Gene Summary

Gene:NONO; non-POU domain containing octamer binding
Aliases: P54, NMT55, NRB54, MRXS34, P54NRB, PPP1R114
Summary:This gene encodes an RNA-binding protein which plays various roles in the nucleus, including transcriptional regulation and RNA splicing. A rearrangement between this gene and the transcription factor E3 gene has been observed in papillary renal cell carcinoma. Alternatively spliced transcript variants have been described. Pseudogenes exist on Chromosomes 2 and 16. [provided by RefSeq, Feb 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:non-POU domain-containing octamer-binding protein
Source:NCBIAccessed: 29 August, 2019


What does this gene/protein do?
Show (17)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Long Noncoding RNA
  • Kidney Cancer
  • Base Sequence
  • Molecular Sequence Data
  • Nuclear Proteins
  • Transcription Factors
  • RNA Interference
  • Gene Expression
  • Cancer Gene Expression Regulation
  • TNF
  • Octamer Transcription Factors
  • Gene Expression Profiling
  • Cell Proliferation
  • PTB-Associated Splicing Factor
  • Transcription
  • Oncogene Fusion Proteins
  • siRNA
  • DNA-Binding Proteins
  • Bladder Cancer
  • Melanoma
  • Signal Transduction
  • Nuclear Matrix-Associated Proteins
  • Adolescents
  • Mice, Inbred BALB C
  • Immunohistochemistry
  • Computational Biology
  • Neoplasm Proteins
  • Chromosome X
  • FISH
  • Renal Cell Carcinoma
  • X Chromosome
  • RNA-Binding Proteins
  • Gene Fusion
  • Polymerase Chain Reaction
  • NONO
  • Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
  • Biomarkers, Tumor
  • Protein Binding
  • Carcinogenesis
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NONO (cancer-related)

Pyfrom SC, Luo H, Payton JE
PLAIDOH: a novel method for functional prediction of long non-coding RNAs identifies cancer-specific LncRNA activities.
BMC Genomics. 2019; 20(1):137 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Long non-coding RNAs (lncRNAs) exhibit remarkable cell-type specificity and disease association. LncRNA's functional versatility includes epigenetic modification, nuclear domain organization, transcriptional control, regulation of RNA splicing and translation, and modulation of protein activity. However, most lncRNAs remain uncharacterized due to a shortage of predictive tools available to guide functional experiments.
RESULTS: To address this gap for lymphoma-associated lncRNAs identified in our studies, we developed a new computational method, Predicting LncRNA Activity through Integrative Data-driven 'Omics and Heuristics (PLAIDOH), which has several unique features not found in other methods. PLAIDOH integrates transcriptome, subcellular localization, enhancer landscape, genome architecture, chromatin interaction, and RNA-binding (eCLIP) data and generates statistically defined output scores. PLAIDOH's approach identifies and ranks functional connections between individual lncRNA, coding gene, and protein pairs using enhancer, transcript cis-regulatory, and RNA-binding protein interactome scores that predict the relative likelihood of these different lncRNA functions. When applied to 'omics datasets that we collected from lymphoma patients, or to publicly available cancer (TCGA) or ENCODE datasets, PLAIDOH identified and prioritized well-known lncRNA-target gene regulatory pairs (e.g., HOTAIR and HOX genes, PVT1 and MYC), validated hits in multiple lncRNA-targeted CRISPR screens, and lncRNA-protein binding partners (e.g., NEAT1 and NONO). Importantly, PLAIDOH also identified novel putative functional interactions, including one lymphoma-associated lncRNA based on analysis of data from our human lymphoma study. We validated PLAIDOH's predictions for this lncRNA using knock-down and knock-out experiments in lymphoma cell models.
CONCLUSIONS: Our study demonstrates that we have developed a new method for the prediction and ranking of functional connections between individual lncRNA, coding gene, and protein pairs, which were validated by genetic experiments and comparison to published CRISPR screens. PLAIDOH expedites validation and follow-on mechanistic studies of lncRNAs in any biological system. It is available at .

de Silva HC, Lin MZ, Phillips L, et al.
IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer.
Cell Mol Life Sci. 2019; 76(10):2015-2030 [PubMed] Related Publications
Women with triple-negative breast cancer (TNBC) are generally treated by chemotherapy but their responsiveness may be blunted by DNA double-strand break (DSB) repair. We previously reported that IGFBP-3 forms nuclear complexes with EGFR and DNA-dependent protein kinase (DNA-PKcs) to modulate DSB repair by non-homologous end-joining (NHEJ) in TNBC cells. To discover IGFBP-3 binding partners involved in chemoresistance through stimulation of DSB repair, we analyzed the IGFBP-3 interactome by LC-MS/MS and confirmed interactions by coimmunoprecipitation and proximity ligation assay. Functional effects were demonstrated by DNA end-joining in vitro and measurement of γH2AX foci. In response to 20 µM etoposide, the DNA/RNA-binding protein, non-POU domain-containing octamer-binding protein (NONO) and its dimerization partner splicing factor, proline/glutamine-rich (SFPQ) formed complexes with IGFBP-3, demonstrated in basal-like TNBC cell lines HCC1806 and MDA-MB-468. NONO binding to IGFBP-3 was also shown in a cell-free biochemical assay. IGFBP-3 complexes with NONO and SFPQ were blocked by inhibiting EGFR with gefitinib or DNA-PKcs with NU7026, and by the PARP inhibitors veliparib and olaparib, which also reduced DNA end-joining activity and delayed the resolution of the γH2AX signal (i.e. inhibited DNA DSB repair). Downregulation of the long noncoding RNA in NHEJ pathway 1 (LINP1) by siRNA also blocked IGFBP-3 interaction with NONO-SFPQ. These findings suggest a PARP-dependent role for NONO and SFPQ in IGFBP-3-dependent DSB repair and the involvement of LINP1 in the complex formation. We propose that targeting of the DNA repair function of IGFBP-3 may enhance chemosensitivity in basal-like TNBC, thus improving patient outcomes.

Ma R, Zhai X, Zhu X, Zhang L
LINC01585 functions as a regulator of gene expression by the CAMP/CREB signaling pathway in breast cancer.
Gene. 2019; 684:139-148 [PubMed] Related Publications
OBJECTIVE: Breast cancer is the leading cause of cancer death among women. Nowadays, long non-coding RNAs (lncRNAs) have been identified and emerged as critical bio-markers in breast cancer tumorigenesis and progression. However, only a handful of lncRNAs which are implicated in BC have been characterized. The underlying molecular mechanisms are still largely unknown.
METHODS: In this study, we explored 12 nominated lncRNAs at breast cancer susceptibility loci identified by genome-wide association studies to contribute to the risk and effects of breast cancer. We then analyzed these lncRNAs in a total of 132 pairs of breast cancer tissues and surrounding non-tumor tissues from southern China population.
RESULTS: Here, we report a novel lncRNA, LINC01585, is aberrantly down regulated during breast cancer (BC). Next, to explore the molecular mechanisms underlying the biological activity of LINC01585, we identified LINC01585 binding protein by RNA pull-down experiments. Functionally, we found that LINC01585 overexpression inhibited breast cancer proliferation and growth by prototypical experiments. Mechanistically, LINC01585 was located in nuclear and binding with NONO protein. Interestingly, when LINC01585 was down-expressed, NONO separated from LINC01585 and then interacted with CRTC. The complex promotes CAMP/CREB target gene transcription and thus promotes the growth of breast cancer.
CONCLUSIONS: A series of discoveries suggest to us that LINC01585 has a potential value in anti-carcinoma therapy and deserves further investigation.

Tajirika T, Tokumaru Y, Taniguchi K, et al.
DEAD-Box Protein RNA-Helicase DDX6 Regulates the Expression of HER2 and FGFR2 at the Post-Transcriptional Step in Gastric Cancer Cells.
Int J Mol Sci. 2018; 19(7) [PubMed] Free Access to Full Article Related Publications
The human DEAD/H-box RNA helicase DDX6 (RCK/p54) is a protein encoded by the fusion gene from the t(11;14)(q23;q32) chromosomal translocation observed in human B-cell lymphoma cell line RC-K8. DDX6 has a variety of functions such as translation initiation, pre-mRNA splicing, and ribosome assembly. However, details of the regulatory mechanism governing DDX6 and the functions of DDX6 are largely unknown. Previously, we reported that DDX6 is overexpressed in most malignant cell lines and clinical colorectal tumor samples and that DDX6 positively contributes to the pathogenesis of various cancers. In the current study, we aimed at revealing the function of DDX6 in HER2 and FGFR2 related human gastric cancer (GC) by using clinical samples and GC cell lines. DDX6 protein was overexpressed in about 60% of the clinical samples; HER2, in 35%; and FGFR2, in 30%, (

Li H, Wang F, Fei Y, et al.
Aberrantly expressed genes and miRNAs in human hypopharyngeal squamous cell carcinoma based on RNA‑sequencing analysis.
Oncol Rep. 2018; 40(2):647-658 [PubMed] Free Access to Full Article Related Publications
The aim of the present study was to investigate the key genes, miRNAs and pathways in hypopharyngeal squamous cell carcinoma (HPSCC) and to elucidate the mechanisms underlying HPSCC development. The gene and microRNA (miRNA) expression profiles of HPSCC tissues and adjacent normal tissues from three subjects were obtained. Differentially expressed genes (DEGs) and differentially expressed miRNAs were identified in HPSCC. Functional annotation and protein‑protein interaction (PPI) network were conducted to elucidate the biological functions of DEGs. A total of 160 DEGs (16 upregulated and 144 downregulated genes) and 79 differentially expressed miRNAs (48 upregulated and 31 downregulated miRNAs) were identified in HPSCC. The deregulated genes were significantly involved in spliceosome, cell cycle and RNA degradation. In the PPI network, S‑phase kinase associated protein 1 (SKP1), non‑POU domain containing octamer binding (NONO) and zinc activated ion channel (ZACN) were identified as hub proteins. On the whole, the present study may help to gain a comprehensive understanding of tumorigenesis in HPSCC and provide valuable information for early diagnosis and drug design of HPSCC in future research.

Li D, Chen Y, Mei H, et al.
Ets-1 promoter-associated noncoding RNA regulates the NONO/ERG/Ets-1 axis to drive gastric cancer progression.
Oncogene. 2018; 37(35):4871-4886 [PubMed] Free Access to Full Article Related Publications
Emerging studies have indicated the essential functions of long noncoding RNAs (lncRNAs) during cancer progression. However, whether lncRNAs contribute to the upregulation of v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1), an established oncogenic protein facilitating tumor invasion and metastasis, in gastric cancer remains elusive. Herein, we identified Ets-1 promoter-associated noncoding RNA (pancEts-1) as a novel lncRNA associated with the gastric cancer progression via mining of publicly available datasets and rapid amplification of cDNA ends. RNA pull-down, RNA immunoprecipitation, in vitro binding, and RNA electrophoretic mobility shift assays indicated the binding of pancEts-1 to non-POU domain containing octamer binding (NONO) protein. Mechanistically, pancEts-1 facilitated the physical interaction between NONO and Ets related gene (ERG), resulting in increased ERG transactivation and transcription of Ets-1 associated with gastric cancer progression. In addition, pancEts-1 facilitated the growth and aggressiveness of gastric cancer cells via interacting with NONO. In gastric cancer tissues, pancEts-1, NONO, and ERG were upregulated and significantly correlated with Ets-1 levels. High levels of pancEts-1, NONO, ERG, or Ets-1 were respectively associated with poor survival of gastric cancer patients, whereas simultaneous expression of all of them (HR = 3.012, P = 0.105) was not an independent prognostic factor for predicting clinical outcome. Overall, these results demonstrate that lncRNA pancEts-1 exhibits oncogenic properties that drive the progression of gastric cancer via regulating the NONO/ERG/Ets-1 axis.

Wang XT, Xia QY, Ye SB, et al.
RNA sequencing of Xp11 translocation-associated cancers reveals novel gene fusions and distinctive clinicopathologic correlations.
Mod Pathol. 2018; 31(9):1346-1360 [PubMed] Related Publications
Both Xp11 translocation renal cell carcinomas and the corresponding mesenchymal neoplasms are characterized by a variety of gene fusions involving TFE3. It has been known that tumors with different gene fusions may have different clinicopathologic features; however, further in-depth investigations of subtyping Xp11 translocation-associated cancers are needed in order to explore more meaningful clinicopathologic correlations. A total of 22 unusual cases of Xp11 translocation-associated cancers were selected for the current study; 20 cases were further analyzed by RNA sequencing to explore their TFE3 gene fusion partners. RNA sequencing identified 17 of 20 cases (85%) with TFE3-associated gene fusions, including 4 ASPSCR1/ASPL-TFE3, 3 PRCC-TFE3, 3 SFPQ/PSF-TFE3, 1 NONO-TFE3, 4 MED15-TFE3, 1 MATR3-TFE3, and 1 FUBP1-TFE3. The results have been verified by fusion fluorescence in situ hybridization (FISH) assays or reverse transcriptase polymerase chain reaction (RT-PCR). The remaining 2 cases with specific pathologic features highly suggestive of MED15-TFE3 renal cell carcinoma were identified by fusion FISH assay. We provide the detailed morphologic and immunophenotypic description of the MED15-TFE3 renal cell carcinomas, which frequently demonstrate extensively cystic architecture, similar to multilocular cystic renal neoplasm of low malignant potential, and expressed cathepsin K and melanotic biomarker Melan A. This is the first time to correlate the MED15-TFE3 renal cell carcinoma with specific clinicopathologic features. We also report the first case of the corresponding mesenchymal neoplasm with MED15-TFE3 gene fusion. Additional novel TFE3 gene fusion partners, MATR3 and FUBP1, were identified. Cases with ASPSCR1-TFE3, SFPQ-TFE3, PRCC-TFE3, and NONO-TFE3 gene fusion showed a wide variability in morphologic features, including invasive tubulopapillary pattern simulating collecting duct carcinoma, extensive calcification and ossification, and overlapping and high columnar cells with nuclear grooves mimicking tall cell variant of papillary thyroid carcinoma. Furthermore, we respectively evaluated the ability of TFE3 immunohistochemistry, TFE3 FISH, RT-PCR, and RNA sequencing to subclassify Xp11 translocation-associated cancers. In summary, our study expands the list of TFE3 gene fusion partners and the clinicopathologic features of Xp11 translocation-associated cancers, and highlights the importance of subtyping Xp11 translocation-associated cancers combining morphology, immunohistochemistry, and multiple molecular techniques.

Cheng R, Zhu S, Guo S, et al.
Downregulation of NONO induces apoptosis, suppressing growth and invasion in esophageal squamous cell carcinoma.
Oncol Rep. 2018; 39(6):2575-2583 [PubMed] Free Access to Full Article Related Publications
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies in China, and is associated with high morbidity and mortality. However, the molecular mechanisms that control ESCC tumorigenicity and metastasis remain unclear. Here, we report that the RNA splicing factor, NONO, is an important regulator of ESCC growth, apoptosis and invasion. NONO protein levels were dramatically upregulated in ESCC when compared with that in adjacent benign esophageal squamous epithelium. Particularly, NONO expression was statistically higher in tumors with greater tumor invasion depth. Using multiple ESCC cell models, we further showed that NONO depletion using siRNA significantly inhibited proliferation, invasion, and promoted apoptosis of ESCC cells. In addition we found that knockdown of NONO could reduce protein levels of phosphorylated Akt and Erk1/2. Our findings suggest that NONO plays a potent role in multiple biological aspects of ESCC through activation of the Akt and Erk1/2 signaling pathways. Taken together, our findings suggest that NONO might play an important role in promoting tumorigenesis of ESCC. It may provide a promising approach to prevent the progress of ESCC.

Chen Z, Lin S, Li JL, et al.
CRTC1-MAML2 fusion-induced lncRNA LINC00473 expression maintains the growth and survival of human mucoepidermoid carcinoma cells.
Oncogene. 2018; 37(14):1885-1895 [PubMed] Free Access to Full Article Related Publications
Mucoepidermoid carcinoma (MEC) arises in many glandular tissues and contributes to the most common malignant salivary gland cancers. MEC is specifically associated with a unique t(11;19) translocation and the resulting CRTC1-MAML2 fusion is a major oncogenic driver for MEC initiation and maintenance. However, the molecular basis underlying the CRTC1-MAML2 oncogenic functions remains elusive. Through gene expression profiling analysis, we observed that LINC00473, a long non-coding RNA (lncRNA), was the top down-regulated target in CRTC1-MAML2-depleted human MEC cells. LncRNAs belong to a new class of non-coding RNAs with emerging roles in tumorigenesis and progression, but remain poorly characterized. In this study, we investigated the role of LINC00473 in mediating CRTC1-MAML2 oncogenic activity in human MEC. We found that LINC00473 transcription was significantly induced in human CRTC1-MAML2-positive MEC cell lines and primary MEC tumors, and was tightly correlated with the CRTC1-MAML2 RNA level. LINC00473 induction was dependent on the ability of CRTC1-MAML2 to activate CREB-mediated transcription. Depletion of LINC00473 significantly reduced the proliferation and survival of human MEC cells in vitro and blocked the in vivo tumor growth in a human MEC xenograft model. RNA in situ hybridization analysis demonstrated a predominantly nuclear localization pattern for LINC00473 in human MEC cells. Furthermore, gene expression profiling revealed that LINC00473 depletion resulted in differential expression of genes important in cancer cell growth and survival. LINC00473 likely regulates gene expression in part through its ability to bind to a cAMP signaling pathway component NONO, enhancing the ability of CRTC1-MAML2 to activate CREB-mediated transcription. Our overall results demonstrate that LINC00473 is a downstream target and an important mediator of the CRTC1-MAML2 oncoprotein. Therefore, LINC00473 acts as a promising biomarker and therapeutic target for human CRTC1-MAML2-positive MECs.

Taniguchi K, Iwatsuki A, Sugito N, et al.
Oncogene RNA helicase DDX6 promotes the process of c-Myc expression in gastric cancer cells.
Mol Carcinog. 2018; 57(5):579-589 [PubMed] Related Publications
Human DEAD-box RNA helicase gene DDX6 was cloned from B-cell lymphoma cell line RC-K8. Previously, we reported that DDX6 acts as oncogene in several cancers such as colorectal cancer and hepatocellular carcinoma. However, the detailed mechanism of DDX6 action in carcinogenesis is largely unknown. In this study, we examined the functions of DDX6 in clinical gastric cancer (GC) samples and GC cells. DDX6 protein expression levels of cancer samples were higher than those of the adjacent normal tissues in 25 clinical GC samples (median value: 1.4 times higher). Also, the results of an RNA immunoprecipitation-assay (RIP-assay) showed that DDX6 associated with c-Myc mRNA. Moreover, enforced overexpression of DDX6 promoted both mRNA and protein expression of c-Myc in GC cells. On the other hand, the gene silencing of DDX6 induced growth suppression through down-regulation of c-Myc in GC cells grown in either two or three dimensions. Furthermore, c-Myc mRNA expression levels of cancer samples were higher than those of the adjacent normal tissues in DDX6 up-regulated-GC clinical samples. Our findings in this study suggested that DDX6 acted as oncogene in GC cells through promotion of c-Myc expression by association with the mRNA of c-Myc.

Alfano L, Caporaso A, Altieri A, et al.
NONO ubiquitination is mediated by FBW7 and GSK3 β via a degron lost upon chromosomal rearrangement in cancer.
J Cell Physiol. 2018; 233(5):4338-4344 [PubMed] Related Publications
NONO is an RNA-binding protein involved in transcription, mRNA splicing, DNA repair, and checkpoint activation in response to UV radiation. NONO expression has been found altered in several tumor types, including prostate, colon, breast, melanoma, and in papillary renal carcinoma, in which an X chromosome inversion generates a NONO-TFE3 fusion protein. Upon such rearrangement, NONO loses its C-terminal domain. Through bioinformatics analysis, we identified a putative degron motif, known to be recognized by the Skp1-Cul1-F-box-protein (SCF) complex. Here, we evaluated how this domain could affect NONO protein biology. We showed that NONO interacts with the nuclear FBW7α isoform and its ubiquitination is regulated following modulation of the GSK3β kinase. Mutation of T428A/T432A within the degron impaired polyubiquitination upon FBW7α and GSK3β overexpression. Overall, our data suggest that NONO is likely subjected to proteasome-mediated degradation and add NONO to the list of proteins targeted by FBW7, which is itself often deregulated in cancer.

Yu T, Zhao Y, Hu Z, et al.
MetaLnc9 Facilitates Lung Cancer Metastasis via a PGK1-Activated AKT/mTOR Pathway.
Cancer Res. 2017; 77(21):5782-5794 [PubMed] Related Publications
Long noncoding RNAs (lncRNA) participate in carcinogenesis and tumor progression in lung cancer. Here, we report the identification of a lncRNA signature associated with metastasis of non-small cell lung cancer (NSCLC). In particular, elevated expression of LINC00963 (MetaLnc9) in human NSCLC specimens correlated with poor prognosis, promoted migration and invasion of NSCLC cells

Takayama KI, Suzuki T, Fujimura T, et al.
Dysregulation of spliceosome gene expression in advanced prostate cancer by RNA-binding protein PSF.
Proc Natl Acad Sci U S A. 2017; 114(39):10461-10466 [PubMed] Free Access to Full Article Related Publications
Developing therapeutic approaches are necessary for treating hormone-refractory prostate cancer. Activation of androgen receptor (AR) and its variants' expression along with the downstream signals are mostly important for disease progression. However, the mechanism for marked increases of AR signals and its expression is still unclear. Here, we revealed that various spliceosome genes are aberrantly induced by RNA-binding protein PSF, leading to enhancement of the splicing activities for AR expression. Our high-speed sequence analyses identified global PSF-binding transcripts. PSF was shown to stabilize and activate key long noncoding RNAs and AR-regulated gene expressions in prostate cancer cells. Interestingly, mRNAs of spliceosome-related genes are putative primary targets of PSF. Their gene expressions are up-regulated by PSF in hormone-refractory prostate cancer. Moreover, PSF coordinated these spliceosome proteins to form a complex to promote AR splicing and expression. Thus, targeting PSF and its related pathways implicates the therapeutic possibility for hormone-refractory prostate cancer.

Gadd S, Huff V, Walz AL, et al.
A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor.
Nat Genet. 2017; 49(10):1487-1494 [PubMed] Free Access to Full Article Related Publications
We performed genome-wide sequencing and analyzed mRNA and miRNA expression, DNA copy number, and DNA methylation in 117 Wilms tumors, followed by targeted sequencing of 651 Wilms tumors. In addition to genes previously implicated in Wilms tumors (WT1, CTNNB1, AMER1, DROSHA, DGCR8, XPO5, DICER1, SIX1, SIX2, MLLT1, MYCN, and TP53), we identified mutations in genes not previously recognized as recurrently involved in Wilms tumors, the most frequent being BCOR, BCORL1, NONO, MAX, COL6A3, ASXL1, MAP3K4, and ARID1A. DNA copy number changes resulted in recurrent 1q gain, MYCN amplification, LIN28B gain, and MIRLET7A loss. Unexpected germline variants involved PALB2 and CHEK2. Integrated analyses support two major classes of genetic changes that preserve the progenitor state and/or interrupt normal development.

Marchionni L, Hayashi M, Guida E, et al.
MicroRNA expression profiling of Xp11 renal cell carcinoma.
Hum Pathol. 2017; 67:18-29 [PubMed] Free Access to Full Article Related Publications
Renal cell carcinomas (RCCs) with Xp11 translocation (Xp11 RCC) constitute a distinctive molecular subtype characterized by chromosomal translocations involving the Xp11.2 locus, resulting in gene fusions between the TFE3 transcription factor with a second gene (usually ASPSCR1, PRCC, NONO, or SFPQ). RCCs with Xp11 translocations comprise up to 1% to 4% of adult cases, frequently displaying papillary architecture with epithelioid clear cells. To better understand the biology of this molecularly distinct tumor subtype, we analyze the microRNA (miRNA) expression profiles of Xp11 RCC compared with normal renal parenchyma using microarray and quantitative reverse-transcription polymerase chain reaction. We further compare Xp11 RCC with other RCC histologic subtypes using publically available data sets, identifying common and distinctive miRNA signatures along with the associated signaling pathways and biological processes. Overall, Xp11 RCC more closely resembles clear cell rather than papillary RCC. Furthermore, among the most differentially expressed miRNAs specific for Xp11 RCC, we identify miR-148a-3p, miR-221-3p, miR-185-5p, miR-196b-5p, and miR-642a-5p to be up-regulated, whereas miR-133b and miR-658 were down-regulated. Finally, Xp11 RCC is most strongly associated with miRNA expression profiles modulating DNA damage responses, cell cycle progression and apoptosis, and the Hedgehog signaling pathway. In summary, we describe here for the first time the miRNA expression profiles of a molecularly distinct type of renal cancer associated with Xp11.2 translocations involving the TFE3 gene. Our results might help understanding the molecular underpinning of Xp11 RCC, assisting in developing targeted treatments for this disease.

Lessel W, Silver A, Jechorek D, et al.
Inactivation of JNK2 as carcinogenic factor in colitis-associated and sporadic colorectal carcinogenesis.
Carcinogenesis. 2017; 38(5):559-569 [PubMed] Related Publications
We recently reported that dysregulated c-Jun N-terminal kinases (JNK) activity causes defective cell cycle checkpoint control, inducing neoplastic transformation in a cellular ulcerative colitis (UC) model. In the quiescent chronic phase of UC, p-p54 JNK was down-regulated and p-p46 JNK was up-regulated. Both were up-regulated in the acute phase. Consequently, increased p21WAF1 and γ-H2AX, two JNK-regulated proteins, induced cell cycle arrest. Their down-regulation led to checkpoint override, causing increased proliferation and undetected DNA damage in quiescent chronic phase, all characteristics of tumorigenesis. We investigated expression of p-JNK2, p-JNK1-3, p21WAF1, γ-H2AX and Ki67 by immunohistochemistry in cases of quiescent UC (QUC), active UC (AUC), UC-dysplasia and UC-related colorectal carcinoma (UC-CRC). Comparison was made to normal healthy colorectal mucosa, sporadic adenoma and colorectal carcinoma (CRC), diverticulitis and Crohns disease (CD). We found p-JNK2 up-regulation in AUC and its early down-regulation in UC-CRC and CRC carcinogenesis. With down-regulated p-JNK2, p21WAF1 was also decreased. Ki67 was inversely expressed, showing increased proliferation early in UC-CRC and CRC carcinogenesis. p-JNK1-3 was increased in AUC and QUC. Less increased γ-H2AX in UC-CRC compared to CRC gave evidence that colitis-triggered inflammation masks DNA damage, thus contributing to neoplastic transformation. We hypothesize that JNK-dependent cell cycle arrest is important in AUC, while chronic inflammation causes dysregulated JNK activity in quiescent phase that may contribute to checkpoint override, promoting UC carcinogenesis. We suggest restoring p-JNK2 expression as a novel therapeutic strategy to early prevent the development of UC-related cancer.

Pham DH, Tan CC, Homan CC, et al.
Protocadherin 19 (PCDH19) interacts with paraspeckle protein NONO to co-regulate gene expression with estrogen receptor alpha (ERα).
Hum Mol Genet. 2017; 26(11):2042-2052 [PubMed] Free Access to Full Article Related Publications
De novo and inherited mutations of X-chromosome cell adhesion molecule protocadherin 19 (PCDH19) cause frequent, highly variable epilepsy, autism, cognitive decline and behavioural problems syndrome. Intriguingly, hemizygous null males are not affected while heterozygous females are, contradicting established X-chromosome inheritance. The disease mechanism is not known. Cellular mosaicism is the likely driver. We have identified p54nrb/NONO, a multifunctional nuclear paraspeckle protein with known roles in nuclear hormone receptor gene regulation, as a PCDH19 protein interacting partner. Using breast cancer cells we show that PCDH19-NONO complex is a positive co-regulator of ERα-mediated gene expression. Expression of mutant PCDH19 affects at least a subset of known ERα-regulated genes. These data are consistent with our findings that genes regulated by nuclear hormone receptors and those involved in the metabolism of neurosteroids in particular are dysregulated in PCDH19-epilepsy girls and affected mosaic males. Overall we define and characterize a novel mechanism of gene regulation driven by PCDH19, which is mediated by paraspeckle constituent NONO and is ERα-dependent. This PCDH19-NONO-ERα axis is of relevance not only to PCDH19-epilepsy and its comorbidities but likely also to ERα and generally nuclear hormone receptor-associated cancers.

Masuelli L, Benvenuto M, Di Stefano E, et al.
Curcumin blocks autophagy and activates apoptosis of malignant mesothelioma cell lines and increases the survival of mice intraperitoneally transplanted with a malignant mesothelioma cell line.
Oncotarget. 2017; 8(21):34405-34422 [PubMed] Free Access to Full Article Related Publications
Malignant mesothelioma (MM) is a primary tumor arising from the serous membranes. The resistance of MM patients to conventional therapies, and the poor patients' survival, encouraged the identification of molecular targets for MM treatment. Curcumin (CUR) is a "multifunctional drug". We explored the in vitro effects of CUR on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, autophagy of human (MM-B1, H-Meso-1, MM-F1), and mouse (#40a) MM cells. In addition, we evaluated the in vivo anti-tumor activities of CUR in C57BL/6 mice intraperitoneally transplanted with #40a cells forming ascites.CUR in vitro inhibited MM cells survival in a dose- and time-dependent manner and increased reactive oxygen species'intracellular production and induced DNA damage. CUR triggered autophagic flux, but the process was then blocked and was coincident with caspase 8 activation which activates apoptosis. CUR-mediated apoptosis was supported by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of caspase 9, cleavage of PARP-1, increase of the percentage of cells in the sub G1 phase which was reduced (MM-F1 and #40a) or abolished (MM-B1 and H-Meso-1) after MM cells incubation with the apoptosis inhibitor Z-VAD-FMK. CUR treatment stimulated the phosphorylation of ERK1/2 and p38 MAPK, inhibited that of p54 JNK and AKT, increased c-Jun expression and phosphorylation and prevented NF-κB nuclear translocation. Intraperitoneal administration of CUR increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of developing tumors. Our findings may have important implications for the design of MM treatment using CUR.

McGregor SM, Alikhan MB, John RA, et al.
Melanotic PEComa of the Sinonasal Mucosa With NONO-TFE3 Fusion: An Elusive Mimic of Sinonasal Melanoma.
Am J Surg Pathol. 2017; 41(5):717-722 [PubMed] Related Publications
Perivascular epithelioid cell neoplasms (PEComas) are a family of mesenchymal tumors with features of both smooth muscle and melanocytic differentiation, with or without true melanin pigment. The highly variable morphology of PEComas results in a broad differential diagnosis that is also dependent on anatomic site. A subset demonstrates rearrangements involving the TFE3 (Xp11) locus, which can be used in diagnostically difficult cases. Here we describe a case of a melanotic PEComa with NONO-TFE3 fusion occurring in the sinonasal mucosa, as demonstrated by both next-generation sequencing and molecular cytogenetic studies. This case is the first of its kind in the literature and only the second documented PEComa harboring a NONO-TFE3 rearrangement. In light of unequivocal molecular ancillary studies, this case illustrates that PEComa must enter the differential for pigmented lesions of the sinonasal mucosa, where malignant melanoma would be much more likely to occur.

Xia QY, Wang Z, Chen N, et al.
Xp11.2 translocation renal cell carcinoma with NONO-TFE3 gene fusion: morphology, prognosis, and potential pitfall in detecting TFE3 gene rearrangement.
Mod Pathol. 2017; 30(3):416-426 [PubMed] Related Publications
Xp11 translocation renal cell carcinomas are characterized by several different translocations involving the TFE3 gene. Tumors with different specific gene fusions may have different clinicopathological manifestations. Fewer than 10 renal cell carcinoma cases with NONO-TFE3 have been described. Here we examined eight additional cases of this rare tumor using clinicopathological, immunohistochemical, and molecular analyses. The male-to-female ratio of our study cohort was 1:1, and the median age was 30 years. The most distinctive feature of the tumors was that they exhibited glandular/tubular or papillary architecture that was lined with small-to-medium cuboidal to high columnar cells with indistinct cell borders and an abundantly clear or flocculent eosinophilic cytoplasm. The nuclei were oriented toward the luminal surface and were round and uniform in shape, which resulted in the appearance of secretory endometrioid subnuclear vacuolization. The distinct glandular/tubular or papillary architecture was often accompanied by sheets of epithelial cells that presented a biphasic pattern. Immunohistochemically, all eight cases demonstrated moderate (2+) or strong (3+) positive staining for TFE3, CD10, RCC marker, and PAX-8. None of the tumors were immunoreactive for CK7, Cathepsin K, Melan-A, HMB45, Ksp-cadherin, Vimentin, CA9, 34βE12 or CD117. NONO-TFE3 fusion transcripts were identified in six cases by RT-PCR. All eight cases showed equivocal split signals with a distance of nearly 2 signal diameters and sometimes had false-negative results. Furthermore, we developed a fluorescence in situ hybridization (FISH) assay to serve as an adjunct diagnostic tool for the detection of the NONO-TFE3 fusion gene and used this method to detect the fusion gene in all eight cases. Long-term follow-up (range, 10-102 months) was available for 7 patients. All 7 patients were alive with no evidence of recurrent disease or disease progression after their initial resection. This report adds to the known data regarding NONO-TFE3 renal cell carcinoma.

Liu PY, Atmadibrata B, Mondal S, et al.
NCYM is upregulated by lncUSMycN and modulates N-Myc expression.
Int J Oncol. 2016; 49(6):2464-2470 [PubMed] Related Publications
Neuroblastoma is the most common solid tumor in early childhood. Patients with neuroblastoma due to the amplification of a 130-kb genomic DNA region containing the MYCN, MYCN antisense NCYM and lncUSMycN genes show poor prognosis. BET bromodomain inhibitors show anticancer efficacy against neuroblastoma partly by reducing MYCN gene transcription and N-Myc mRNA and protein expression. We have previously shown that the long nocoding RNA lncUSMycN upregulates N-Myc mRNA expression by binding to the RNA-binding protein NonO. In this study, we found that lncUSMycN upregulated NCYM expression, and knocking-down lncUSMycN reduced histone H3 lysine 4 trimethylation, a marker for active gene transcription, at the NCYM gene promoter. NCYM upregulated N-Myc mRNA expression, NCYM RNA formed a complex with NonO protein, and knocking down NCYM expression reduced neuroblastoma cell proliferation. Importantly, treatment with BET bromodomain inhibitors reduced NCYM expression. In human neuroblastoma patients, high levels of NCYM expression in tumor tissues correlated with high levels of N-Myc, NonO and lncUSMycN expression as well as poor patient prognosis. Taken together, our findings suggest that lncUSMycN upregulates NCYM expression by activating its gene transcription, and that NCYM RNA upregulates N-Myc mRNA expression by binding to NonO. Our findings also provide further evidence for the application of BET bromodomain inhibitors for the therapy of neuroblastoma characterized by MYCN/NCYM gene locus amplification.

Amaral CL, Freitas LB, Tamura RE, et al.
S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells.
BMC Cancer. 2016; 16:602 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The S6 Kinase (S6K) proteins are some of the main downstream effectors of the mammalian Target Of Rapamycin (mTOR) and act as key regulators of protein synthesis and cell growth. S6K is overexpressed in a variety of human tumors and is correlated to poor prognosis in prostate cancer. Due to the current urgency to identify factors involved in prostate cancer progression, we aimed to reveal the cellular functions of three S6K isoforms-p70-S6K1, p85-S6K1 and p54-S6K2-in prostate cancer, as well as their potential as therapeutic targets.
METHODS: In this study we performed S6K knockdown and overexpression and investigated its role in prostate cancer cell proliferation, colony formation, viability, migration and resistance to docetaxel treatment. In addition, we measured tumor growth in Nude mice injected with PC3 cells overexpressing S6K isoforms and tested the efficacy of a new available S6K1 inhibitor in vitro.
RESULTS: S6Ks overexpression enhanced PC3-luc cell line viability, migration, resistance to docetaxel and tumor formation in Nude mice. Only S6K2 knockdown rendered prostate cancer cells more sensitive to docetaxel. S6K1 inhibitor PF-4708671 was particularly effective for reducing migration and proliferation of PC3 cell line.
CONCLUSIONS: These findings demonstrate that S6Ks play an important role in prostate cancer progression, enhancing cell viability, migration and chemotherapy resistance, and place both S6K1 and S6K2 as a potential targets in advanced prostate cancer. We also provide evidence that S6K1 inhibitor PF-4708671 may be considered as a potential drug for prostate cancer treatment.

Yang P, Chen T, Xu Z, et al.
Long noncoding RNA GAPLINC promotes invasion in colorectal cancer by targeting SNAI2 through binding with PSF and NONO.
Oncotarget. 2016; 7(27):42183-42194 [PubMed] Free Access to Full Article Related Publications
This study aimed to investigate the role of long noncoding RNAs (lncRNAs) in the metastasis of colorectal cancer (CRC). Metastasis is an important prognostic factor of CRC, and lncRNAs have been implicated in tumor proliferation and metastasis. The human CRC cell lines HCT116, HT29, SW480, DLD-1, and SW620 were used in the study. Genome-wide lncRNA expression patterns in metastatic lymph nodes compared with paired normal lymph nodes of CRC were assessed by microarray analysis. Gastric adenocarcinoma predictive long intergenic noncoding (GAPLINC) RNA was detected via functional prediction. The increased expression of GAPLINC was found to be positively correlated with larger tumor size, advanced tumor stage (T stage), advanced node stage (N stage), increased death, and shorter survival of patients with CRC by in situ hybridization analysis. Besides, the decreased expression of GAPLINC could significantly repress CRC cell invasion in vitro and also inhibit proliferation in vitro and in vivo. RNA pull-down with mass spectrum experiments revealed that PTB-associated splicing factor (PSF) and non-POU-domain-containing octamer-binding (NONO) protein bound to GAPLINC and reversed the effect of GAPLINC on cell invasion. Gene array and bioinformatics analyses identified that snail family zinc finger 2 (SNAI2) was involved in the biological processes of GAPLINC/PSF/NONO. This study indicated the importance of GAPLINC in promoting CRC invasion via binding to PSF/NONO and partly by stimulating the expression of SNAI2. Hence, GAPLINC may serve as a promising target for CRC diagnosis and therapy. The findings may help in developing a novel therapeutic strategy for patients with CRC.

Chen Z, Li JL, Lin S, et al.
cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth.
J Clin Invest. 2016; 126(6):2267-79 [PubMed] Free Access to Full Article Related Publications
The LKB1 tumor suppressor gene is frequently mutated and inactivated in non-small cell lung cancer (NSCLC). Loss of LKB1 promotes cancer progression and influences therapeutic responses in preclinical studies; however, specific targeted therapies for lung cancer with LKB1 inactivation are currently unavailable. Here, we have identified a long noncoding RNA (lncRNA) signature that is associated with the loss of LKB1 function. We discovered that LINC00473 is consistently the most highly induced gene in LKB1-inactivated human primary NSCLC samples and derived cell lines. Elevated LINC00473 expression correlated with poor prognosis, and sustained LINC00473 expression was required for the growth and survival of LKB1-inactivated NSCLC cells. Mechanistically, LINC00473 was induced by LKB1 inactivation and subsequent cyclic AMP-responsive element-binding protein (CREB)/CREB-regulated transcription coactivator (CRTC) activation. We determined that LINC00473 is a nuclear lncRNA and interacts with NONO, a component of the cAMP signaling pathway, thereby facilitating CRTC/CREB-mediated transcription. Collectively, our study demonstrates that LINC00473 expression potentially serves as a robust biomarker for tumor LKB1 functional status that can be integrated into clinical trials for patient selection and treatment evaluation, and implicates LINC00473 as a therapeutic target for LKB1-inactivated NSCLC.

Just PA, Letourneur F, Pouliquen C, et al.
Identification by FFPE RNA-Seq of a new recurrent inversion leading to RBM10-TFE3 fusion in renal cell carcinoma with subtle TFE3 break-apart FISH pattern.
Genes Chromosomes Cancer. 2016; 55(6):541-8 [PubMed] Related Publications
Gene fusions involving TFE3 defines the "Xp11.2 translocations" subclass of renal cell carcinomas (RCCs) belonging to the MiT family translocation RCC. Four recurrent TFE3 fusion partners were identified to date: PRCC, ASPSCR1, SFPQ, and NONO. Break-apart TFE3 fluorescence in situ hybridization (FISH) on formalin-fixed and paraffin-embedded (FFPE) tissue sections is currently the gold standard for identification of TFE3 rearrangements. Herein, we report a case of RCC with a morphological appearance of Xp11.2 translocation, and positive TFE3 immunostaining. By FISH, the spots constituting the split signal were barely spaced, suggestive of a chromosome X inversion rather than a translocation. We performed RNA-seq from FFPE material to test this hypothesis. RNA-seq suggested a fusion of RBM10 gene exon 17 (Xp11.23) with TFE3 gene exon 5 (Xp11.2). RBM10-TFE3 fusion transcript was confirmed using specific RT-PCR. Our work showed that RNA-Seq is a robust technique to detect fusion transcripts from FFPE material. A RBM10-TFE3 fusion was previously described in single case of Xp11.2 RCC. Although rare, RBM10-TFE3 fusion variant (from chromosome X paracentric inversion), therefore, appears to be a recurrent molecular event in Xp11.2 RCCs. RBM10-TFE3 fusion should be added in the list of screened fusion transcripts in targeted molecular diagnostic multiplex RT-PCR. © 2016 Wiley Periodicals, Inc.

Argani P, Zhong M, Reuter VE, et al.
TFE3-Fusion Variant Analysis Defines Specific Clinicopathologic Associations Among Xp11 Translocation Cancers.
Am J Surg Pathol. 2016; 40(6):723-37 [PubMed] Free Access to Full Article Related Publications
Xp11 translocation cancers include Xp11 translocation renal cell carcinoma (RCC), Xp11 translocation perivascular epithelioid cell tumor (PEComa), and melanotic Xp11 translocation renal cancer. In Xp11 translocation cancers, oncogenic activation of TFE3 is driven by the fusion of TFE3 with a number of different gene partners; however, the impact of individual fusion variant on specific clinicopathologic features of Xp11 translocation cancers has not been well defined. In this study, we analyze 60 Xp11 translocation cancers by fluorescence in situ hybridization using custom bacterial artificial chromosome probes to establish their TFE3 fusion gene partner. In 5 cases RNA sequencing was also used to further characterize the fusion transcripts. The 60 Xp11 translocation cancers included 47 Xp11 translocation RCC, 8 Xp11 translocation PEComas, and 5 melanotic Xp11 translocation renal cancers. A fusion partner was identified in 53/60 (88%) cases, including 18 SFPQ (PSF), 16 PRCC, 12 ASPSCR1 (ASPL), 6 NONO, and 1 DVL2. We provide the first morphologic description of the NONO-TFE3 RCC, which frequently demonstrates subnuclear vacuoles leading to distinctive suprabasal nuclear palisading. Similar subnuclear vacuolization was also characteristic of SFPQ-TFE3 RCC, creating overlapping features with clear cell papillary RCC. We also describe the first RCC with a DVL2-TFE3 gene fusion, in addition to an extrarenal pigmented PEComa with a NONO-TFE3 gene fusion. Furthermore, among neoplasms with the SFPQ-TFE3, NONO-TFE3, DVL2-TFE3, and ASPL-TFE3 gene fusions, the RCCs are almost always PAX8 positive, cathepsin K negative by immunohistochemistry, whereas the mesenchymal counterparts (Xp11 translocation PEComas, melanotic Xp11 translocation renal cancers, and alveolar soft part sarcoma) are PAX8 negative, cathepsin K positive. These findings support the concept that despite an identical gene fusion, the RCCs are distinct from the corresponding mesenchymal neoplasms, perhaps due to the cellular context in which the translocation occurs. We corroborate prior data showing that the PRCC-TFE3 RCCs are the only known Xp11 translocation RCC molecular subtype that are consistently cathepsin K positive. In summary, our data expand further the clinicopathologic features of cancers with specific TFE3 gene fusions and should allow for more meaningful clinicopathologic associations to be drawn.

Wang XT, Xia QY, Ni H, et al.
Xp11 neoplasm with melanocytic differentiation of the prostate harbouring the novel NONO-TFE3 gene fusion: report of a unique case expanding the gene fusion spectrum.
Histopathology. 2016; 69(3):450-8 [PubMed] Related Publications
Recently, an increasing number of TFE3 rearrangement-associated tumours have been reported, such as TFE3 rearrangement-associated perivascular epithelioid cell tumours (PEComas), melanotic Xp11 translocation renal cancers and melanotic Xp11 neoplasms. We have suggested that these tumours belong to a single clinicopathological spectrum. 'Xp11 neoplasm with melanocytic differentiation' or 'melanotic Xp11 neoplasm' have been proposed to designate this unique neoplasm. Herein, we describe the first case of an Xp11 neoplasm with melanocytic differentiation to be described in the prostate, bearing the novel NONO-TFE3 gene fusion. This study both adds to the spectrum regarding melanotic Xp11 neoplasms and expands its gene fusion spectrum. Moreover, we discuss the relationship of these rare tumours to neoplasms such as conventional PEComas, alveolar soft part sarcomas, malignant melanomas, clear cell sarcomas and Xp11 translocation renal cancers.

Arai M, Kawachi T, Kotoku N, et al.
Furospinosulin-1, Marine Spongean Furanosesterterpene, Suppresses the Growth of Hypoxia-Adapted Cancer Cells by Binding to Transcriptional Regulators p54(nrb) and LEDGF/p75.
Chembiochem. 2016; 17(2):181-9 [PubMed] Related Publications
Hypoxia-adapted cancer cells in tumors contribute to the pathological progression of cancer. Cancer research has therefore focused on the identification of molecules responsible for hypoxia adaptation in cancer cells, as well as the development of new compounds with action against hypoxia-adapted cancer cells. The marine natural product furospinosulin-1 (1) has displayed hypoxia-selective growth inhibition against cultured cancer cells, and has shown in vivo anti-tumor activity, although its precise mode of action and molecular targets remain unclear. In this study, we found that 1 is selectively effective against hypoxic regions of tumors, and that it directly binds to the transcriptional regulators p54(nrb) and LEDGF/p75, which have not been previously identified as mediators of hypoxia adaptation in cancer cells.

Vavougios GD, Solenov EI, Hatzoglou C, et al.
Computational genomic analysis of PARK7 interactome reveals high BBS1 gene expression as a prognostic factor favoring survival in malignant pleural mesothelioma.
Am J Physiol Lung Cell Mol Physiol. 2015; 309(7):L677-86 [PubMed] Related Publications
The aim of our study was to assess the differential gene expression of Parkinson protein 7 (PARK7) interactome in malignant pleural mesothelioma (MPM) using data mining techniques to identify novel candidate genes that may play a role in the pathogenicity of MPM. We constructed the PARK7 interactome using the ConsensusPathDB database. We then interrogated the Oncomine Cancer Microarray database using the Gordon Mesothelioma Study, for differential gene expression of the PARK7 interactome. In ConsensusPathDB, 38 protein interactors of PARK7 were identified. In the Gordon Mesothelioma Study, 34 of them were assessed out of which SUMO1, UBC3, KIAA0101, HDAC2, DAXX, RBBP4, BBS1, NONO, RBBP7, HTRA2, and STUB1 were significantly overexpressed whereas TRAF6 and MTA2 were significantly underexpressed in MPM patients (network 2). Furthermore, Kaplan-Meier analysis revealed that MPM patients with high BBS1 expression had a median overall survival of 16.5 vs. 8.7 mo of those that had low expression. For validation purposes, we performed a meta-analysis in Oncomine database in five sarcoma datasets. Eight network 2 genes (KIAA0101, HDAC2, SUMO1, RBBP4, NONO, RBBP7, HTRA2, and MTA2) were significantly differentially expressed in an array of 18 different sarcoma types. Finally, Gene Ontology annotation enrichment analysis revealed significant roles of the PARK7 interactome in NuRD, CHD, and SWI/SNF protein complexes. In conclusion, we identified 13 novel genes differentially expressed in MPM, never reported before. Among them, BBS1 emerged as a novel predictor of overall survival in MPM. Finally, we identified that PARK7 interactome is involved in novel pathways pertinent in MPM disease.

Park M, Lim JS, Lee HJ, et al.
Distinct Protein Expression Profiles of Solid-Pseudopapillary Neoplasms of the Pancreas.
J Proteome Res. 2015; 14(8):3007-14 [PubMed] Related Publications
Solid-pseudopapillary neoplasm (SPN) is an uncommon pancreatic tumor with mutation in CTNNB1 and distinct clinical and pathological features. We compared the proteomic profiles of SPN to mRNA expression. Pooled SPNs and pooled non-neoplastic pancreatic tissues were examined with high-resolution mass spectrometry. We identified 329 (150 up-regulated and 179 down-regulated) differentially expressed proteins in SPN. We identified 191 proteins (58.1% of the 329 dysregulated proteins) with the same expression tendencies in SPN based on mRNA data. Many overexpressed proteins were related to signaling pathways known to be activated in SPNs. We found that several proteins involved in Wnt signaling, including DKK4 and β-catenin, and proteins that bind β-catenin, such as FUS and NONO, were up-regulated in SPNs. Molecules involved in glycolysis, including PKM2, ENO2, and HK1, were overexpressed in accordance to their mRNA levels. In summary, SPN showed (1) distinct protein expression changes that correlated with mRNA expression, (2) overexpression of Wnt signaling proteins and proteins that bind directly to β-catenin, and (3) overexpression of proteins involved in metabolism. These findings may help develop early diagnostic biomarkers and molecular targets.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NONO, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999