KDM6B

Gene Summary

Gene:KDM6B; lysine demethylase 6B
Aliases: JMJD3, NEDCFSA
Location:17p13.1
Summary:The protein encoded by this gene is a lysine-specific demethylase that specifically demethylates di- or tri-methylated lysine 27 of histone H3 (H3K27me2 or H3K27me3). H3K27 trimethylation is a repressive epigenetic mark controlling chromatin organization and gene silencing. This protein can also demethylate non-histone proteins such as retinoblastoma protein. Through its demethylation actvity this gene influences cellular differentiation and development, tumorigenesis, inflammatory diseases, and neurodegenerative diseases. This protein has two classical nuclear localization signals at its N-terminus. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Feb 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:lysine-specific demethylase 6B
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • RT-PCR
  • Western Blotting
  • Single Nucleotide Polymorphism
  • Apoptosis
  • DNA Methylation
  • Transfection
  • Jumonji Domain-Containing Histone Demethylases
  • Mice, Inbred NOD
  • Biomarkers, Tumor
  • Cell Proliferation
  • Mutation
  • Gene Knockdown Techniques
  • Drug Resistance
  • Polycomb Repressive Complex 2
  • Tumor Suppressor Proteins
  • Enhancer of Zeste Homolog 2 Protein
  • Up-Regulation
  • Epigenetics
  • RTPCR
  • Tooth
  • Promoter Regions
  • Protein Binding
  • Methylation
  • Nuclear Proteins
  • Cell Differentiation
  • Oligonucleotide Array Sequence Analysis
  • Histones
  • Cancer Gene Expression Regulation
  • Gene Expression Profiling
  • Xenograft Models
  • Neoplasm Invasiveness
  • Signal Transduction
  • Prostate Cancer
  • Chromatin Immunoprecipitation
  • Chromosome 17
  • Cell Movement
  • Benzazepines
  • CDKN2A Protein
  • Neoplasm Metastasis
  • Histone Demethylases
Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: KDM6B (cancer-related)

Xiao Z, He Y, Liu C, et al.
Targeting P16INK4A in uterine serous carcinoma through inhibition of histone demethylation.
Oncol Rep. 2019; 41(5):2667-2678 [PubMed] Free Access to Full Article Related Publications
Uterine serous carcinoma (USC) is a subtype of endometrial cancer. Compared with endometrial endometroid carcinoma, the majority of USC cases are more aggressive. Cyclin-dependent kinase inhibitor 2A (P16INK4A) is a canonical tumor suppressor that blocks cell cycle progression; however, P16INK4A is overexpressed in USC. The aim of the present study was to determine the role of P16INK4A in P16INK4A‑positive endometrial cancer, with the hope of elucidating a novel therapeutic approach for this type of malignancy. A total of 2 endometrial cancer cell lines, ETN‑1 and EFE‑184, were selected for further investigation, due to them being known to express high levels of P16INK4A. Using short hairpin RNA targeting P16INK4A, P16INK4A was downregulated in these cancer cell lines. Cell viability and migration were examined via 2D/3D clonogenic and wound healing assays. Subsequently, GSK‑J4, a histone demethylase inhibitor, was employed to deplete P16INK4A in these cancer cell lines and an ex vivo culture system of a patient‑derived xenograft (PDX) endometrial tumor sample. Following P16INK4A knockdown, the proliferation and migration of ETN‑1 and EFE‑184 cells markedly declined. When exposed to GSK‑J4, the levels of KDM6B and P16INK4A were almost completely abrogated, and the cell viability was significantly reduced in these cell lines and the ex vivo‑cultured PDX tumor explants. The association between the levels of P16INK4A, lysine demethylase 6B (KDM6B) and the methylation status of histone 3 lysine 27 (H3K27) in these cell lines and the human USC tumor sample was also demonstrated. P16INK4A appears to be oncogenic in a number of endometrial cancer cell lines. The level of P16INK4A is associated with the methylation status of H3K27. Increased methylation of H3K27 coexists with downregulation of KDM6B and, subsequently, P16INK4A, which reduces cell proliferation and invasiveness in endometrial cancer. The observations of the present study may enable the development of a novel therapeutic strategy for P16INK4A‑positive endometrial cancer, particularly USC.

He C, Sun J, Liu C, et al.
Elevated H3K27me3 levels sensitize osteosarcoma to cisplatin.
Clin Epigenetics. 2019; 11(1):8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In osteosarcoma (OS), chemotherapy resistance has become one of the greatest issues leading to high mortality among patients. However, the mechanisms of drug resistance remain elusive, limiting therapeutic efficacy. Here, we set out to explore the relationship between dynamic histone changes and the efficacy of cisplatin against OS.
RESULTS: First, we found two histone demethylases associated with histone H3 lysine 27 trimethylation (H3K27me3) demethylation, KDM6A, and KDM6B that were upregulated after cisplatin treatment. Consistent with the clinical data, cisplatin-resistant OS specimens showed lower H3K27me3 levels than sensitive specimens. Then, we evaluated the effects of H3K27me3 alteration on OS chemosensitivity. In vitro inhibition of the histone methyltransferase EZH2 in OS cells decreased H3K27me3 levels and led to cisplatin resistance. Conversely, inhibition of the demethylases KDM6A and KDM6B increased H3K27me3 levels in OS and reversed cisplatin resistance in vitro and in vivo. Mechanistically, with the help of RNA sequencing (RNAseq), we found that PRKCA and MCL1 directly participated in the process by altering H3K27me3 on their gene loci, ultimately inactivating RAF/ERK/MAPK cascades and decreasing phosphorylation of BCL2.
CONCLUSIONS: Our study reveals a new epigenetic mechanism of OS resistance and indicates that elevated H3K27me3 levels can sensitize OS to cisplatin, suggesting a promising new strategy for the treatment of OS.

Ma J, Zhang J, Weng YC, Wang JC
EZH2-Mediated microRNA-139-5p Regulates Epithelial-Mesenchymal Transition and Lymph Node Metastasis of Pancreatic Cancer.
Mol Cells. 2018; 41(9):868-880 [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer (PC) is one of the most aggressive cancers presenting with high rates of invasion and metastasis, and unfavorable prognoses. The current study aims to investigate whether EZH2/miR-139-5p axis affects epithelial-mesenchymal transition (EMT) and lymph node metastasis (LNM) in PC, and the mechanism how EZH2 regulates miR-139-5p. Human PC and adjacent normal tissues were collected to determine expression of EZH2 and miR-139-5p, and their relationship with clinicopathological features of PC. Human PC cell line was selected, and treated with miR-139-5p mimics/inhibitors, EZH2 vector or shEZH2 in order to validate the regulation of EZH2-mediated miR-139-5p in PC cells

Yu SH, Zhu KY, Chen J, et al.
JMJD3 facilitates C/EBPβ-centered transcriptional program to exert oncorepressor activity in AML.
Nat Commun. 2018; 9(1):3369 [PubMed] Free Access to Full Article Related Publications
JMJD3, a stress-inducible H3K27 demethylase, plays a critical regulatory role in the initiation and progression of malignant hematopoiesis. However, how this histone modifier affects in a cell type-dependent manner remains unclear. Here, we show that in contrast to its oncogenic effect in preleukemia state and lymphoid malignancies, JMJD3 relieves the differentiation-arrest of certain subtypes (such as M2 and M3) of acute myeloid leukemia (AML) cells. RNA sequencing and ChIP-PCR analyses revealed that JMJD3 exerts anti-AML effect by directly modulating H3K4 and H3K27 methylation levels to activate the expression of a number of key myelopoietic regulatory genes. Mechanistic exploration identified a physical and functional association of JMJD3 with C/EBPβ that presides the regulatory network of JMJD3. Thus, the leukemia regulatory role of JMJD3 varies in a disease phase- and lineage-dependent manner, and acts as a potential oncorepressor in certain subsets of AML largely by coupling to C/EBPβ-centered myelopoietic program.

Mazzio EA, Lewis CA, Elhag R, Soliman KF
Effects of Sepantronium Bromide (YM-155) on the Whole Transcriptome of MDA-MB-231 Cells: Highlight on Impaired ATR/ATM Fanconi Anemia DNA Damage Response.
Cancer Genomics Proteomics. 2018 Jul-Aug; 15(4):249-264 [PubMed] Free Access to Full Article Related Publications
Sepantronium bromide (YM-155) is believed to elicit apoptosis and mitotic arrest in tumor cells by reducing (BIRC5, survivin) mRNA. In this study, we monitored changes in survivin mRNA and protein after treating MDA-MB-231 cells with YM-155 concurrent with evaluation of whole transcriptomic (WT) mRNA and long intergenic non-coding RNA at 2 time points: 8 h sub-lethal (83 ng/mL) and 20 h at the LC

Abe H, Natsumeda M, Kanemaru Y, et al.
MGMT Expression Contributes to Temozolomide Resistance in H3K27M-Mutant Diffuse Midline Gliomas and MGMT Silencing to Temozolomide Sensitivity in IDH-Mutant Gliomas.
Neurol Med Chir (Tokyo). 2018; 58(7):290-295 [PubMed] Free Access to Full Article Related Publications
Histone H3 mutations are frequently found in diffuse midline gliomas (DMGs), which include diffuse intrinsic pontine gliomas and thalamic gliomas. These tumors have dismal prognoses. Recent evidence suggests that one reason for the poor prognoses is that O

Li Y, Zhang M, Sheng M, et al.
Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia.
J Cancer Res Clin Oncol. 2018; 144(6):1065-1077 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Acute myeloid leukemia (AML) is a heterogeneous disease with poor outcomes. Despite increased evidence shows that dysregulation of histone modification contributes to AML, specific drugs targeting key histone modulators are not applied in the clinical treatment of AML. Here, we investigated whether targeting KDM6B, the demethylase of tri-methylated histone H3 lysine 27 (H3K27me3), has a therapeutic potential for AML.
METHODS: A KDM6B-specific inhibitor, GSK-J4, was applied to treat the primary cells from AML patients and AML cell lines in vitro and in vivo. RNA-sequencing was performed to reveal the underlying mechanisms of inhibiting KDM6B for the treatment of AML.
RESULTS: Here we observed that the mRNA expression of KDM6B was up-regulated in AML and positively correlated with poor survival. Treatment with GSK-J4 increased the global level of H3K27me3 and reduced the proliferation and colony-forming ability of primary AML cells and AML cell lines. GSK-J4 treatment significantly induced cell apoptosis and cell-cycle arrest in Kasumi-1 cells, and displayed a synergistic effect with cytosine arabinoside. Notably, injection of GSK-J4 attenuated the disease progression in a human AML xenograft mouse model in vivo. Treatment with GSK-J4 predominantly resulted in down-regulation of DNA replication and cell-cycle-related pathways, as well as abrogated the expression of critical cancer-promoting HOX genes. ChIP-qPCR validated an increased enrichment of H3K27me3 in the transcription start sites of these HOX genes.
CONCLUSIONS: In summary, our findings suggest that targeting KDM6B with GSK-J4 has a therapeutic potential for the treatment of AML.

Makise N, Sekimizu M, Kubo T, et al.
Extraskeletal osteosarcoma: MDM2 and H3K27me3 analysis of 19 cases suggest disease heterogeneity.
Histopathology. 2018; 73(1):147-156 [PubMed] Related Publications
AIMS: Extraskeletal osteosarcoma (ESOS) is a sarcoma in the non-skeletal tissue that directly produces neoplastic osteoid or bone. De-differentiated liposarcoma (DDLPS) and malignant peripheral nerve sheath tumour (MPNST) are the two most common types of sarcoma that can harbour heterologous osteosarcomatous differentiation. We aimed to determine the potential relationship of ESOS to DDLPS and MPNST.
METHODS AND RESULTS: We investigated MDM2 and H3K27me3 status in 19 cases of ESOS, two of which contained a low-grade component. The ESOS affected deep soft tissues (n = 10), superficial soft tissues (n = 3) and organs (n = 6). Among 10 deep soft-tissue ESOS, six showed MDM2 amplification, four of which also harboured CDK4 co-amplification. Both ESOS with a low-grade component showed co-amplification for MDM2 and CDK4. Among the six organ-based ESOS three giant cell-rich ESOS showed an H3K27me3 deficiency (one in primary and two in metastatic sites). Using targeted next generation sequencing, an H3K27me3-deficient ESOS showed EED homozygous deletion, while none of the three showed alterations in NF1, CDKN2A or SUZ12 genes. During median follow-up of 20 months, all six patients with MDM2-amplified ESOS lived for 3-103 months, while two of the three patients with H3K27me3-deficient ESOS died from this disease in 4 and 20 months, respectively.
CONCLUSION: We demonstrate that ESOS may include at least two small subsets: an MDM2-amplified deep soft-tissue ESOS (which may be related to DDLPS) and an H3K27me3-deficient organ-based ESOS (which is probably unrelated to MPNST). Larger studies are required to validate the present observations and investigate the clinical implications of such subcategorisation.

Park JW, Cho H, Oh H, et al.
AURKA Suppresses Leukemic THP-1 Cell Differentiation through Inhibition of the KDM6B Pathway.
Mol Cells. 2018; 41(5):444-453 [PubMed] Free Access to Full Article Related Publications
Aberrations in histone modifications are being studied in mixed-lineage leukemia (MLL)-AF9-driven acute myeloid leukemia (AML). In this study, we focused on the regulation of the differentiation of the MLL-AF9 type AML cell line THP-1. We observed that, upon phorbol 12-myristate 13-acetate (PMA) treatment, THP-1 cells differentiated into monocytes by down-regulating Aurora kinase A (AURKA), resulting in a reduction in H3S10 phosphorylation. We revealed that the AURKA inhibitor alisertib accelerates the expression of the H3K27 demethylase KDM6B, thereby dissociating AURKA and YY1 from the

Rejlova K, Musilova A, Kramarzova KS, et al.
Low HOX gene expression in PML-RARα-positive leukemia results from suppressed histone demethylation.
Epigenetics. 2018; 13(1):73-84 [PubMed] Free Access to Full Article Related Publications
Homeobox (HOX) genes are frequently dysregulated in leukemia. Previous studies have shown that aberrant HOX gene expression accompanies leukemogenesis and affects disease progression and leukemia patient survival. Patients with acute myeloid leukemia (AML) bearing PML-RARα fusion gene have distinct HOX gene signature in comparison to other subtypes of AML patients, although the mechanism of transcription regulation is not completely understood. We previously found an association between the mRNA levels of HOX genes and those of the histone demethylases JMJD3 and UTX in PML-RARα- positive leukemia patients. Here, we demonstrate that the release of the PML-RARα-mediated block in PML-RARα-positive myeloid leukemia cells increased both JMJD3 and HOX gene expression, while inhibition of JMJD3 using the specific inhibitor GSK-J4 reversed the effect. This effect was driven specifically through PML-RARα fusion protein since expression changes did not occur in cells with mutated RARα and was independent of differentiation. We confirmed that gene expression levels were inversely correlated with alterations in H3K27me3 histone marks localized at HOX gene promoters. Furthermore, data from chromatin immunoprecipitation followed by sequencing broaden a list of clustered HOX genes regulated by JMJD3 in PML-RARα-positive leukemic cells. Interestingly, the combination of GSK-J4 and all-trans retinoic acid (ATRA) significantly increased PML-RARα-positive cell apoptosis compared with ATRA treatment alone. This effect was also observed in ATRA-resistant NB4 clones, which may provide a new therapeutic opportunity for patients with acute promyelocytic leukemia (APL) resistant to current treatment. The results of our study reveal the mechanism of HOX gene expression regulation and contribute to our understanding of APL pathogenesis.

Mo J, Wang L, Huang X, et al.
Multifunctional nanoparticles for co-delivery of paclitaxel and carboplatin against ovarian cancer by inactivating the JMJD3-HER2 axis.
Nanoscale. 2017; 9(35):13142-13152 [PubMed] Related Publications
Ovarian cancer (OC) is the most lethal gynecologic cancer. Survival statistics have show no significant developments over the last three decades, highlighting the fact that current therapeutic strategies require substantial improvements. In this study, we designed a novel folic acid-PEG-conjugated p-phosphonated calix[4]arene nanoparticle (Fp-PCN) for the simultaneous delivery of paclitaxel (PAC) and carboplatin (CAR) at an optimal ratio (5 : 1, mol : mol) to utilize their potential synergistic effect against OC cells. The Fp-PCNs loaded with PAC and CAR (Fp-PCN

Parfett CL, Desaulniers D
A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro.
Int J Mol Sci. 2017; 18(6) [PubMed] Free Access to Full Article Related Publications
An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF, HOTAIR and ANRIL) were found to have experimental evidence showing that functional perturbations played "driver" roles in human cellular transformation. Measurement of epigenotoxicants presents challenges for short-term carcinogenicity testing, especially in the high-throughput modes emphasized in the Tox21 chemicals testing approach. There is need to develop and validate in vitro tests to detect both, locus-specific, and genome-wide, epigenetic alterations with causal links to oncogenic cellular phenotypes. Some recent examples of cell-based high throughput chemical screening assays are presented that have been applied or have shown potential for application to epigenetic endpoints.

Ohguchi H, Harada T, Sagawa M, et al.
KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival.
Leukemia. 2017; 31(12):2661-2669 [PubMed] Free Access to Full Article Related Publications
Recent studies have delineated cancer-type-specific roles of histone 3 lysine 27 (H3K27) demethylase KDM6B/JMJD3 depending on its H3K27 demethylase activity. Here we show that KDM6B is expressed in multiple myeloma (MM) cells; and that shRNA-mediated knockdown and CRISPR-mediated knockout of KDM6B abrogate MM cell growth and survival. Tumor necrosis factor-α or bone marrow stromal cell culture supernatants induce KDM6B, which is blocked by IKKβ inhibitor MLN120B, suggesting that KDM6B is regulated by NF-κB signaling in MM cells. RNA-seq and subsequent ChIP-qPCR analyses reveal that KDM6B is recruited to the loci of genes encoding components of MAPK signaling pathway including ELK1 and FOS, and upregulates expression of these genes without affecting H3K27 methylation level. Overexpression of catalytically inactive KDM6B activates expression of MAPK pathway-related genes, confirming its function independent of demethylase activity. We further demonstrate that downstream targets of KDM6B, ELK1 and FOS, confer MM cell growth. Our study therefore delineates KDM6B function that links NF-κB and MAPK signaling pathway mediating MM cell growth and survival, and validates KDM6B as a novel therapeutic target in MM.

Xun J, Wang D, Shen L, et al.
JMJD3 suppresses stem cell-like characteristics in breast cancer cells by downregulation of Oct4 independently of its demethylase activity.
Oncotarget. 2017; 8(13):21918-21929 [PubMed] Free Access to Full Article Related Publications
Epigenetic regulator JMJD3 plays an important role in both tumor progression and somatic cell reprogramming. Here, we explored the effect of JMJD3 on the stem cell-like characteristics of breast cancer and its underlying mechanism involving stemness-related transcription factor Oct4. Our data revealed that, in breast cancer cells lines and an orthotopic xenograph mouse model of breast cancer, ectopic overexpression of JMJD3 suppressed stem cell-like characteristics of breast cancer cells, whereas knockdown of JMJD3 promoted these characteristics. Oct4 mediated the suppressive effects of JMJD3 on the stemness of breast cancer cells. The inhibitory effect of JMJD3 on Oct4 was independent of demethylase activity, but mediated via degradation of PHF20. Furthermore, we applied an agonist of the vitamin D receptor, paricalcitol, and found that it induced JMJD3 in breast cancer cells. Our data showed that administration of paricalcitol suppressed stem cell-like characteristics and Oct4 expression. Taken together, JMJD3 inhibits the stem cell-like characteristics in breast cancer by suppression of stemness factor Oct4 in a PHF20-dependent manner. Administration of paricalcitol leads to upregulation of JMJD3 that suppresses Oct4 expression and the stem cell-like characteristics in breast cancer.

Sherry-Lynes MM, Sengupta S, Kulkarni S, Cochran BH
Regulation of the JMJD3 (KDM6B) histone demethylase in glioblastoma stem cells by STAT3.
PLoS One. 2017; 12(4):e0174775 [PubMed] Free Access to Full Article Related Publications
The growth factor and cytokine regulated transcription factor STAT3 is required for the self-renewal of several stem cell types including tumor stem cells from glioblastoma. Here we show that STAT3 inhibition leads to the upregulation of the histone H3K27me2/3 demethylase Jmjd3 (KDM6B), which can reverse polycomb complex-mediated repression of tissue specific genes. STAT3 binds to the Jmjd3 promoter, suggesting that Jmjd3 is a direct target of STAT3. Overexpression of Jmjd3 slows glioblastoma stem cell growth and neurosphere formation, whereas knockdown of Jmjd3 rescues the STAT3 inhibitor-induced neurosphere formation defect. Consistent with this observation, STAT3 inhibition leads to histone H3K27 demethylation of neural differentiation genes, such as Myt1, FGF21, and GDF15. These results demonstrate that the regulation of Jmjd3 by STAT3 maintains repression of differentiation specific genes and is therefore important for the maintenance of self-renewal of normal neural and glioblastoma stem cells.

Cregan S, Breslin M, Roche G, et al.
Kdm6a and Kdm6b: Altered expression in malignant pleural mesothelioma.
Int J Oncol. 2017; 50(3):1044-1052 [PubMed] Related Publications
Malignant pleural mesothelioma (MPM) is a rare aggressive cancer of the pleura primarily associated with prior exposure to asbestos. The current standard of care for patients suffering from MPM is a combination of cisplatin and pemetrexed (or alternatively cisplatin and raltitrexed). Most patients, however, die within 24 months of diagnosis. New therapies are therefore urgently required for this disease. Inflammation is thought to be a key element in the pathogenesis of MPM, and recently Kdm6 family members (Kdm6a and Kdm6b) have been identified as playing important roles in inflammatory processes. As such these genes could potentially represent novel candidate targets for intervention in MPM. Using RT-PCR we examined the expression of Kdm6aA and Kdm6b in a panel of MPM cell lines and in a cohort of snap-frozen patient samples isolated at surgery comprising benign, epithelial, biphasic and sarcomatoid histologies. Both Kdm6a and Kdm6b were found to be significantly overexpressed in MPM at the mRNA level. However, tests examining if targeting therapeutically Kdm6a/b using a specific small molecule inhibitor (GSK-J4) was potentially useful for treating MPM, revealed that anti-proliferative activity was higher at lower drug concentrations in cell lines derived from normal mesothelial cells compared to those derived from malignant cells. Treatments with GSK-J4 were found to be associated with the induction of apoptosis and increased expression of pro-inflammatory cytokines. As such our results demonstrate that whilst members of the Kdm6 family are overexpressed in MPM they may not be suitable candidates for therapy and may elicit a cytokine storm.

Xia M, Yao L, Zhang Q, et al.
Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3.
Oncotarget. 2017; 8(12):19795-19802 [PubMed] Free Access to Full Article Related Publications
Long Noncoding RNAs (lncRNAs) are a kind of non-protein coding transcripts longer than 200 nucleotides, and play important roles in diverse biological processes, such as embryonic development and apoptosis. Homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) is a negative prognostic factor in a variety of human cancers, such as breast, liver and lung cancers. HOTAIR can promote cancer cell metastasis by reprogramming chromatin organization. In the present study, HOTAIR expression was elevated in tissues of renal cell carcinoma compared to adjacent normal tissues, and positively correlated with metastasis (P<0.05). The cell migration was inhibited in scratch test and transwell assay after HOTAIR knockdown (P<0.05). Further researches revealed that histone demethylase JMJD3 was reduced and its target gene Snai1 expression was down-regulated after HOTAIR suppression (P<0.05). Meanwhile, the level of histone methytransferase EZH2 target gene PCDHB5 was increased (P<0.05). Collectively, these data suggest that HOTAIR is an important promoter in metastasis of renal cell carcinoma and also plays a dual regulatory role in chromatin state by effecting both histone metylation and demethylation at different gene loci.

Liau BB, Sievers C, Donohue LK, et al.
Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance.
Cell Stem Cell. 2017; 20(2):233-246.e7 [PubMed] Free Access to Full Article Related Publications
Glioblastoma, the most common and aggressive malignant brain tumor, is propagated by stem-like cancer cells refractory to existing therapies. Understanding the molecular mechanisms that control glioblastoma stem cell (GSC) proliferation and drug resistance may reveal opportunities for therapeutic interventions. Here we show that GSCs can reversibly transition to a slow-cycling, persistent state in response to targeted kinase inhibitors. In this state, GSCs upregulate primitive developmental programs and are dependent upon Notch signaling. This transition is accompanied by widespread redistribution of repressive histone methylation. Accordingly, persister GSCs upregulate, and are dependent on, the histone demethylases KDM6A/B. Slow-cycling cells with high Notch activity and histone demethylase expression are present in primary glioblastomas before treatment, potentially contributing to relapse. Our findings illustrate how cancer cells may hijack aspects of native developmental programs for deranged proliferation, adaptation, and tolerance. They also suggest strategies for eliminating refractory tumor cells by targeting epigenetic and developmental pathways.

Hong Z, Li H, Li L, et al.
Different expression patterns of histone H3K27 demethylases in renal cell carcinoma and bladder cancer.
Cancer Biomark. 2017; 18(2):125-131 [PubMed] Related Publications
OBJECTIVE: UTX and JMJD3 are recently identified histone H3 lysine 27 (H3K27) demethylases. Many studies have shown aberrant H3K27 trimethylation (H3K27me3) levels widely exist in multiple cancers, and that altered H3K27me3 levels are correlated with tumorigenesis and tumor progression. To investigate expression patterns of UTX and JMJD3 genes in renal cell carcinoma (RCC) and bladder cancer and the relationship between gene expression and tumor development.
MATERIAL AND METHODS: Samples were collected from 35 patients with RCC and 21 patients with bladder cancer and qRT-PCR was performed.
RESULTS: By comparing with adjacent normal tissues, the expression of JMJD3 (10/21 = 47.62%) and UTX (10/21 = 47.62%) were significantly upregulated in bladder cancer tissues and the expression of JMJD3 (15/35 = 42.86%) was significantly downregulated in RCC tissues. Stratified analyses revealed that upregulated expression of JMJD3 was significantly associated with poorly differentiated tumor nuclear grade (p= 0.005) and advanced clinical stage (p= 0.043) in the bladder cancer group, while downregulated expression of JMJD3 was significantly associated with advanced clinical stage (p= 0.045) and poorly differentiated tumor nuclear grade (p= 0.011) in the RCC group.
CONCLUSIONS: These results suggest JMJD3 could be a hallmark and is involved in the development of RCC and bladder cancers. The potential role of H3K27 demethylases as biomarkers needs further investigations.

Tang B, Qi G, Tang F, et al.
Aberrant JMJD3 Expression Upregulates Slug to Promote Migration, Invasion, and Stem Cell-Like Behaviors in Hepatocellular Carcinoma.
Cancer Res. 2016; 76(22):6520-6532 [PubMed] Related Publications
The Jumonji domain-containing chromatin remodeling factor JMJD3 has important roles in development and cancer. Here, we report a pivotal role for JMJD3 in sustaining the phenotype of aggressive hepatocellular carcinomas. Expression levels of JMJD3 in clinical specimens of hepatocellular carcinoma correlated inversely with patient survival. In hepatocellular carcinoma cells, we found that enforcing its overexpression induced epithelial-mesenchymal transition (EMT), invasive migration, stem cell-like traits, and metastatic properties. Conversely, silencing JMJD3 in hepatocellular carcinoma cells overexpressing it inhibited these aggressive phenotypes. Mechanistically, JMJD3 modulated H3K27me3 in the SLUG gene promoter, a histone mark associated with active SLUG transcription. SLUG silencing blocked JMJD3-induced EMT, stemness, and metastasis. Furthermore, SLUG expression in hepatocellular carcinoma clinical specimens correlated positively with JMJD3 expression. Our results establish JMJD3 as a critical driver of hepatocellular carcinoma stem cell-like and metastatic behaviors, with implications for prognosis and treatment. Cancer Res; 76(22); 6520-32. ©2016 AACR.

Mathur R, Sehgal L, Havranek O, et al.
Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs.
Haematologica. 2017; 102(2):373-380 [PubMed] Free Access to Full Article Related Publications
Histone methylation and demethylation regulate B-cell development, and their deregulation correlates with tumor chemoresistance in diffuse large B-cell lymphoma, limiting cure rates. Since histone methylation status correlates with disease aggressiveness and relapse, we investigated the therapeutic potential of inhibiting histone 3 Lys27 demethylase KDM6B, in vitro, using the small molecule inhibitor GSK-J4. KDM6B is overexpressed in the germinal center B-cell subtype of diffuse large B-cell lymphoma, and higher KDM6B levels are associated with worse survival in patients with diffuse large B-cell lymphoma treated with R-CHOP. GSK-J4-induced apoptosis was observed in five (SU-DHL-6, OCI-Ly1, Toledo, OCI-Ly8, SU-DHL-8) out of nine germinal center B-cell diffuse large B-cell lymphoma cell lines. Treatment with GSK-J4 predominantly resulted in downregulation of B-cell receptor signaling and BCL6. Cell lines expressing high BCL6 levels or CREBBP/EP300 mutations were sensitive to GSK-J4. Our results suggest that B-cell receptor-dependent downregulation of BCL6 is responsible for GSK-J4-induced cytotoxicity. Furthermore, GSK-J4-mediated inhibition of KDM6B sensitizes germinal center B-cell diffuse large B-cell lymphoma cells to chemotherapy agents that are currently utilized in treatment regimens for diffuse large B-cell lymphoma.

Manente AG, Pinton G, Zonca S, et al.
KDM6B histone demethylase is an epigenetic regulator of estrogen receptor β expression in human pleural mesothelioma.
Epigenomics. 2016; 8(9):1227-38 [PubMed] Related Publications
AIM: To assess the correlation between KDM6B and estrogen receptor β (ERβ) expression in malignant pleural mesothelioma (MPM).
MATERIALS & METHODS: We evaluated gene expression by in silico analysis of microarray data, real-time PCR and western blot in MPM tumors and cell lines.
RESULTS & CONCLUSION: We report a strong positive correlation between the expression of KDM6B and ERβ in MPM tumors and cell lines. We describe that, in hypoxia, the HIF2α-KDM6B axis induces an epithelioid morphology and ERβ expression in biphasic MPM cells with estrogen receptor-negative phenotype. Reduced histone H3K27 tri-methylation confirms KDM6B activity under hypoxic conditions. Importantly, cells treated during reoxygenation with the selective ERβ agonist, KB9520, maintain ERβ expression and the less aggressive phenotype acquired in hypoxia.

Kang MK, Mehrazarin S, Park NH, Wang CY
Epigenetic gene regulation by histone demethylases: emerging role in oncogenesis and inflammation.
Oral Dis. 2017; 23(6):709-720 [PubMed] Free Access to Full Article Related Publications
Histone N-terminal tails of nucleosomes are the sites of complex regulation of gene expression through post-translational modifications. Among these modifications, histone methylation had long been associated with permanent gene inactivation until the discovery of Lys-specific demethylase (LSD1), which is responsible for dynamic gene regulation. There are more than 30 members of the Lys demethylase (KDM) family, and with exception of LSD1 and LSD2, all other KDMs possess the Jumonji C (JmjC) domain exhibiting demethylase activity and require unique cofactors, for example, Fe(II) and α-ketoglutarate. These cofactors have been targeted when devising KDM inhibitors, which may yield therapeutic benefit. KDMs and their counterpart Lys methyltransferases (KMTs) regulate multiple biological processes, including oncogenesis and inflammation. KDMs' functional interactions with retinoblastoma (Rb) and E2 factor (E2F) target promoters illustrate their regulatory role in cell cycle progression and oncogenesis. Recent findings also demonstrate the control of inflammation and immune functions by KDMs, such as KDM6B that regulates the pro-inflammatory gene expression and CD4

Arcipowski KM, Martinez CA, Ntziachristos P
Histone demethylases in physiology and cancer: a tale of two enzymes, JMJD3 and UTX.
Curr Opin Genet Dev. 2016; 36:59-67 [PubMed] Free Access to Full Article Related Publications
Gene regulation is fine-tuned by a dynamic balance between transcriptionally activating and repressive modifications of histone tails. It has been well-established that lysine and arginine methylation can be reversed by two groups of evolutionarily conserved enzymes known as histone demethylases, which have been shown to play critical roles in development, differentiation and diseases like cancer. Recent work has demonstrated demethylase-independent functions of these proteins, highlighting the complex mechanisms by which these proteins exert their effects on gene expression. Here, we discuss the roles of lysine 27 demethylases, JMJD3 and UTX, in cancer and potential therapeutic avenues targeting these enzymes. Despite a high degree of sequence similarity in the catalytic domain between JMJD3 and UTX, numerous studies revealed surprisingly contrasting roles in cellular reprogramming and cancer, particularly leukemia. Understanding the demethylase-dependent and demethylase-independent functions of the enzymes affecting histone methylation, their post-translational modifications and participation in different complexes, as well as in vivo modeling of the mutations affecting those enzymes in cancer, can shed light on their unique physiological roles. This information cumulated in the future will aid in the development of improved inhibitors to treat cancers affected by demethylase mutations and aberrant gene activation.

Westin G
Molecular genetics and epigenetics of nonfamilial (sporadic) parathyroid tumours.
J Intern Med. 2016; 280(6):551-558 [PubMed] Related Publications
Primary hyperparathyroidism (pHPT) is a common endocrine disease characterized by excessive secretion of parathyroid hormone and an increased level of serum calcium. Overall, 80-85% of pHPT cases are due to a benign, single parathyroid adenoma (PA), and 15% to multiglandular disease (multiple adenomas/hyperplasia). Parathyroid carcinoma (PC) is rare, accounting for <0.5-1% of pHPT cases. Secondary hyperparathyroidism (sHPT) is a complication of renal failure, with the development of parathyroid tumours and hypercalcaemia. Recurrent mutations in the MEN1 gene have been confirmed by the whole-exome sequencing in 35% of PAs, suggesting that non-protein-coding genes, regulatory elements or epigenetic derangements may also have roles in the majority of PAs. DNA translocations with cyclin D1 overexpression occur in PAs (8%). In PCs, mutations in CDC73/HRPT2 are common. Activation of the WNT/β-catenin signalling pathway (accumulation of nonphosphorylated β-catenin) by an aberrantly truncated LRP5 receptor has been seen for the majority of investigated PAs and sHPT tumours, and possibly by APC inactivation through promoter methylation in PCs. Promoter methylation of several other genes and repressive histone H3 lysine 27 trimethylation by EZH2 of the HIC1 gene may also contribute to parathyroid tumorigenesis. It is possible that a common pathway exists for parathyroid tumour development. CCND1 (cyclin D1) and EZH2 overexpression, accumulation of nonphosphorylated β-catenin and repression of HIC1 have all been observed to occur in PAs, PCs and sHPT tumours. In addition, hypermethylation has been observed for the same genes in PAs and PCs (e.g. SFRP1, CDKN2A and WT1). Whether β-catenin represents a 'hub' in parathyroid tumour development will be discussed.

Lulla RR, Saratsis AM, Hashizume R
Mutations in chromatin machinery and pediatric high-grade glioma.
Sci Adv. 2016; 2(3):e1501354 [PubMed] Free Access to Full Article Related Publications
Pediatric central nervous system tumors are the most common solid tumor of childhood. Of these, approximately one-third are gliomas that exhibit diverse biological behaviors in the unique context of the developing nervous system. Although low-grade gliomas predominate and have favorable outcomes, up to 20% of pediatric gliomas are high-grade. These tumors are a major contributor to cancer-related morbidity and mortality in infants, children, and adolescents, with long-term survival rates of only 10 to 15%. The recent discovery of somatic oncogenic mutations affecting chromatin regulation in pediatric high-grade glioma has markedly improved our understanding of disease pathogenesis, and these findings have stimulated the development of novel therapeutic approaches targeting epigenetic regulators for disease treatment. We review the current perspective on pediatric high-grade glioma genetics and epigenetics, and discuss the emerging and experimental therapeutics targeting the unique molecular abnormalities present in these deadly childhood brain tumors.

Park WY, Hong BJ, Lee J, et al.
H3K27 Demethylase JMJD3 Employs the NF-κB and BMP Signaling Pathways to Modulate the Tumor Microenvironment and Promote Melanoma Progression and Metastasis.
Cancer Res. 2016; 76(1):161-70 [PubMed] Related Publications
Histone methylation is a key epigenetic mark that regulates gene expression. Recently, aberrant histone methylation patterns caused by deregulated histone demethylases have been associated with carcinogenesis. However, the role of histone demethylases, particularly the histone H3 lysine 27 (H3K27) demethylase JMJD3, remains largely uncharacterized in melanoma. Here, we used human melanoma cell lines and a mouse xenograft model to demonstrate a requirement for JMJD3 in melanoma growth and metastasis. Notably, in contrast with previous reports examining T-cell acute lymphoblastic leukemia and hepatoma cells, JMJD3 did not alter the general proliferation rate of melanoma cells in vitro. However, JMJD3 conferred melanoma cells with several malignant features such as enhanced clonogenicity, self-renewal, and transendothelial migration. In addition, JMJD3 enabled melanoma cells not only to create a favorable tumor microenvironment by promoting angiogenesis and macrophage recruitment, but also to activate protumorigenic PI3K signaling upon interaction with stromal components. Mechanistic investigations demonstrated that JMJD3 transcriptionally upregulated several targets of NF-κB and BMP signaling, including stanniocalcin 1 (STC1) and chemokine (C-C motif) ligand 2 (CCL2), which functioned as downstream effectors of JMJD3 in self-renewal and macrophage recruitment, respectively. Furthermore, JMJD3 expression was elevated and positively correlated with that of STC1 and CCL2 in human malignant melanoma. Moreover, we found that BMP4, another JMJD3 target gene, regulated JMJD3 expression via a positive feedback mechanism. Our findings reveal a novel epigenetic mechanism by which JMJD3 promotes melanoma progression and metastasis, and suggest JMJD3 as a potential target for melanoma treatment.

Pan MR, Hsu MC, Chen LT, Hung WC
G9a orchestrates PCL3 and KDM7A to promote histone H3K27 methylation.
Sci Rep. 2015; 5:18709 [PubMed] Free Access to Full Article Related Publications
Methylation of histone H3-lysine 9 (H3K9) and H3K27 by the methyltransferase G9a and polycomb repressive complex 2 (PRC2) inhibits transcription of target genes. A crosstalk between G9a and PRC2 via direct physical interaction has been shown recently. Here, we demonstrate an alternative mechanism by which G9a promotes H3K27 methylation. Overexpression of G9a increases both H3K9 and H3K27 methylation, reduces E-cadherin expression, and induces epithelial-mesenchymal transition in PANC-1 pancreatic cancer cells. Conversely, the depletion of G9a or ectopic expression of methyltransferase-dead G9a in G9a-overexpressing gemcitabine-resistant PANC-1-R cells exhibits opposite effects. G9a promotes H3K27 methylation of the E-cadherin promoter by upregulating PCL3 to increase PRC2 promoter recruitment and by downregulating the H3K27 demethylase KDM7A to silence E-cadherin gene. The depletion of PCL3 or overexpression of KDM7A elevated expression of E-cadherin in PANC-1-R cells while ectopic expression of PCL3 or knockdown of KDM7A downregulated E-cadherin in PANC-1 cells. Collectively, we provide evidence that G9a orchestrates the dynamic balance within histone-modifying enzymes to regulate H3K27 methylation and gene expression.

Prieto-Granada CN, Wiesner T, Messina JL, et al.
Loss of H3K27me3 Expression Is a Highly Sensitive Marker for Sporadic and Radiation-induced MPNST.
Am J Surg Pathol. 2016; 40(4):479-89 [PubMed] Free Access to Full Article Related Publications
Most malignant peripheral nerve sheath tumors (MPNSTs) exhibit combined inactivation of NF1, CDKN2A, and polycomb repressive complex 2 component genes (Embryonic Ectoderm Development [EED] and Suppressor of Zeste 12 [SUZ12]). Mutations in EED and SUZ12 induce loss of trimethylation at lysine 27 of histone 3 (H3K27me3), with subsequent aberrant transcriptional activation of polycomb repressive complex 2-repressed homeobox master regulators. These findings prompted us to investigate the performance of an anti-H3K27me3 monoclonal antibody clone C36B11 as an immunohistochemical marker for MPNSTs. We assessed the C36B11 reactivity pattern in a pathologically and genetically well-characterized cohort of 68 MPNSTs, spanning various clinical presentations, such as type 1 neurofibromatosis (NF1), radiotherapy, and sporadic MPNSTs. We found that 69% (n=47) of all MPNSTs demonstrated loss of H3K27me3 expression, with 42 (61%) showing complete loss and 5 (7%) showing partial loss, whereas 31% (n=21) retained H3K27me3 expression. Among the NF1-related high-grade MPNSTs, 60% demonstrated loss of expression. In contrast, the majority of both sporadic (95%) and radiotherapy-related (91%) MPNSTs showed loss of H3K27me3 expression. Two of the 3 low-grade MPNSTs and all neurofibromas showed retained expression. Furthermore, all 5 epithelioid MPNSTs retained H3K27me3 labeling. The specificity of H3K27me3 loss as a marker for MPNSTs was studied by testing a large spectrum of lesions included in MPNST differential diagnosis, such as spindle/desmoplastic melanomas, synovial sarcomas, myoepithelial tumors, and other mesenchymal neoplasms, all of which retained expression of H3K27me3. We conclude that immunohistochemical analysis of H3K27me3 has good sensitivity and robust specificity for the diagnosis of MPNST, particularly outside of NF1 clinical history, which represents the most challenging diagnostic setting.

Sun J, Shen Q, Lu H, et al.
Oncogenic Ras suppresses ING4-TDG-Fas axis to promote apoptosis resistance.
Oncotarget. 2015; 6(39):41997-2007 [PubMed] Free Access to Full Article Related Publications
Ras is aberrantly activated in many cancers and active DNA demethylation plays a fundamental role to establish DNA methylation pattern which is of importance to cancer development. However, it was unknown whether and how Ras regulate DNA demethylation during carcinogenesis. Here we found that Ras downregulated thymine-DNA glycosylase (TDG), a DNA demethylation enzyme, by inhibiting the interaction of transcription activator ING4 with TDG promoter. TDG recruited histone lysine demethylase JMJD3 to the Fas promoter and activated its expression, thus restoring sensitivity to apoptosis. TDG suppressed in vivo tumorigenicity of xenograft pancreatic cancer. Thus, we speculate that reversing Ras-mediated ING4 inhibition to activate Fas expression is a potential therapeutic approach for Ras-driven cancers.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. KDM6B, Cancer Genetics Web: http://www.cancer-genetics.org/KDM6B.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999