Gene Summary

Gene:EPAS1; endothelial PAS domain protein 1
Aliases: HLF, MOP2, ECYT4, HIF2A, PASD2, bHLHe73
Summary:This gene encodes a transcription factor involved in the induction of genes regulated by oxygen, which is induced as oxygen levels fall. The encoded protein contains a basic-helix-loop-helix domain protein dimerization domain as well as a domain found in proteins in signal transduction pathways which respond to oxygen levels. Mutations in this gene are associated with erythrocytosis familial type 4. [provided by RefSeq, Nov 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:endothelial PAS domain-containing protein 1
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (32)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: EPAS1 (cancer-related)

Yang H, Geng YH, Wang P, et al.
Extracellular ATP promotes breast cancer invasion and epithelial-mesenchymal transition via hypoxia-inducible factor 2α signaling.
Cancer Sci. 2019; 110(8):2456-2470 [PubMed] Free Access to Full Article Related Publications
Extracellular ATP has been shown to play an important role in invasion and the epithelial-mesenchymal transition (EMT) process in breast cancer; however, the mechanism is unclear. Here, by using a cDNA microarray, we demonstrated that extracellular ATP could stimulate hypoxia-inducible factor (HIF) signaling and upregulate hypoxia-inducible factor 1/2α (HIF-1/2α) expression. After knocking down HIF-1/2α using siRNA, we found that ATP-driven invasion and EMT were significantly attenuated via HIF2A-siRNA in breast cancer cells. By using ChIP assays, we revealed that the biological function of extracellular ATP in invasion and EMT process depended on HIF-2α direct targets, among which lysyl oxidase-like 2 (LOXL2) and matrix metalloproteinase-9 (MMP-9) mediated ATP-driven invasion, and E-cadherin and Snail mediated ATP-driven EMT, respectively. In addition, using silver staining and mass spectrometry, we found that phosphoglycerate kinase 1 (PGK1) could interact with HIF-2α and mediate ATP-driven HIF-2α upregulation. Furthermore, we demonstrated that expressions of HIF-2α and its target proteins could be regulated via ATP by AKT-PGK1 pathway. Using a Balb/c mice model, we illustrated the function of HIF-2α in promoting tumor growth and metastasis in vivo. Moreover, by exploring online databases, we found that molecules involved in ATP-HIF-2α signaling were highly expressed in human breast carcinoma tissues and were associated with poor prognosis. Altogether, these findings suggest that extracellular ATP could promote breast carcinoma invasion and EMT via HIF-2α signaling, which may be a potential target for future anti-metastasis therapy.

Hao S, Huo S, Du Z, et al.
MicroRNA-related transcription factor regulatory networks in human colorectal cancer.
Medicine (Baltimore). 2019; 98(15):e15158 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Colorectal cancer (CRC) is an extremely common gastrointestinal malignancy. The present study aimed to identify microRNAs (miRNAs) and transcription factors (TFs) associated with tumor development.
METHODS: Three miRNA profile datasets were integrated and analyzed to elucidate the potential key candidate miRNAs in CRC. The starBase database was used to identify the potential targets of common differentially expressed miRNAs (DEMs). Transcriptional Regulatory Element Database and Transcriptional Regulatory Relationships Unraveled by Sentence-based Text databases were used to identify cancer-related TFs and the TF-regulated target genes. Functional and pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integration Discovery (DAVID) database, and the miRNA-TF-gene networks were constructed by Cytoscape. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of genes and miRNAs.
RESULTS: In total, 14 DEMs were found in CRC. By bioinformatics analysis, 5 DEMs (miR-145, miR-497, miR-30a, miR-31, and miR-20a) and 8 TFs (ELK4 (ETS-family transcription factor), myeloblastosis proto-oncogene like (MYBL)1, MYBL2, CEBPA, PPARA, PPARD, PPARG, and endothelial PAS domain protein (EPAS1)) appeared to be associated with CRC and were therefore used to construct miRNA-TF-gene networks. From the networks, we found that miR-20a might play the most important role as an miRNA in the networks. By qRT-PCR, we demonstrated that miR-20a was significantly upregulated in CRC tissues. We also performed qRT-PCR to identify the expression of miR-20a-related TFs (PPARA, PPARD, PPARG, EPAS1). Three of them, PPARA, PPARG, and EPAS1, were downregulated in CRC tissues, with statistically significant differences, while the downregulation of PPARD in CRC tissues was not significantly different. Pathway enrichment analyses indicated that the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway was the most significantly enriched pathway. Two main elements of the PI3K-Akt signaling pathway, phosphatase and tensin homolog deleted on chromosome 10 and B-cell lymphoma 2-associated agonist of cell death, were demonstrated to be downregulated in CRC.
CONCLUSION: The present study identified hub miRNAs and miRNA-related TF regulatory networks in CRC, which might be potential targets for the diagnosis and treatment of CRC.

Xu W, Lu J, Zhao Q, et al.
Genome-Wide Plasma Cell-Free DNA Methylation Profiling Identifies Potential Biomarkers for Lung Cancer.
Dis Markers. 2019; 2019:4108474 [PubMed] Free Access to Full Article Related Publications
As a noninvasive blood testing, the detection of cell-free DNA (cfDNA) methylation in plasma has raised an increasing interest due to diagnostic applications. Although extensively used in cfDNA methylation analysis, bisulfite sequencing is less cost-effective. In this study, we investigated the cfDNA methylation patterns in lung cancer patients by MeDIP-seq. Compared with the healthy individuals, 330 differentially methylated regions (DMRs) at gene promoters were identified in lung cancer patients with 33 hypermethylated and 297 hypomethylated regions, respectively. Moreover, these hypermethylated genes were validated with the publicly available DNA methylation data, yielding a set of ten significant differentially methylated genes in lung cancer, including

Syafruddin SE, Rodrigues P, Vojtasova E, et al.
A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma.
Nat Commun. 2019; 10(1):1152 [PubMed] Free Access to Full Article Related Publications
Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.

Sasaki K, Kohgo Y, Ohtake T
Splicing variant of hepcidin mRNA.
Vitam Horm. 2019; 110:131-141 [PubMed] Related Publications
Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. In this study, we firstly revealed that a new alternative HAMP transcript was found in hepatoma-derived cell line HLF, which was identical to the wild-type preprohepcidin sequence except lacking of an internal 60 bases. In addition to HLF, most of hepatoma-derived cell lines have significant copy numbers of variant-type hepcidin mRNA by a copy-based-digital PCR. Furthermore, the copy number of hepcidin mRNA variant was significantly higher in serum exosomes of hepatocellular carcinoma patients. The quantification of exosomal hepcidin mRNA variant may serve as a potential new biomarker for HCC diagnosis.

Miikkulainen P, Högel H, Seyednasrollah F, et al.
Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) maintains high
J Biol Chem. 2019; 294(10):3760-3771 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
Most clear cell renal cell carcinomas (ccRCCs) have inactivation of the von Hippel-Lindau tumor suppressor protein (pVHL), resulting in the accumulation of hypoxia-inducible factor α-subunits (HIF-α) and their downstream targets. HIF-2α expression is particularly high in ccRCC and is associated with increased ccRCC growth and aggressiveness. In the canonical HIF signaling pathway, HIF-prolyl hydroxylase 3 (PHD3) suppresses HIF-2α protein by post-translational hydroxylation under sufficient oxygen availability. Here, using immunoblotting and immunofluorescence staining, qRT-PCR, and siRNA-mediated gene silencing, we show that unlike in the canonical pathway, PHD3 silencing in ccRCC cells leads to down-regulation of HIF-2α protein and mRNA. Depletion of other PHD family members had no effect on HIF-2α expression, and PHD3 knockdown in non-RCC cells resulted in the expected increase in HIF-2α protein expression. Accordingly, PHD3 knockdown decreased HIF-2α target gene expression in ccRCC cells and expression was restored upon forced HIF-2α expression. The effect of PHD3 depletion was pinpointed to

Yu S, Ren H, Li Y, et al.
HOXA4-Dependent Transcriptional Activation of AXL Promotes Cisplatin- Resistance in Lung Adenocarcinoma Cells.
Anticancer Agents Med Chem. 2018; 18(14):2062-2067 [PubMed] Related Publications
BACKGROUND: Lung cancer is one of the most leading causes of cancer-related deaths in adults worldwide. Non-Small Cell Lung Cancer (NSCLC), which comprises 80 to 85% of all lung cancers, is the most lethal subtype of lung cancer with a 5-year survival of less than 13%. In this study, we identified a poorly-studied kinase PDK4 as the most up-regulated kinase encoding gene in Cisplatin resistant lung adenocarcinoma.
METHODS: In vitro cell viability assay and in vivo tumor xenograft assay were used in the detection of cell proliferation. RNA isolation, quantitative Real-Time PCR, Western blot analysis, immunohistochemistry were used to investigate the expression of RNA and protein. Lentivirus infection was used to regulate gene expression. Luciferase assays were used to monitor EPAS1 promoter activity.
RESULTS: In vivo PDK4 expression was elevated in a Cisplatin-resistant population of lung adenocarcinoma cells, PDK4-dependent Cisplatin-resistance promotes tumor growth of lung adenocarcinoma in vivo and in vitro, clinically PDK4 expression was associated with poor prognosis in lung adenocarcinoma patients, mechanically PDK4 promoted cell growth and Cisplatin-resistance of lung adenocarcinoma via transcriptional regulation of endothelial PAS domain-containing protein 1 (EPAS1).
CONCLUSION: PDK4 is the most up-regulated kinase encoding gene in Cisplatin resistant lung adenocarcinoma and PDK4-dependent Cisplatin-resistance promotes tumor growth of lung adenocarcinoma mainly through transcriptional regulation of EPAS1. Enriched PDK4 expression was correlated with the poor prognosis of lung cancer patients, indicating that PDK4 could be a potential therapeutic target for Cisplatin-resistant lung adenocarcinoma.

Li JF, Dai YT, Lilljebjörn H, et al.
Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases.
Proc Natl Acad Sci U S A. 2018; 115(50):E11711-E11720 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified. Apart from extending eight previously described subgroups (G1 to G8 associated with

Nwosu ZC, Battello N, Rothley M, et al.
Liver cancer cell lines distinctly mimic the metabolic gene expression pattern of the corresponding human tumours.
J Exp Clin Cancer Res. 2018; 37(1):211 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
BACKGROUND: Although metabolism is profoundly altered in human liver cancer, the extent to which experimental models, e.g. cell lines, mimic those alterations is unresolved. Here, we aimed to determine the resemblance of hepatocellular carcinoma (HCC) cell lines to human liver tumours, specifically in the expression of deregulated metabolic targets in clinical tissue samples.
METHODS: We compared the overall gene expression profile of poorly-differentiated (HLE, HLF, SNU-449) to well-differentiated (HUH7, HEPG2, HEP3B) HCC cell lines in three publicly available microarray datasets. Three thousand and eighty-five differentially expressed genes in ≥2 datasets (P < 0.05) were used for pathway enrichment and gene ontology (GO) analyses. Further, we compared the topmost gene expression, pathways, and GO from poorly differentiated cell lines to the pattern from four human HCC datasets (623 tumour tissues). In well- versus poorly differentiated cell lines, and in representative models HLE and HUH7 cells, we specifically assessed the expression pattern of 634 consistently deregulated metabolic genes in human HCC. These data were complemented by quantitative PCR, proteomics, metabolomics and assessment of response to thirteen metabolism-targeting compounds in HLE versus HUH7 cells.
RESULTS: We found that poorly-differentiated HCC cells display upregulated MAPK/RAS/NFkB signaling, focal adhesion, and downregulated complement/coagulation cascade, PPAR-signaling, among pathway alterations seen in clinical tumour datasets. In HLE cells, 148 downregulated metabolic genes in liver tumours also showed low gene/protein expression - notably in fatty acid β-oxidation (e.g. ACAA1/2, ACADSB, HADH), urea cycle (e.g. CPS1, ARG1, ASL), molecule transport (e.g. SLC2A2, SLC7A1, SLC25A15/20), and amino acid metabolism (e.g. PHGDH, PSAT1, GOT1, GLUD1). In contrast, HUH7 cells showed a higher expression of 98 metabolic targets upregulated in tumours (e.g. HK2, PKM, PSPH, GLUL, ASNS, and fatty acid synthesis enzymes ACLY, FASN). Metabolomics revealed that the genomic portrait of HLE cells co-exist with profound reliance on glutamine to fuel tricarboxylic acid cycle, whereas HUH7 cells use both glucose and glutamine. Targeting glutamine pathway selectively suppressed the proliferation of HLE cells.
CONCLUSIONS: We report a yet unappreciated distinct expression pattern of clinically-relevant metabolic genes in HCC cell lines, which could enable the identification and therapeutic targeting of metabolic vulnerabilities at various liver cancer stages.

Wang Z, Wei Y, Zhang R, et al.
Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1 Associated with Lung Adenocarcinoma.
EBioMedicine. 2018; 32:93-101 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
Recent technological advancements have permitted high-throughput measurement of the human genome, epigenome, metabolome, transcriptome, and proteome at the population level. We hypothesized that subsets of genes identified from omic studies might have closely related biological functions and thus might interact directly at the network level. Therefore, we conducted an integrative analysis of multi-omic datasets of non-small cell lung cancer (NSCLC) to search for association patterns beyond the genome and transcriptome. A large, complex, and robust gene network containing well-known lung cancer-related genes, including EGFR and TERT, was identified from combined gene lists for lung adenocarcinoma. Members of the hypoxia-inducible factor (HIF) gene family were at the center of this network. Subsequent sequencing of network hub genes within a subset of samples from the Transdisciplinary Research in Cancer of the Lung-International Lung Cancer Consortium (TRICL-ILCCO) consortium revealed a SNP (rs12614710) in EPAS1 associated with NSCLC that reached genome-wide significance (OR = 1.50; 95% CI: 1.31-1.72; p = 7.75 × 10

Luo J, Shi K, Yin SY, et al.
Clinical value of miR-182-5p in lung squamous cell carcinoma: a study combining data from TCGA, GEO, and RT-qPCR validation.
World J Surg Oncol. 2018; 16(1):76 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
BACKGROUND: MiR-182-5p, as a member of miRNA family, can be detected in lung cancer and plays an important role in lung cancer. To explore the clinical value of miR-182-5p in lung squamous cell carcinoma (LUSC) and to unveil the molecular mechanism of LUSC.
METHODS: The clinical value of miR-182-5p in LUSC was investigated by collecting and calculating data from The Cancer Genome Atlas (TCGA) database, the Gene Expression Omnibus (GEO) database, and real-time quantitative polymerase chain reaction (RT-qPCR). Twelve prediction platforms were used to predict the target genes of miR-182-5p. Protein-protein interaction (PPI) networks and gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore the molecular mechanism of LUSC.
RESULTS: The expression of miR-182-5p was significantly over-expressed in LUSC than in non-cancerous tissues, as evidenced by various approaches, including the TCGA database, GEO microarrays, RT-qPCR, and a comprehensive meta-analysis of 501 LUSC cases and 148 non-cancerous cases. Furthermore, a total of 81 potential target genes were chosen from the union of predicted genes and the TCGA database. GO and KEGG analyses demonstrated that the target genes are involved in pathways related to biological processes. PPIs revealed the relationships between these genes, with EPAS1, PRKCE, NR3C1, and RHOB being located in the center of the PPI network.
CONCLUSIONS: MiR-182-5p upregulation greatly contributes to LUSC and may serve as a biomarker in LUSC.

Hamidian A, Vaapil M, von Stedingk K, et al.
Promoter-associated proteins of EPAS1 identified by enChIP-MS - A putative role of HDX as a negative regulator.
Biochem Biophys Res Commun. 2018; 499(2):291-298 [PubMed] Related Publications
Presence of perivascular neuroblastoma cells with high expression of hypoxia inducible factor (HIF)-2α correlates with distant metastasis and aggressive disease. Regulation of HIFs are traditionally considered to occur post-translationally, but we have recently shown that HIF-2α is unconventionally regulated also at the transcriptional level in neuroblastoma cells. Regulatory factors binding directly to EPAS1 (encoding HIF-2α) to promote transcription are yet to be defined. Here, we employ the novel CRISPR/Cas9-based engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) - mass spectrometry (MS) methodology to, in an unbiased fashion, identify proteins that associate with the EPAS1 promoter under normoxic and hypoxic conditions. Our enChIP analysis resulted in 27 proteins binding to the EPAS1 promoter in neuroblastoma cells. In agreement with a general hypoxia-driven downregulation of gene transcription, the majority (24 out of 27) of proteins dissociate from the promoter at hypoxia. Among them were several nucleosome-associated proteins suggesting a general opening of chromatin as one explanation to induced EPAS1 transcription at hypoxia. Of particular interest from the list of released factors at hypoxia was the highly divergent homeobox (HDX) transcription factor, that we show inversely correlates with HIF-2α in neuroblastoma cells. We propose a putative model where HDX negatively regulates EPAS1 expression through a release-of-inhibition mechanism.

Pang Y, Gupta G, Yang C, et al.
A novel splicing site IRP1 somatic mutation in a patient with pheochromocytoma and JAK2
BMC Cancer. 2018; 18(1):286 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
BACKGROUND: The role of the hypoxia signaling pathway in the pathogenesis of pheochromocytoma/paraganglioma (PPGL)-polycythemia syndrome has been elucidated. Novel somatic mutations in hypoxia-inducible factor type 2A (HIF2A) and germline mutations in prolyl hydroxylase type 1 and type 2 (PHD1 and PHD2) have been identified to cause upregulation of the hypoxia signaling pathway and its target genes including erythropoietin (EPO) and its receptor (EPOR). However, in a minority of patients presenting with this syndrome, the genetics and molecular pathogenesis remain unexplained. The aim of the present study was to uncover novel genetic causes of PPGL-polycythemia syndrome.
CASE PRESENTATION: A female presented with a history of JAK2
CONCLUSIONS: This is the first report which provides direct molecular genetic evidence of association between a somatic IRP1 loss-of-function mutation and PHEO and secondary polycythemia. In patients diagnosed with PHEO/PGL and polycythemia with negative genetic testing for mutations in HIF2A, PHD1/2, and VHL, IRP1 should be considered as a candidate gene.

Szemes M, Greenhough A, Melegh Z, et al.
Wnt Signalling Drives Context-Dependent Differentiation or Proliferation in Neuroblastoma.
Neoplasia. 2018; 20(4):335-350 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
Neuroblastoma is one of the commonest and deadliest solid tumours of childhood, and is thought to result from disrupted differentiation of the developing sympathoadrenergic lineage of the neural crest. Neuroblastoma exhibits intra- and intertumoural heterogeneity, with high risk tumours characterised by poor differentiation, which can be attributable to MYCN-mediated repression of genes involved in neuronal differentiation. MYCN is known to co-operate with oncogenic signalling pathways such as Alk, Akt and MEK/ERK signalling, and, together with c-MYC has been shown to be activated by Wnt signalling in various tissues. However, our previous work demonstrated that Wnt3a/Rspo2 treatment of some neuroblastoma cell lines can, paradoxically, decrease c-MYC and MYCN proteins. This prompted us to define the neuroblastoma-specific Wnt3a/Rspo2-driven transcriptome using RNA sequencing, and characterise the accompanying changes in cell biology. Here we report the identification of ninety Wnt target genes, and show that Wnt signalling is upstream of numerous transcription factors and signalling pathways in neuroblastoma. Using live-cell imaging, we show that Wnt signalling can drive differentiation of SK-N-BE(2)-C and SH-SY5Y cell-lines, but, conversely, proliferation of SK-N-AS cells. We show that cell-lines that differentiate show induction of pro-differentiation BMP4 and EPAS1 proteins, which is not apparent in the SK-N-AS cells. In contrast, SK-N-AS cells show increased CCND1, phosphorylated RB and E2F1 in response to Wnt3a/Rspo2, consistent with their proliferative response, and these proteins are not increased in differentiating lines. By meta-analysis of the expression of our 90 genes in primary tumour gene expression databases, we demonstrate discrete expression patterns of our Wnt genes in patient cohorts with different prognosis. Furthermore our analysis reveals interconnectivity within subsets of our Wnt genes, with one subset comprised of novel putative drivers of neuronal differentiation repressed by MYCN. Assessment of β-catenin immunohistochemistry shows high levels of β-catenin in tumours with better differentiation, further supporting a role for canonical Wnt signalling in neuroblastoma differentiation.

Islam F, Gopalan V, Vider J, et al.
MiR-142-5p act as an oncogenic microRNA in colorectal cancer: Clinicopathological and functional insights.
Exp Mol Pathol. 2018; 104(1):98-107 [PubMed] Related Publications
OBJECTIVES: miR-142-5p was noted aberrantly expressed and plays important roles in different pathophysiological conditions in human. The present study aims to examine the expression of miR-142-5p and its association with clinicopathological factors in a large cohort of patients with colorectal cancer. In addition, the cellular effects of miR-142-5p and its interacting targets in colon cancer cells were investigated.
METHODS: Expression of miR-142-5p in colorectal cancer tissues (n=125) and colon cancer cell lines were analysed using real-time polymerase chain reaction. In vitro assays (cell proliferation, wound healing and colony formation) were used to study the miR-142-5p induced cellular effects. Western blots were used to examine the modulation of FAM134B, KRAS, EPAS1 and KLF6 proteins expression followed by miR-142-5p expression-manipulation.
RESULTS: Significant high expression of miR-142-5p was noted in cancer tissues and cells when compared to the controls (p<0.001). Overexpression of miR-142-5p in patients with colorectal cancer was common (72%; 90/125). miR-142-5p overexpression was associated with cancer in the proximal colorectum and with B-raf positive patients (p=0.05). Exogenous overexpression of miR-142-5p resulted in significantly increased cell proliferation, colony formation, and wound healing capacities, whereas inhibition of endogenous miR-142-5p led reduced cancer growth properties. The cellular effects of miR-142-5p were mediated by the modulation of tumour suppressor KLF6 expression, as the expression of miR-142-5p and KLF6 protein are inversely correlated in colon cancer cells.
CONCLUSION: High miR-142-5p expression was associated with the biological aggressiveness of cancer. Thus, suppression of miR-142-5p could be a therapeutic strategy for patients with colorectal cancers.

Kachroo P, Szymczak S, Heinsen FA, et al.
NGS-based methylation profiling differentiates TCF3-HLF and TCF3-PBX1 positive B-cell acute lymphoblastic leukemia.
Epigenomics. 2018; 10(2):133-147 [PubMed] Related Publications
AIM: To determine whether methylation differences between mostly fatal TCF3-HLF and curable TCF3-PBX1 pediatric acute lymphoblastic leukemia subtypes can be associated with differential gene expression and remission.
MATERIALS & METHODS: Five (extremely rare) TCF3-HLF versus five (very similar) TCF3-PBX1 patients were sampled before and after remission and analyzed using reduced representation bisulfite sequencing and RNA-sequencing.
RESULTS: We identified 7000 differentially methylated CpG sites between subtypes, of which 78% had lower methylation levels in TCF3-HLF. Gene expression was negatively correlated with CpG sites in 23 genes. KBTBD11 clearly differed in methylation and expression between subtypes and before and after remission in TCF3-HLF samples.
CONCLUSION: KBTBD11 hypomethylation may be a promising potential target for further experimental validation especially for the TCF3-HLF subtype.

Yokoi K, Kobayashi A, Motoyama H, et al.
Survival pathway of cholangiocarcinoma via AKT/mTOR signaling to escape RAF/MEK/ERK pathway inhibition by sorafenib.
Oncol Rep. 2018; 39(2):843-850 [PubMed] Related Publications
Cholangiocarcinoma (CCC) is a strongly aggressive malignancy for which surgical resection is the only potential curative therapy. Sorafenib, a multikinase inhibitor of the RAF/MEK/ERK pathway, is a molecular-targeted drug that is approved for hepatocellular carcinoma (HCC) but not for CCC. The differences in signaling pathway characteristics under sorafenib treatment between HCC (HLF, Huh7, PLC/PRF/5) and CCC (RBE, YSCCC, Huh28) cell lines were therefore investigated using cell proliferation, western blotting, and apoptosis analyses. Sorafenib inhibited cell growth significantly less in CCC cells than in HCC cells, with lower suppression of ERK phosphorylation. Significantly decreased AKT Ser473 phosphorylation in HCC cells, and conversely enhanced phosphorylation of AKT Ser473 and mTORC2 in CCC cells, were observed with sorafenib treatment. Disassembly of the mTORC2 complex in RBE cells with siRNA targeting Rictor resulted in the downregulation of AKT Ser473 phosphorylation and enhanced apoptosis presumably via increased FOXO1, which consequently suppressed RBE cell proliferation. Phosphorylation of mTORC1 and autophagy were not influenced by sorafenib in CCC cells. Simultaneous administration of everolimus to suppress activated mTORC1 in RBE cells revealed that combined everolimus and sorafenib treatment under mTORC2 disassembly could enhance growth inhibition through the suppression of both sorafenib- and everolimus-dependent AKT Ser473 phosphorylation in addition to the inhibition of mTORC1 phosphorylation. Prevention of escape by AKT/mTOR signaling from the RAF/MEK/ERK pathway in sorafenib treatment by suppressing mTORC2 activity may lead to promising new approaches in CCC therapy.

Beuselinck B, Verbiest A, Couchy G, et al.
Pro-angiogenic gene expression is associated with better outcome on sunitinib in metastatic clear-cell renal cell carcinoma.
Acta Oncol. 2018; 57(4):498-508 [PubMed] Related Publications
OBJECTIVES: Clear-cell renal cell carcinomas (ccRCC) are characterized by hyper-vascularization and can respond to vascular endothelial growth factor receptor (VEGFR) inhibitors such as sunitinib. We aimed to study the predictive value of the expression of genes in the hypoxia induced factor (HIF) - vascular endothelial growth factor (VEGF) - VEGFR-pro-angiogenic pathway in metastatic ccRCC (m-ccRCC) patients treated with sunitinib and the correlation between the expression of these genes and the molecular ccrcc-classification, the expression of genes involved in the immune-suppressive microenvironment and Von Hippel-Lindau (VHL) - and Polybromo-1 (PBRM1) - mutational status.
MATERIAL AND METHODS: m-ccRCC patients treated with sunitinib as first-line targeted therapy were included. Gene expression was studied in the primary nephrectomy sample by qRT-PCR, VHL- and PBRM1-mutational status by sequencing. Response rate by RECIST, progression-free survival (PFS) and overall survival (OS) were study endpoints.
RESULTS: One hundred and four patients were included. On multivariate-analysis, HIF2A-, platelet derived growth factor receptor beta (PDGFRB)-, VEGFC-, VEGFR1- and VEGFR2-expression were correlated with PFS and HIF1A-, HIF2A-, VEGFR1- and VEGFR2-expression with OS. VEGFR2-expression showed the strongest association with outcome, being significantly correlated with all outcome parameters. HIF2A, VEGFA, VEGFR1, VEGFR2 and VEGFR3 were highly expressed in the transcriptomic ccrcc2-subtype of tumors, known to be highly sensitive to sunitinib. In the total tumor series, there was no correlation nor inverse correlation between the expression of genes involved in angiogenesis and in the immune-suppressive microenvironment. In tumors with a bi-allelic PBRM1-inactivation, HIF2A-, VEGFA-, VEGFR1- and VEGFR2-expression were higher, compared to tumors with one or two functional PBRM1-alleles.
CONCLUSIONS: Intratumoral expression of genes involved in the HIF-VEGF-VEGFR-pro-angiogenic pathway, especially VEGFR2, is associated with favorable outcome on sunitinib in m-ccRCCs. Several genes involved in this pathway are upregulated in the molecular ccrcc2-subgroup, which usually responds well to sunitinib.

Criscitiello C, Bayar MA, Curigliano G, et al.
A gene signature to predict high tumor-infiltrating lymphocytes after neoadjuvant chemotherapy and outcome in patients with triple-negative breast cancer.
Ann Oncol. 2018; 29(1):162-169 [PubMed] Related Publications
Background: In patients with triple-negative breast cancer (TNBC), the extent of tumor-infiltrating lymphocytes (TILs) in the residual disease after neoadjuvant chemotherapy (NACT) is associated with better prognosis. Our objective was to develop a gene signature from pretreatment samples to predict the extent of TILs after NACT and then to test its prognostic value on survival.
Patients and methods: Using 99 pretreatment samples, we generated a four-gene signature associated with high post-NACT TILs. Prognostic value of the signature on distant relapse-free survival (DRFS) was first assessed on the training set (n = 99) and then on an independent validation set (n = 115).
Results: A four-gene signature combining the expression levels of HLF, CXCL13, SULT1E1, and GBP1 was developed in baseline samples to predict the extent of lymphocytic infiltration after NACT. In a multivariate analysis performed on the training set, this signature was associated with DRFS [hazard ratio (HR): 0.28, for a one-unit increase in the value of the four-gene signature, 95% confidence interval (CI): 0.13-0.63)]. In a multivariate analysis performed on an independent validation set, the four-gene signature was significantly associated with DRFS (HR: 0.17, 95% CI: 0.06-0.43). The four-gene signature added significant prognostic information when compared with the clinicopathologic pretreatment model (likelihood ratio test in the training set P = 0.004 and in the validation set P = 0.002).
Conclusions: A four-gene signature predicts high levels of TILs after anthracycline-containing NACT and outcome in patients with TNBC and adds prognostic information to a clinicopathological model at diagnosis.

Oura K, Tadokoro T, Fujihara S, et al.
Telmisartan inhibits hepatocellular carcinoma cell proliferation in vitro by inducing cell cycle arrest.
Oncol Rep. 2017; 38(5):2825-2835 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and the third leading cause of cancer-related death. Telmisartan, a widely used antihypertensive drug, is an angiotensin II type 1 (AT1) receptor blocker (ARB) that might inhibit cancer cell proliferation, but the mechanisms through which telmisartan affects various cancers remain unknown. The aim of the present study was to evaluate the effects of telmisartan on human HCC and to assess the expression of microRNAs (miRNAs). We studied the effects of telmisartan on HCC cells using the HLF, HLE, HepG2, HuH-7 and PLC/PRF/5 cell lines. In our experiments, telmisartan inhibited the proliferation of HLF, HLE and HepG2 cells, which represent poorly differentiated types of HCC cells. However, HuH-7 and PLC/PRF/5 cells, which represent well-differentiated types of HCC cells, were not sensitive to telmisartan. Telmisartan induced G0/G1 cell cycle arrest of HLF cells by inhibiting the G0-to-G1 cell cycle transition. This blockade was accompanied by a marked decrease in the levels of cyclin D1, cyclin E and other cell cycle-related proteins. Notably, the activity of the AMP-activated protein kinase (AMPK) pathway was increased, and the mammalian target of rapamycin (mTOR) pathway was inhibited by telmisartan treatment. Additionally, telmisartan increased the level of caspase-cleaved cytokeratin 18 (cCK18), partially contributed to the induction of apoptosis in HLF cells and reduced the phosphorylation of ErbB3 in HLF cells. Furthermore, miRNA expression was markedly altered by telmisartan in vitro. In conclusion, telmisartan inhibits human HCC cell proliferation by inducing cell cycle arrest.

Zhou X, Guo X, Chen M, et al.
HIF-3α Promotes Metastatic Phenotypes in Pancreatic Cancer by Transcriptional Regulation of the RhoC-ROCK1 Signaling Pathway.
Mol Cancer Res. 2018; 16(1):124-134 [PubMed] Related Publications
Hypoxia contributes to pancreatic cancer progression and promotes its growth and invasion. Previous research principally focused on hypoxia-inducible factor-1 alpha (HIF-1α) and HIF-2α (HIF1A and EPAS1) as the major hypoxia-associated transcription factors in pancreatic cancer. However, the role of HIF-3α (HIF3A) has not been investigated. Therefore, HIF-1α, HIF-2α, and HIF-3α expression levels were measured under normoxic and hypoxic conditions. In addition, HIF-3α expression was measured in human pancreatic cancer tissue specimens and the impact of altered HIF-3α expression on cell invasion and migration was investigated

Cui XY, Skretting G, Tinholt M, et al.
A novel hypoxia response element regulates oxygen-related repression of tissue factor pathway inhibitor in the breast cancer cell line MCF-7.
Thromb Res. 2017; 157:111-116 [PubMed] Related Publications
BACKGROUND: Hypoxia is one of the most pervasive physiological stresses in solid tumors. We have previously demonstrated that tissue factor (TF) pathway inhibitor (TFPI) expression was transcriptionally repressed by the activation of hypoxia inducible factor (HIF)-1α under hypoxic conditions. However, the role of HIF-2α, also known as endothelial PAS domain-containing protein 1 (EPAS1), on TFPI expression remains unclear.
AIM: To explore the role of HIF-2α/EPAS1 in the regulation of TFPI expression under hypoxia in breast cancer cells.
METHODS AND RESULTS: Quantitative RT-PCR showed that total TFPI mRNA and protein levels were decreased by the overexpression of HIF-2α/EPAS1 in MCF7 cells. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay indicated a HIF-2α/EPAS1 responsive region located in the TFPI promoter region at -170 to +21 relative to the transcriptional start site. Subsequent mutagenesis demonstrated a functional hypoxia response element (HRE) 5'-AAACAGGA-3' for HIF-2α/EPAS1 within the TFPI promoter located at -45 to -38. In breast cancer patients, a positive correlation between HIF-2α/EPAS1 and total TFPI mRNA expression was observed by using gene expression analysis.
CONCLUSIONS: This study provides evidence that HIF-2α/EPAS1 is involved in the regulation of TFPI gene expression in breast cancer cells, suggesting that the activation of coagulation and the increased risk of thrombosis observed in breast cancer patients may correlate with local hypoxic regulation of coagulation factors and their inhibitors.

Toledo RA
New HIF2α inhibitors: potential implications as therapeutics for advanced pheochromocytomas and paragangliomas.
Endocr Relat Cancer. 2017; 24(9):C9-C19 [PubMed] Related Publications
Two recent independent studies published in

Klahan S, Wong HS, Tu SH, et al.
Identification of genes and pathways related to lymphovascular invasion in breast cancer patients: A bioinformatics analysis of gene expression profiles.
Tumour Biol. 2017; 39(6):1010428317705573 [PubMed] Related Publications
Surgery is the most effective treatment for breast cancer patients. However, some patients developed recurrence and distant metastasis after surgery. Adjuvant therapy is considered for high-risk patients depending on several prognostic markers, and lymphovascular invasion has become one of such prognostic markers that help physicians to identify the risk for distant metastasis and recurrence. However, the mechanism of lymphovascular invasion in breast cancer remains unknown. This study aims to unveil the genes and pathways that may involve in lymphovascular invasion in breast cancer. In total, 108 breast cancer samples were collected during surgery and microarray analysis was performed. Significance analysis of the microarrays and limma package for R were used to examine differentially expressed genes between lymphovascular invasion-positive and lymphovascular invasion-negative cases. Network and pathway analyses were mapped using the Ingenuity Pathway Analysis and the Database for Annotation, Visualization and Integrated Discovery. In total, 86 differentially expressed genes, including 37 downregulated genes and 49 upregulated genes were identified in lymphovascular invasion-positive patients. Among these genes, TNFSF11, IL6ST, and EPAS1 play important roles in cytokine-receptor interaction, which is the most enriched pathway related to lymphovascular invasion. Moreover, the results also suggested that an imbalance between extracellular matrix components and tumor micro-environment could induce lymphovascular invasion. Our study evaluated the underlying mechanisms of lymphovascular invasion, which may further help to assess the risk of breast cancer progression and identify potential targets of adjuvant treatment.

Zhang J, Shen D, Jia M, et al.
The targeting effect of Hm2E8b-NCTD-liposomes on B-lineage leukaemia stem cells is associated with the HLF-SLUG axis.
J Drug Target. 2018; 26(1):55-65 [PubMed] Related Publications
To identify an agent with specific activity against B-lineage leukaemia stem cells (B-LSCs), we generated norcantharidin (NCTD)-encapsulated liposomes modified with a novel humanised anti-human CD19 monoclonal antibody, Hm2E8b (Hm2E8b-NCTD-liposomes). These liposomes were specially designed to recognise and kill B-LSCs in vitro, and to decrease non-specific cytotoxicity to untargeted cells. Hm2E8b-NCTD-liposomes selectively ablated B-LSCs through targeting hepatic leukaemia factor (HLF), which is implicated in haematopoietic stem cell regulation and is overexpressed in LSCs. Hm2E8b-NCTD-liposomes decreased HLF protein levels and induced apoptosis in the HAL-01 cell line harbouring the oncoprotein E2A-HLF. This resulted in modulation of the expression of several molecules that govern survival pathways, including HLF, SLUG, NFIL3 and C-Myc, thereby causing the induction of p53 and the mitochondrial caspase cascade. Therefore, the potent in vitro effect of Hm2E8b-NCTD-liposomes on B-LSC activity and survival pathways have the potential to be exploited clinically with appropriate drug combinations.

Salo-Mullen EE, Lynn PB, Wang L, et al.
Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.
Fam Cancer. 2018; 17(1):71-77 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

Liu SS, Liu N, Liu MY, et al.
An unusual intragenic promoter of PIWIL2 contributes to aberrant activation of oncogenic PL2L60.
Oncotarget. 2017; 8(28):46104-46120 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
PIWIL2-like (PL2L) protein 60 (PL2L60), a product of aberrantly activated PIWIL2 gene, is widely expressed in various types of tumors and may promote tumorigenesis. However, the mechanisms underlying the activation of expression of PL2L60 remain unknown. In this study, an intragenic promoter responsible for the activation of PL2L60 within the human PIWIL2 gene has been identified, cloned and characterized. The promoter of PL2L60 is located in the intron 10 of the host gene PIWIL2. Bioinformatic and mutagenic analysis reveals that this intragenic promoter within the sequence of 50 nucleotides contains two closely arranged cis-acting elements specific for the hepatic leukemia factor (HLF) in the positive strand and signal transducer and activator of transcription 3 (STAT3) in the negative strand. Chromatin immunoprecipitation analysis demonstrates that both the HLF and polymerase II (Pol II), a hallmark of active promoters, directly bind to the sequence, although STAT3 does not. Knockdown of HLF and STAT3 alone or both by RNA interference significantly reduced both promoter activity and the PL2L60 protein expression, although there is no additive effect. The expression of PL2L60 proteins was enhanced when host gene Piwil2 was genetically disrupted in a murine cell model. Taken together, we have identified a PL2L60-specific intragenic promoter in the host gene of PIWIL2, which is interdependently activated by HLF and STAT3 through steric interaction. This activation is dependent on cellular milieu rather than the integrity of host gene PIWIL2, highlighting a novel, important mechanism for a cancer-causing gene to be activated during tumorigenesis.

Salati S, Salvestrini V, Carretta C, et al.
Deregulated expression of miR-29a-3p, miR-494-3p and miR-660-5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells.
Oncotarget. 2017; 8(30):49451-49469 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
The development of Imatinib mesylate (IM), which targets the oncogenic BCR-ABL fusion protein, has greatly improved the outcome of Chronic Myeloid Leukemia (CML) patients. However, BCR-ABL-positive progenitors can be detected in CML patients in complete cytogenetic response. Several evidence suggests that CML stem cells are intrinsically resistant to Tyrosine Kinase Inhibitors (TKI), and therefore they represent the most likely candidate responsible for disease relapse.In this work, we investigated the microRNA (miRNA) expression profile of different subpopulations of CML Leukemic Stem Cells (LSCs): Lin-CD34+CD38- and Lin-CD34-CD38- cells. These cell fractions have been previously shown to be endowed with TKI intrinsic resistance. Our analysis identified 33 common deregulated miRNAs in CML LSCs. Among those, 8 miRNAs were deregulated in CML independently from BCR-ABL kinase activity and therefore are likely to be involved in the BCR-ABL-independent resistance to TKI that characterizes CML LSCs. In particular, the up-regulation of miR-29a-3p and miR-660-5p observed in CML LSCs, led to the down-regulation of their respective targets TET2 and EPAS1 and conferred TKI-resistance to CML LSCs in vitro. On the other hand, miR-494-3p down-regulation in CML LSCs, leading to c-MYC up-regulation, was able to decrease TKI-induced apoptosis. These results demonstrate that aberrant miRNA expression in CML LSCs could contribute to the intrinsic TKI-resistance observed in these cell populations, and support the development of novel therapies aimed at targeting aberrantly regulated miRNAs or their targets in order to effectively eradicate CML LSCs.

Zhou S, Li J, Xu H, et al.
Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression.
Gene. 2017; 622:1-12 [PubMed] Related Publications
BACKGROUND: Emerging evidence suggests that curcumin can overcome drug resistance to classical chemotherapies, but poor bioavailability and low absorption have limited its clinical use and the mechanisms remain unclear. Also, Adriamycin (Adr) is one of the most active cytotoxic agents in breast cancer; however, the high resistant rate of Adr leads to a poor prognosis.
METHODS: We utilized encapsulation in liposomes as a strategy to improve the bioavailability of curcumin and demonstrated that liposomal curcumin altered chemosensitivity of Adr-resistant MCF-7 human breast cancer (MCF-7/Adr) by MTT assay. The miRNA and mRNA expression profiles of MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr cells were analyzed by microarray and further confirmed by real-time PCR. We focused on differentially expressed miR-29b-1-5p to explore the involvement of miR-29b-1-5p in the resistance of Adr. Candidate genes of dysregulated miRNAs were identified by prediction algorithms based on gene expression profiles. Networks of KEGG pathways were organized by the selected dysregulated miRNAs. Moreover, protein-protein interaction (PPI) was utilized to map protein interaction networks of curcumin regulated proteins.
RESULTS: We first demonstrated liposomal curcumin could rescue part of Adriamycin resistance in breast cancer and further identified 67 differentially expressed microRNAs among MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr. The results showed that lower expressed miR-29b-1-5p decreased the IC50 of MCF-7/Adr cells and higher expressed miR-29b-1-5p, weaken the effects of liposomal curcumin to Adr-resistance. Besides, we found that 20 target genes (mRNAs) of each dysregulated miRNA were not only predicted by prediction algorithms, but also differentially expressed in the microarray. The results showed that MAPK, mTOR, PI3K-Akt, AMPK, TNF, Ras signaling pathways and several target genes such as PPARG, RRM2, SRSF1and EPAS1, may associate with drug resistance of breast cancer cells to Adr.
CONCLUSIONS: We determined that an altered miRNA expression pattern is involved in acquiring resistance to Adr, and that liposomal curcumin could change the resistance to Adr through miRNA signaling pathways in breast cancer MCF-7 cells.

Munksgaard Thorén M, Vaapil M, Staaf J, et al.
Myc-induced glutaminolysis bypasses HIF-driven glycolysis in hypoxic small cell lung carcinoma cells.
Oncotarget. 2017; 8(30):48983-48995 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
We previously demonstrated that small cell lung carcinoma (SCLC) cells lack HIF-2α protein expression, whereas HIF-1α in these cells is expressed at both acute and prolonged hypoxia. Here we show that low HIF2A expression correlates with high expression of MYC genes. Knockdown of HIF1A expression had no or limited effect on cell survival and growth in vitro. Unexpectedly, hypoxic ATP levels were not affected by HIF-1α knockdown and SCLC cell viability did not decrease upon glucose deprivation. In line with these in vitro data, xenograft tumor-take and growth were not significantly affected by repressed HIF1A expression. Glutamine withdrawal drastically decreased SCLC cell proliferation and increased cell death at normoxia and hypoxia in a HIF-independent fashion and the dependence on glutaminolysis was linked to amplification of either MYC or MYCL. Downregulation of GLS expression, regulating the first step of the glutaminolysis pathway, in MYC/MYCL overexpressing SCLC cells resulted in both impaired growth and increased cell death. Our results suggest that MYC/MYCL overexpression in SCLC cells overrides the need of HIF-1 activity in response to hypoxia by inducing glutaminolysis and lipogenesis. Targeting the glutaminolysis pathway might hence be a novel approach to selectively kill MYC amplified SCLC cells in vivo.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. EPAS1, Cancer Genetics Web: http://www.cancer-genetics.org/EPAS1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999