HLA-A

Gene Summary

Gene:HLA-A; major histocompatibility complex, class I, A
Aliases: HLAA
Location:6p22.1
Summary:HLA-A belongs to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. Class I molecules play a central role in the immune system by presenting peptides derived from the endoplasmic reticulum lumen. They are expressed in nearly all cells. The heavy chain is approximately 45 kDa and its gene contains 8 exons. Exon 1 encodes the leader peptide, exons 2 and 3 encode the alpha1 and alpha2 domains, which both bind the peptide, exon 4 encodes the alpha3 domain, exon 5 encodes the transmembrane region, and exons 6 and 7 encode the cytoplasmic tail. Polymorphisms within exon 2 and exon 3 are responsible for the peptide binding specificity of each class one molecule. Typing for these polymorphisms is routinely done for bone marrow and kidney transplantation. Hundreds of HLA-A alleles have been described. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:HLA class I histocompatibility antigen, A-1 alpha chain
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (26)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Histocompatibility Testing
  • CD8-Positive T-Lymphocytes
  • Genotype
  • Pedigree
  • Nasopharyngeal Cancer
  • HLA-A
  • Missense Mutation
  • HLA-B
  • Lung Cancer
  • Cancer Gene Expression Regulation
  • Case-Control Studies
  • Tunisia
  • Peptide Fragments
  • Polymerase Chain Reaction
  • Tumor Antigens
  • Tissue Donors
  • beta 2-Microglobulin
  • Ploidies
  • Thymus Gland
  • HLA-A2 Antigen
  • HLA Antigens
  • Adolescents
  • Protein Structure, Tertiary
  • Alleles
  • Odds Ratio
  • Genetic Predisposition
  • Leukaemia
  • Haplotypes
  • T-Lymphocytes, Cytotoxic
  • Vaccines, DNA
  • Bladder Cancer
  • Cervical Cancer
  • Epitopes, T-Lymphocyte
  • Stomach Cancer
  • Chromosome 6
  • Risk Factors
  • Survival Rate
  • DNA Sequence Analysis
  • Validation Studies as Topic
  • Reed-Sternberg Cells
  • Histocompatibility Antigens Class I
  • Telomerase
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HLA-A (cancer-related)

Uchida E, Suwa S, Yoshimoto R, et al.
TOPK is regulated by PP2A and BCR/ABL in leukemia and enhances cell proliferation.
Int J Oncol. 2019; 54(5):1785-1796 [PubMed] Related Publications
Although treatment of chronic myeloid leukemia (CML) has improved with the development of tyrosine kinase inhibitors (TKIs), patients develop fatal blast crisis (BC) whilst receiving TKI treatment. Alternative treatments for cases resistant to TKIs are required. A serine/threonine protein kinase, T‑lymphokine‑activated killer cell‑originated protein kinase (TOPK), is highly expressed in various malignant tumors. Binding of peptides to human leukocyte antigen was assessed via mass spectrometry in K562 CML cells. TOPK expression was assessed in various CML cell lines and in clinical samples obtained from patients with CML using reverse transcription‑quantitative polymerase chain reaction and western blot assays. It was observed that TOPK was expressed abundantly in BCR/ABL‑positive cell lines and at significantly higher levels in CML clinical samples compared with healthy donor samples. Overexpression of BCR/ABL or the presence of its inhibitor imatinib upregulated and downregulated TOPK expression, respectively, indicating that TOPK may be a target of BCR/ABL. TOPK inhibitor OTS514 suppressed proliferation of BCR/ABL‑positive cell lines and colony formation of CD34‑positive cells from patients with CML compared with lymphoma patients without bone marrow involvement. Furthermore, phosphorylation of TOPK was increased by protein phosphatase 2A (PP2A) inhibitor okadaic acid and was decreased in the presence of PP2A activator FTY720 compared with untreated samples. As constitutive BCR/ABL activity and inhibition of PP2A are key mechanisms of CML development, TOPK may be a crucial signaling molecule for this disease. Inhibition of TOPK may control disease status of CML, even in cases resistant to TKIs.

Roca AM, Chobrutskiy BI, Callahan BM, Blanck G
T-cell receptor V and J usage paired with specific HLA alleles associates with distinct cervical cancer survival rates.
Hum Immunol. 2019; 80(4):237-242 [PubMed] Related Publications
Cervical cancer is more strongly associated with a specific virus, Human Papilloma Virus (HPV), in otherwise healthy individuals, than is any other cancer. Thus, there is an expectation that an adaptive immune signature of cervical cancer would be highly apparent. Here we used a genomics approach to investigate the relationship between T-cell receptor (TCR) V and J usage and survival for patients diagnosed with cervical cancer, relying exclusively on tissue and blood exome files. Specific TCR V or J segments, identified in recombination reads recovered from the exome files, were combined with the patient HLA alleles to identify V or J, HLA allele combination groups associated with distinct survival rates. For examples, the T-cell receptor-β (TRB) V6-5, HLA-A*02:01 combination was associated with a positive outcome, and the TRBV6-1, HLA-A*01:01 combination was associated with a negative outcome. Overall, these results point to V or J usage, HLA allele combinations as survival biomarkers, likely conveniently accessible with a noninvasive procedure, and the results may point the way towards immunological reagents useful in therapy designs.

Jung AR, Eun YG, Lee YC, et al.
Clinical Significance of CUB and Sushi Multiple Domains 1 Inactivation in Head and Neck Squamous Cell Carcinoma.
Int J Mol Sci. 2018; 19(12) [PubMed] Free Access to Full Article Related Publications
Although the genetic alteration of CUB and Sushi multiple domains 1 (CSMD1) is known to be associated with poor prognosis in several cancers, there is a lack of clinical relevance in head and neck cancer. The aim of this study was to offer insight into the clinical significance of CSMD1, utilizing a multimodal approach that leverages publicly available independent genome-wide expression datasets. CSMD1-related genes were found and analyzed to examine the clinical significance of CSMD1 inactivation in the HNSCC cohort of publicly available databases. We analyzed the frequency of somatic mutations, clinicopathologic characteristics, association with immunotherapy-related gene signatures, and the pathways of gene signatures. We found 363 CSMD1-related genes. The prognosis of the CSMD1-inactivated subgroup was poor.

Alifu M, Hu YH, Dong T, Wang RZ
HLA-A*30:01 and HLA-A*33:03 are the protective alleles while HLA-A*01:01 serves as the susceptible gene for cervical cancer patients in Xinjiang, China.
J Cancer Res Ther. 2018 Oct-Dec; 14(6):1266-1272 [PubMed] Related Publications
Objective: This study aims to investigate the distribution of HLA-A genes and identify alleles related to cervical cancer.
Materials and Methods: A total of 252 cervical cancer patients (56 Han ethnic and 196 Uyghur ethnic) and 213 controls (103 Han ethnic and 110 Uyghur ethnic) were recruited in this study. HLA-A alleles were examined by polymerase chain reaction with sequence-specific primers. The frequencies of different HLA-A alleles were compared between the two ethnic groups as well as patients and controls. The correlation of HLA-A frequencies with various clinical characteristics and short-term treatment efficacy was analyzed.
Results: (1) Significantly higher frequencies of HLA-A*03:01 and HLA-A*03:02 and lower frequencies of HLA-A*11:01, HLA-A*24:02, and HLA-A*30:01 were observed in the Uyghur control groups than in Han control groups (P ≤ 0.05). (2) The frequency of HLA-A*01:01 in patients was significantly higher than controls. In contrast, the frequencies of HLA-A*30:01 and HLA-A*33:03 were lower in patients (P ≤ 0.05). (3) The frequency of HLA-A*30:01 in Han patients was lower than Han control group (P ≤ 0.05). However, there was no statistically significant in the frequency of HLA-A between Uyghur patients and controls (P > 0.05). (4) There was no significant association between HLA-A alleles and HPV16 or squamous cell carcinoma antigen levels (P > 0.05). (5) The frequency of HLA-A*30:01 allele in complete response + partial response group was higher than stable disease + progressive disease group (P ≤ 0.05).
Conclusions: People from two ethnic groups displayed different HLA-A gene distribution. HLA-A*30:01 and HLA-A*33:03 alleles are the protective factors to cervical cancer patients from Xinjiang while HLA-A*01:01 serves as the susceptible gene.

Clark KR, Tong WL, Callahan BM, et al.
TRB-J1 usage, in combination with the HLA-A*01:01 allele, represents an apparent survival advantage for uterine corpus endometrial carcinoma: Comparisons with microscopic assessments of lymphocyte infiltrates.
Int J Immunogenet. 2019; 46(1):31-37 [PubMed] Related Publications
The opportunity for the highly efficient recovery of immune receptor recombination data from cancer specimens, including the ready assessment of immune receptor V and J usage, raises the issue of establishing precise values of assessing the immune receptor status as opposed to obtaining basic information regarding lymphocyte infiltration, in the cancer setting. In this report, we obtained the lymphocyte infiltration percentages from the cancer digital slide archive representing uterine corpus endometrial carcinoma (UCEC) and correlated these data with recovery of the immune receptor recombination reads from corresponding UCEC exome files. Results indicated a basic correlation of the recovery of productive T-cell receptor beta (TRB) recombination reads with lymphocyte infiltration percentages. However, the recovery of specific immune receptor recombination reads did not indicate the same survival outcomes as microscope detection of lymphocyte infiltrate percentages. To further exploit the value of recovery of the TRB recombination reads from the UCEC exome files, we determined the survival outcomes for combinations of TRB gene segment usage and HLA class I alleles, with the most important result being that the combination of HLA-A*01:01 and TRB-J1 segment usage reflected a strikingly high survival rate. Overall, this report emphasized the increased value of the knowledge of the immune receptor recombinations, in comparison with basic lymphocyte infiltration percentages, in assessing cancer survival rates.

Cambridge CA, Turner TR, Georgiou X, et al.
Two novel alleles, HLA-A*32:01:01:09 and 32:01:01:10, identified by Pacific Bioscience's SMRT sequencing.
HLA. 2018; 92(6):409-411 [PubMed] Related Publications
Pacific Bioscience's SMRT DNA sequencing was used to identify two novel intronic variants of HLA-A*32:01:01:01.

Johnson JK, Wright PW, Li H, Anderson SK
Identification of trophoblast-specific elements in the HLA-C core promoter.
HLA. 2018; 92(5):288-297 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
There are several aspects of HLA-C gene expression that distinguish it from the HLA-A and HLA-B genes. First, HLA-C is expressed by extravillous trophoblasts, whereas HLA-A and HLA-B are not. Second, its cell-surface expression is much lower, which has been linked to changes in transcription and efficiency of peptide loading and export. Third, HLA-C possesses a NK cell-specific promoter and a complex alternative splicing system that regulates expression during NK cell development. In this study, we investigate the contribution of the HLA-C core promoter to trophoblast-specific expression. Analysis of transcription start sites showed the presence of a trophoblast-associated start site and additional upstream TATA and CCAAT-box elements in the HLA-C promoter, suggesting the presence of an overlapping trophoblast-specific promoter. A comparison of in vitro promoter activity showed that the HLA-C promoter was more active in trophoblast cell lines than either the HLA-A or HLA-B promoters. Enhanced trophoblast activity was mapped to the central enhanceosome region of the promoter, and mutational analysis identified changes in the RFX-binding region that generated a trophoblast-specific enhancer.

Kim HD, Song GW, Park S, et al.
Association Between Expression Level of PD1 by Tumor-Infiltrating CD8
Gastroenterology. 2018; 155(6):1936-1950.e17 [PubMed] Related Publications
BACKGROUND & AIMS: T-cell exhaustion, or an impaired capacity to secrete cytokines and proliferate with overexpression of immune checkpoint receptors, occurs during chronic viral infections but has also been observed in tumors, including hepatocellular carcinomas (HCCs). We investigated features of exhaustion in CD8
METHODS: We obtained HCC specimens, along with adjacent nontumor tissues and blood samples, from 90 patients who underwent surgical resection at Asan Medical Center (Seoul, Korea) from April 2016 through April 2018. Intrahepatic lymphocytes and tumor-infiltrating T cells were analyzed by flow cytometry. Tumor-infiltrating CD8
RESULTS: PD1-high, PD1-intermediate, and PD1-negative CD8
CONCLUSIONS: We found HCC specimens to contain CD8

Pan L, Tang W, Zhang A, et al.
Identification of the novel HLA-A*29:113 allele in a Hodgkin's Lymphoma patient.
HLA. 2018; 92(5):322-323 [PubMed] Related Publications
HLA-A*29:113 allele differs from HLA-A*29:01:01 at position 517 within exon 3.

Akahori Y, Wang L, Yoneyama M, et al.
Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination.
Blood. 2018; 132(11):1134-1145 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
The recent success of chimeric antigen receptor (CAR)-T cell therapy for treatment of hematologic malignancies supports further development of treatments for both liquid and solid tumors. However, expansion of CAR-T cell therapy is limited by the availability of surface antigens specific for the tumor while sparing normal cells. There is a rich diversity of tumor antigens from intracellularly expressed proteins that current and conventional CAR-T cells are unable to target. Furthermore, adoptively transferred T cells often suffer from exhaustion and insufficient expansion, in part, because of the immunosuppressive mechanisms operating in tumor-bearing hosts. Therefore, it is necessary to develop means to further activate and expand those CAR-T cells in vivo. The Wilms tumor 1 (WT1) is an intracellular oncogenic transcription factor that is an attractive target for cancer immunotherapy because of its overexpression in a wide range of leukemias and solid tumors, and a low level of expression in normal adult tissues. In the present study, we developed CAR-T cells consisting of a single chain variable fragment (scFv) specific to the WT1

Wada H, Shimizu A, Osada T, et al.
Development of a novel immunoproteasome digestion assay for synthetic long peptide vaccine design.
PLoS One. 2018; 13(7):e0199249 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Recently, many autologous tumor antigens have been examined for their potential use in cancer immunotherapy. However, the success of cancer vaccines in clinical trials has been limited, partly because of the limitations of using single, short peptides in most attempts. With this in mind, we aimed to develop multivalent synthetic long peptide (SLP) vaccines containing multiple cytotoxic T-lymphocyte (CTL) epitopes. However, to confirm whether a multivalent vaccine can induce an individual epitope-specific CTL, the only viable screening strategies currently available are interferon-gamma (IFN-γ enzyme-linked immunospot (ELISPOT) assays using human peripheral blood mononuclear cells, or expensive human leukocyte antigen (HLA)-expressing mice. In this report, we evaluated the use of our developed murine-20S immunoproteasome (i20S) digestion assay, and found that it could predict the results of IFN-γ ELISPOT assays. Importantly, the murine-i20S digestion assay not only predicted CTL induction, but also antitumor activity in an HLA-expressing mouse model. We conclude that the murine-i20S digestion assay is an extremely useful tool for the development of "all functional" multivalent SLP vaccines.

Hylebos M, Op de Beeck K, van den Ende J, et al.
Molecular analysis of an asbestos-exposed Belgian family with a high prevalence of mesothelioma.
Fam Cancer. 2018; 17(4):569-576 [PubMed] Related Publications
Familial clustering of malignant mesothelioma (MM) has been linked to the presence of germline mutations in BAP1. However, families with multiple MM patients, without segregating BAP1 mutation were described, suggesting the existence of other predisposing genetic factors. In this study, we report a previously undescribed Belgian family, in which BAP1 was found to be absent in the epithelial malignant mesothelial cells of the index patient. Whole exome analysis did not reveal a germline or somatic BAP1 variant. Also, no germline or somatic copy number changes in the BAP1 region could be identified. However, germline variants, predicted to be damaging, were detected in 11 other 'Cancer census genes' (i.e. MPL, RBM15, TET2, FAT1, HLA-A, EGFR, KMT2C, BRD3, NOTCH1, RB1 and MYO5A). Of these, the one in RBM15 seems to be the most interesting given its low minor allele frequency and absence in the germline DNA of the index patient's mother. The importance of this 'Cancer census gene' in familial MM clustering needs to be evaluated further. Nevertheless, this study strengthens the suspicion that, next to germline BAP1 alterations, other genetic factors might predispose families to the development of MM.

Mari L, Hoefnagel SJM, Zito D, et al.
microRNA 125a Regulates MHC-I Expression on Esophageal Adenocarcinoma Cells, Associated With Suppression of Antitumor Immune Response and Poor Outcomes of Patients.
Gastroenterology. 2018; 155(3):784-798 [PubMed] Related Publications
BACKGROUND & AIMS: Immune checkpoint inhibition may affect growth or progression of highly aggressive cancers, such as esophageal adenocarcinoma (EAC). We investigated the regulation of expression of major histocompatibility complex, class 1 (MHC-I) proteins (encoded by HLA-A, HLA-B, and HLA-C) and the immune response to EACs in patient samples.
METHODS: We performed quantitative polymerase chain reaction array analyses of OE33 cells and OE19 cells, which express different levels of the ATP binding cassette subfamily B member 1 (TAP1) and TAP2, required for antigen presentation by MHC-I, to identify microRNAs (miRNAs) that regulate their expression. We performed luciferase assays to validate interactions between miRNAs and potential targets. We overexpressed candidate miRNAs in OE33, FLO-1, and OACP4 C cell lines and performed quantitative polymerase chain reaction, immunoblot, and flow cytometry analyses to identify changes in messenger RNA (mRNA) and protein expression; we studied the effects of cytotoxic T cells. We performed miRNA in situ hybridization, RNA-sequencing, and immunohistochemical analyses of tumor tissues from 51 untreated patients with EAC in the Netherlands. Clinical and survival data were collected for patients, and EAC subtypes were determined.
RESULTS: We found OE19 cells to have increased levels of 7 miRNAs. Of these, we found binding sites for miRNA 125a (MIR125a)-5p in the 3' untranslated region of the TAP2 mRNA and binding sites for MIR148a-3p in 3' untranslated regions of HLA-A, HLA-B, and HLA-C mRNAs. Overexpression of these miRNAs reduced expression of TAP2 in OE33, FLO-1, and OACP4 C cells, and reduced cell-surface levels of MHC-I. OE33 cells that expressed the viral peptide BZLF1 were killed by cytotoxic T cells, whereas OE33 that overexpressed MIR125a-5p or MIR 148a along with BZLF1 were not. In EAC and nontumor tissues, levels of MIR125a-5p correlated inversely with levels of TAP2 protein. High expression of TAP1 by EAC correlated with significantly shorter overall survival times of patients. EACs that expressed high levels of TAP1 and genes involved in antigen presentation also expressed high levels of genes that regulate the adaptive immune response, PD-L1, PD-L2, and IDO1; these EACs had a poor response to neoadjuvant chemoradiotherapy and associated with shorter overall survival times of patients.
CONCLUSIONS: In studies of EAC cell lines and tumor tissues, we found increased levels of MIR125a-5p and MIR148a-3p to reduce levels of TAP2 and MHC-I, required for antigen presentation. High expression of MHC-I molecules by EAC correlated with markers of an adaptive immune response and significantly shorter overall survival times of patients.

Lacher MD, Bauer G, Fury B, et al.
SV-BR-1-GM, a Clinically Effective GM-CSF-Secreting Breast Cancer Cell Line, Expresses an Immune Signature and Directly Activates CD4
Front Immunol. 2018; 9:776 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Targeted cancer immunotherapy with irradiated, granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting, allogeneic cancer cell lines has been an effective approach to reduce tumor burden in several patients. It is generally assumed that to be effective, these cell lines need to express immunogenic antigens coexpressed in patient tumor cells, and antigen-presenting cells need to take up such antigens then present them to patient T cells. We have previously reported that, in a phase I pilot study (ClinicalTrials.gov NCT00095862), a subject with stage IV breast cancer experienced substantial regression of breast, lung, and brain lesions following inoculation with clinical formulations of SV-BR-1-GM, a GM-CSF-secreting breast tumor cell line. To identify diagnostic features permitting the prospective identification of patients likely to benefit from SV-BR-1-GM, we conducted a molecular analysis of the SV-BR-1-GM cell line and of patient-derived blood, as well as a tumor specimen. Compared to normal human breast cells, SV-BR-1-GM cells overexpress genes encoding tumor-associated antigens (TAAs) such as PRAME, a cancer/testis antigen. Curiously, despite its presumptive breast epithelial origin, the cell line expresses major histocompatibility complex (MHC) class II genes (

Fan PW, Huang L, Chang XM, et al.
Human Leukocyte Antigen-A Allele Distribution in Nasopharyngeal Carcinoma Patients Showing Anti-Melanoma-Associated Antigen A or Synovial Sarcoma X-2 T Cell Response in Blood.
Chin Med J (Engl). 2018; 131(11):1289-1295 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Background: Development of innovative immunotherapy is imperative to improve the poor survival of the nasopharyngeal carcinoma (NPC) patients. In this study, we evaluated the T cell response to melanoma-associated antigen (MAGE)-A1, MAGE-A3, or synovial sarcoma X-2 (SSX-2) in the peripheral blood of treatment-naive NPC patients. The relationship of responses among the three proteins and the human leukocyte antigen (HLA)-A types were analyzed to provide evidence of designing novel therapy.
Methods: Sixty-one NPC patients admitted into the Tumor Hospital affiliated to the Xinjiang Medical University between March 2015 and July 2016 were enrolled. Mononuclear cells were isolated from the peripheral blood before any treatment. HLA-A alleles were typed with Sanger sequence-based typing technique. The T cell response to the MAGE-A1, MAGE-A3, or SSX-2 was evaluated with the Enzyme-Linked ImmunoSpot assay. Mann-Whitney U-test was used to compare the T cell responses from different groups. Spearman's rank correlation was used to analyze the relationship of T cell responses.
Results: HLA-A*02:01, A*02:07, and A*24:02 were the three most frequent alleles (18.9%, 12.3%, and 11.5%, respectively) among the 22 detected alleles. 31.1%, 19.7%, and 16.4% of the patients displayed MAGE-A1, MAGE-A3, or SSX-2-specific T cell response, respectively. The magnitudes of response to the three proteins were 32.5, 38.0, and 28.7 SFC/10
Conclusion: MAGE-A1, MAGE-A3, or SSX-2-specific T cell responses were detectable in a subgroup of NPC patients, the frequency and magnitude of which were correlated.

Moyer AM, Hashmi SK, Kroning C, et al.
Does matching for SNPs in the MHC gamma block in 10/10 HLA-matched unrelated donor-recipient pairs undergoing allogeneic stem cell transplant improve outcomes?
Hum Immunol. 2018; 79(7):532-536 [PubMed] Related Publications
BACKGROUND: Matching at the HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci is important in donor selection for patients undergoing unrelated allogeneic hematopoietic stem cell transplantation (ASCT). Additional matching across the MHC gamma region may further improve outcomes.
METHODS: The MHC gamma region was retrospectively genotyped in 66 adult recipients of ASCT and their 10/10 matched unrelated donors. A chart review was performed to determine whether MHC gamma matching impacted survival, relapse, or graft-versus-host disease.
RESULTS: Of 66 donor-recipient pairs, 26(39.4%) were gamma-type matches, 34(51.5%) were mismatches, and 6(9.1%) were "indeterminate." Matching status was not associated with overall survival (p = 0.43), relapse (p = 0.21), acute GVHD (p = 0.43), severe aGVHD (p = 0.31), or chronic GVHD (p = 0.23) in univariate analyses, nor in multivariate analyses (p = 0.28, 0.13, 0.29, 0.16, and 0.67, respectively), with or without adjusting for HLA-DPB1 matching status.
CONCLUSIONS: In our single institution study, gamma-type matching status was not associated with outcomes of adult ASCT recipients.

Orlando D, Miele E, De Angelis B, et al.
Adoptive Immunotherapy Using PRAME-Specific T Cells in Medulloblastoma.
Cancer Res. 2018; 78(12):3337-3349 [PubMed] Related Publications
Medulloblastoma is the most frequent malignant childhood brain tumor with a high morbidity. Identification of new therapeutic targets would be instrumental in improving patient outcomes. We evaluated the expression of the tumor-associated antigen PRAME in biopsies from 60 patients with medulloblastoma. PRAME expression was detectable in 82% of tissues independent of molecular and histopathologic subgroups. High PRAME expression also correlated with worse overall survival. We next investigated the relevance of PRAME as a target for immunotherapy. Medulloblastoma cells were targeted using genetically modified T cells with a PRAME-specific TCR (SLL TCR T cells). SLL TCR T cells efficiently killed medulloblastoma HLA-A*02

Deng H, Zeng J, Zhang T, et al.
Histone H3.3K27M Mobilizes Multiple Cancer/Testis (CT) Antigens in Pediatric Glioma.
Mol Cancer Res. 2018; 16(4):623-633 [PubMed] Related Publications
Lysine to methionine mutations at position 27 (K27M) in the histone H3 (H3.3 and H3.1) are highly prevalent in pediatric high-grade gliomas (HGG) that arise in the midline of the central nervous system. H3K27M perturbs the activity of polycomb repressor complex 2 and correlates with DNA hypomethylation; however, the pathways whereby H3K27M drives the development of pediatric HGG remain poorly understood. To understand the mechanism of pediatric HGG development driven by H3.3K27M and discover potential therapeutic targets or biomarkers, we established pediatric glioma cell model systems harboring H3.3K27M and performed microarray analysis. H3.3K27M caused the upregulation of multiple cancer/testis (CT) antigens, such as ADAMTS1, ADAM23, SPANXA1, SPANXB1/2, IL13RA2, VCY, and VCX3A, in pediatric glioma cells. Chromatin immunoprecipitation analysis from H3.3K27M cells revealed decreased H3K27me3 levels and increased H3K4me3 levels on the

Cao J, Brouwer NJ, Jordanova ES, et al.
HLA Class I Antigen Expression in Conjunctival Melanoma Is Not Associated With PD-L1/PD-1 Status.
Invest Ophthalmol Vis Sci. 2018; 59(2):1005-1015 [PubMed] Related Publications
Purpose: Antitumor T cells need expression of HLA class I molecules but can be inhibited by ligands such as programmed death ligand 1 (PD-L1). We determined expression and regulation of these molecules in human conjunctival melanoma (CM) samples, cell lines, and murine xenografts.
Methods: Immunofluorescence staining was performed to examine the expression of HLA-A, HLA-B/C, and β-2-microglobulin (B2M) in 23 primary CM samples. HLA class I expression was compared with clinicopathologic characteristics, the presence of tumor-infiltrating leukocytes, and PD-L1/PD-1 status. The effect of interferon γ (IFN-γ) on HLA class I expression was tested on three CM cell lines using quantitative PCR and flow cytometry. Furthermore, HLA class I expression was determined in CM cell line-derived murine xenografts.
Results: One third of tumors had positive HLA-A, HLA-B/C, and B2M expression. A positive expression was especially seen in thin and epibulbar tumors but was not associated with recurrences. HLA class I expression was correlated with M2 macrophage density and tended to associate with CD8+ T-cell density but was independent of PD-L1 or PD-1 expression. IFN-γ upregulated HLA class I expression and genes involved in HLA transcription and transportation on CM cell lines. Murine xenografts showed a comparable HLA class I expression as their respective cell lines.
Conclusions: Our data indicate that subsets of CM have positive HLA class I expression, and HLA class I and PD-L1/PD-1 are expressed independently. When one considers immunotherapy, one should also analyze HLA class I expression, whose downregulation can limit the efficacy of T cell-mediated therapies.

Zhu W, Peng Y, Wang L, et al.
Identification of α-fetoprotein-specific T-cell receptors for hepatocellular carcinoma immunotherapy.
Hepatology. 2018; 68(2):574-589 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is the major form of liver cancer for which there is no effective therapy. Genetic modification with T-cell receptors (TCRs) specific for HCC-associated antigens, such as α-fetoprotein (AFP), can potentially redirect human T cells to specifically recognize and kill HCC tumor cells to achieve antitumor effects. In this study, using lentivector and peptide immunization, we identified a population of cluster of differentiation 8 (CD8) T cells in human leukocyte antigen (HLA)-A2 transgenic AAD mice that recognized AFP
CONCLUSION: We have identified AFP-specific murine TCR genes that can redirect human T cells to specifically recognize and kill HCC tumor cells, and those AFP

Xie Y, Wu J, Xu A, et al.
Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice.
Vaccine. 2018; 36(11):1414-1422 [PubMed] Related Publications
DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-T

Bello-López JM, Cisneros CB, Martínez-Albarrán A
HLA analysis of Mexican candidates for bone marrow transplantation and probability of finding compatible related donors.
Transfus Apher Sci. 2018; 57(1):82-87 [PubMed] Related Publications
INTRODUCTION: Oncohematological disorders are the main cause of morbidity in the Mexican population from 1 to 19 years old, where megakaryoblastic and promyelocitic leukemias are more frequent. Considering that the success of a transplant is multifactorial, the criterion of compatibility in the HLA system is crucial and even more so when the source of HSC is bone marrow.
OBJECTIVE: To determine the frequency of the HLA genotype in Mexican candidates who require a bone marrow transplant from related donors and the probability to find donors.
MATERIALS AND METHODS: One hundred twenty-six candidates for bone marrow transplant and related donors were tested for HLA class I (-A*, -B* alleles) and class II (-DRB1* allele) in intermediate-resolution, as the first phase in the choice of the possible donor. The criteria to identify donors were determined by antigen-matched in each HLA haplotype as follows: 4/6, 5/6 and 6/6 at the HLA-A*, HLA-B*, and HLA-DRB1* alleles.
RESULTS: Of all the candidates analyzed, 57.93%, at least one bone marrow donor was identified; in 53 cases, no donor was found. The average size of the families was 4.79 ± 1.06 members. A higher percentage of compatibility with grade 6/6 (31.6%) was identified with brothers, followed by sisters in 25.3%. The probability to find at least one compatible potential donor was 1.51 ± 0.92 donors.
CONCLUSION: In the first phase to select donors, Mexican patients studied in this work, have a compatible donor, however the grade of resolution test influenced in the probability identified.

Huo MR, Pei XY, Li D, et al.
Impact of HLA allele mismatch at HLA-A, -B, -C, -DRB1, and -DQB1 on outcomes in haploidentical stem cell transplantation.
Bone Marrow Transplant. 2018; 53(5):600-608 [PubMed] Related Publications
The impact of human leukocyte antigen (HLA) allele mismatch on transplant outcomes in haploidentical stem cell transplantation (haplo-SCT) has not been established. We retrospectively studied 595 patients with hematologic malignancy who received haplo-SCT. The impact of multiple HLA allele mismatches (HLA-A, -B, -C, -DRB1, and -DQB1) and each HLA allele mismatch on transplant outcomes was analyzed. Greater number of HLA allele disparity does not appear worsen outcome. As for each HLA locus, HLA-A mismatch correlated with decreased rate of platelet engraftment (HR 0.740, P = .003); HLA-B mismatch independently correlated with decreased relapse rate (HR 0.494, P = .032) and improved disease-free survival and overall survival (HR 0.514, P = .003; HR 0.494, P = .002, respectively); HLA-C mismatch appeared to be protective for transplant-related mortality (TRM) (HR 0.567, P = .039); HLA-DRB1 mismatch was associated with increased cumulative incidence of grade II-IV acute graft-vs.-host disease (GVHD) (HR 1.942, P = .002). No associations of any HLA mismatch with delayed neutrophil engraftment or increased cumulative incidence of chronic GVHD were observed. Our data indicated that high degree of HLA allele mismatches did not adversely affect transplant outcomes in haplo-SCT and each HLA allele mismatch had different effect.

Qin N, Wang C, Zhu M, et al.
Fine-mapping the MHC region in Asian populations identified novel variants modifying susceptibility to lung cancer.
Lung Cancer. 2017; 112:169-175 [PubMed] Related Publications
OBJECTIVES: The polymorphic major histocompatibility complex (MHC) plays a vital role in the immune system and drives predisposition to multiple cancers. A number of lung cancer-related genetic variants in the MHC have been identified in recent genome-wide association studies; however, the causal variants remain unclear.
MATERIALS AND METHODS: In the present study, we conducted a large-scale fine-mapping study of lung cancer in the MHC region of 13,945 unrelated Asian individuals to search for potential causal variants. We used the recently constructed Pan-Asian panel as the reference and imputed eight HLA genes (HLA-A, HLC-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1) using SNP2HLA software.
RESULTS: We identified one single nucleotide polymorphism, rs12333226 (OR=1.41, P=3.97×10
CONCLUSION: We identified seven novel bi-allelic variants and five polymorphic amino acid positions in HLA-DRβ1, HLA-DQα1, and HLA-A that confer a risk of lung cancer. This finding provides evidence for the substantial contributions of HLA class I and II molecules to lung cancer susceptibility.

Balassa K, Andrikovics H, Remenyi P, et al.
Sex-specific survival difference in association with HLA-DRB1∗04 following allogeneic haematopoietic stem cell transplantation for lymphoid malignancies.
Hum Immunol. 2018; 79(1):13-19 [PubMed] Related Publications
The role of HLA system in allogeneic haematopoietic stem cell transplantation (allo-HSCT) outcome is unarguable. In this study we investigated association of HLA-A,-B and-DRB1 alleles with overall survival (OS) in 186 patients undergoing allo-HSCT for lymphoid malignancies. Analyses confirmed significantly better OS for HLA-DRB1∗04 carriers compared with non-carriers (p = 0.01). Survival benefit was confined to male patients (in multivariate analyses p = 0.034, hazard ratio 0.35, 95% confidence interval 0.13-0.92), whereas in females no difference was noted (p = 0.82). Furthermore, donor gender also affected outcome and transplantation from female HLA-DRB1∗04 carrier donors resulted in superior survival compared with female non-carrier donors (p = 0.01). Combined analyses including recipient/donor gender and HLA-DRB1∗04 showed that survival of male patients varied significantly according to donor gender and HLA-DRB1∗04 carriership (p = 0.04) with best survival among HLA-DRB1∗04 carriers transplanted from female donors. Of relevance to our results, HLA-DRB1∗04 has been documented as risk allele group for lymphoid malignancies, and studies described a male-specific risk. We believe that our findings provide further supporting evidence for sex-specific alterations secondary to HLA-DRB1∗04 or related genes. Further studies are warranted to evaluate whether in contrast to general favour of male donors HLA-DRB1∗04 carrier patients with lymphoid malignancies could benefit from transplantation from female donors.

Gleber-Netto FO, Zhao M, Trivedi S, et al.
Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma.
Cancer. 2018; 124(1):84-94 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
BACKGROUND: Human immunodeficiency virus-infected individuals (HIVIIs) have a higher incidence of head and neck squamous cell carcinoma (HNSCC), and clinical and histopathological differences have been observed in their tumors in comparison with those of HNSCC patients without a human immunodeficiency virus (HIV) infection. The reasons for these differences are not clear, and molecular differences between HIV-related HNSCC and non-HIV-related HNSCC may exist. This study compared the mutational patterns of HIV-related HNSCC and non-HIV-related HNSCC.
METHODS: The DNA of 20 samples of HIV-related HNSCCs and 32 samples of non-HIV-related HNSCCs was sequenced. DNA libraries covering exons of 18 genes frequently mutated in HNSCC (AJUBA, CASP8, CCND1, CDKN2A, EGFR, FAT1, FBXW7, HLA-A, HRAS, KEAP1, NFE2L2, NOTCH1, NOTCH2, NSD1, PIK3CA, TGFBR2, TP53, and TP63) were prepared and sequenced on an Ion Personal Genome Machine sequencer. DNA sequencing data were analyzed with Ion Reporter software. The human papillomavirus (HPV) status of the tumor samples was assessed with in situ hybridization, the MassARRAY HPV multiplex polymerase chain reaction assay, and p16 immunostaining. Mutation calls were compared among the studied groups.
RESULTS: HIV-related HNSCC revealed a distinct pattern of mutations in comparison with non-HIV-related HNSCC. TP53 mutation frequencies were significantly lower in HIV-related HNSCC. Mutations in HIV+ patients tended to be TpC>T nucleotide changes for all mutated genes but especially for TP53.
CONCLUSIONS: HNSCC in HIVIIs presents a distinct pattern of genetic mutations, particularly in the TP53 gene. HIV-related HNSCC may have a distinct biology, and an effect of the HIV virus on the pathogenesis of these tumors should not be ruled out. Cancer 2018;124:84-94. © 2017 American Cancer Society.

Kalina JL, Neilson DS, Lin YY, et al.
Mutational Analysis of Gene Fusions Predicts Novel MHC Class I-Restricted T-Cell Epitopes and Immune Signatures in a Subset of Prostate Cancer.
Clin Cancer Res. 2017; 23(24):7596-7607 [PubMed] Article available free on PMC after 01/11/2019 Related Publications

Reiter O, Ben Amitai D, Amitay-Laish I, et al.
Pediatric mycosis fungoides: a study of the human leukocyte antigen system among Israeli Jewish patients.
Arch Dermatol Res. 2017; 309(10):851-856 [PubMed] Related Publications
Pediatric mycosis fungoides (MF) is a rare disease characterized by over-representation of atypical clinical variants, with a different prognosis from adult MF. Several human leukocyte antigen (HLA) alleles have been associated with MF in certain adult populations, including Israeli Jews. However, HLA data on pediatric MF as a group are lacking. To evaluate the possible association of the HLA system with pediatric MF, 59 Israeli Jewish patients diagnosed with MF at age ≤ 18 years underwent high- and intermediate-resolution genotyping for HLA class I (HLA-A*, HLA-B*) and class II (HLA-DRB1*, DQB1*) loci. The results were compared with data on 4169 umbilical cord blood units retrieved from a public cord blood bank in Jerusalem and samples from 252 healthy, unrelated Israeli Jewish volunteers. No statistically significant associations were found between pediatric MF and any of the alleles examined except HLA-B*73. However, given the extremely low frequency of B*73 in both the control group (0.1%) and the study group (2%), the biological significance of this finding is questionable. Further subgroup analyses by ethnicity (Ashkenazi and non-Ashkenazi) and clinicopathologic variant (follicular and non-follicular) yielded no significant between-group differences. These results suggest that the associations with the HLA system, reported previously in adult MF, do not hold true for pediatric MF. Thus, pediatric MF differs from its adult counterpart not only in clinical manifestations and course, but apparently also in the underlying immuno-pathogenetic mechanism.

Tawara I, Kageyama S, Miyahara Y, et al.
Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS.
Blood. 2017; 130(18):1985-1994 [PubMed] Related Publications
Wilms' tumor 1 (WT1) is constantly expressed in leukemic cells of acute leukemia and myelodysplastic syndrome (MDS). A T-cell receptor (TCR) that specifically reacts with WT1 peptide in the context of HLA-A*24:02 has been identified. We conducted a first-in-human trial of TCR-gene transduced T-cell (TCR-T-cell) transfer in patients with refractory acute myeloblastic leukemia (AML) and high-risk MDS to investigate the safety and cell kinetics of the T cells. The WT1-specific TCR-gene was transduced to T cells using a retroviral vector encoding small interfering RNAs for endogenous TCR genes. The T cells were transferred twice with a 4-week interval in a dose-escalating design. After the second transfer, sequential WT1 peptide vaccines were given. Eight patients, divided into 2 dose cohorts, received cell transfer. No adverse events of normal tissue were seen. The TCR-T cells were detected in peripheral blood for 8 weeks at levels proportional to the dose administered, and in 5 patients, they persisted throughout the study period. The persisting cells maintained ex vivo peptide-specific immune reactivity. Two patients showed transient decreases in blast counts in bone marrow, which was associated with recovery of hematopoiesis. Four of 5 patients who had persistent T cells at the end of the study survived more than 12 months. These results suggest WT1-specific TCR-T cells manipulated by ex vivo culture of polyclonal peripheral lymphocytes survived in vivo and retained the capacity to mount an immune reaction to WT1. This trial was registered at www.umin.ac.jp as #UMIN000011519.

Bahls L, Yamakawa R, Zanão K, et al.
Human Leukocyte Antigen Class I and Class II Polymorphisms and Serum Cytokine Profiles in Cervical Cancer.
Int J Mol Sci. 2017; 18(9) [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Only a small proportion of women who are exposed to infection with high-risk human papillomavirus (HR-HPV) progress to persistent infection and develop cervical cancer (CC). The immune response and genetic background of the host may affect the risk of progression from a HR-HPV infection to lesions and cancer. However, to our knowledge, no studies has been conducted to evaluate the relationship between variability of human leukocyte antigens (

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HLA-A, Cancer Genetics Web: http://www.cancer-genetics.org/HLA-A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999