesity but also for osteoporosis and colorectal cancer. It has been shown that weight loss causes a modification in the expression of about 100 genes involvedt in the production of substances such as cytokines and other responsible for chronic inflammation in obesity. In future studies on the complications of obesity, such scientific disciplines as proteomics, peptidomics, metabolomics and transcriptomics should be used. The aim of this study is to present the current state of knowledge about the genetic basis of obesity complications.

Kondo A, Yamamoto S, Nakaki R, et al.
Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression.
Cell Rep. 2017; 18(9):2228-2242 [PubMed] Related Publications
Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification.

Shafiee MN, Mongan N, Seedhouse C, et al.
Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.
Acta Obstet Gynecol Scand. 2017; 96(5):556-562 [PubMed] Related Publications
INTRODUCTION: Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles.
MATERIAL AND METHODS: A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed.
RESULTS: The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m
CONCLUSIONS: Sterol regulatory element binding protein-1 gene expression is significantly increased in the endometrium of women with polycystic ovary syndrome and women with endometrial cancer compared with controls and positively correlates with serum triglyceride in both polycystic ovary syndrome and endometrial cancer.

Dey P, Baddour J, Muller F, et al.
Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer.
Nature. 2017; 542(7639):119-123 [PubMed] Free Access to Full Article Related Publications
The genome of pancreatic ductal adenocarcinoma (PDAC) frequently contains deletions of tumour suppressor gene loci, most notably SMAD4, which is homozygously deleted in nearly one-third of cases. As loss of neighbouring housekeeping genes can confer collateral lethality, we sought to determine whether loss of the metabolic gene malic enzyme 2 (ME2) in the SMAD4 locus would create cancer-specific metabolic vulnerability upon targeting of its paralogous isoform ME3. The mitochondrial malic enzymes (ME2 and ME3) are oxidative decarboxylases that catalyse the conversion of malate to pyruvate and are essential for NADPH regeneration and reactive oxygen species homeostasis. Here we show that ME3 depletion selectively kills ME2-null PDAC cells in a manner consistent with an essential function for ME3 in ME2-null cancer cells. Mechanistically, integrated metabolomic and molecular investigation of cells deficient in mitochondrial malic enzymes revealed diminished NADPH production and consequent high levels of reactive oxygen species. These changes activate AMP activated protein kinase (AMPK), which in turn directly suppresses sterol regulatory element-binding protein 1 (SREBP1)-directed transcription of its direct targets including the BCAT2 branched-chain amino acid transaminase 2) gene. BCAT2 catalyses the transfer of the amino group from branched-chain amino acids to α-ketoglutarate (α-KG) thereby regenerating glutamate, which functions in part to support de novo nucleotide synthesis. Thus, mitochondrial malic enzyme deficiency, which results in impaired NADPH production, provides a prime 'collateral lethality' therapeutic strategy for the treatment of a substantial fraction of patients diagnosed with this intractable disease.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SREBF1, Cancer Genetics Web: http://www.cancer-genetics.org/SREBF1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999