CXCR3

Gene Summary

Gene:CXCR3; C-X-C motif chemokine receptor 3
Aliases: GPR9, MigR, CD182, CD183, Mig-R, CKR-L2, CMKAR3, IP10-R
Location:Xq13.1
Summary:This gene encodes a G protein-coupled receptor with selectivity for three chemokines, termed CXCL9/Mig (monokine induced by interferon-g), CXCL10/IP10 (interferon-g-inducible 10 kDa protein) and CXCL11/I-TAC (interferon-inducible T cell a-chemoattractant). Binding of chemokines to this protein induces cellular responses that are involved in leukocyte traffic, most notably integrin activation, cytoskeletal changes and chemotactic migration. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. One of the isoforms (CXCR3-B) shows high affinity binding to chemokine, CXCL4/PF4 (PMID:12782716). [provided by RefSeq, Jun 2011]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-X-C chemokine receptor type 3
Source:NCBIAccessed: 29 August, 2019

Ontology:

What does this gene/protein do?
Show (15)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Gene Expression
  • Systems Biology
  • Chemokine CXCL10
  • Chemokine CXCL11
  • Breast Cancer
  • Transcription
  • T-Lymphocyte Subsets
  • X Chromosome
  • Neoplasm Invasiveness
  • Tumor Suppressor Proteins
  • Chemokine CXCL9
  • RTPCR
  • Chemokines
  • Gene Expression Profiling
  • Immunohistochemistry
  • CXCR3
  • CXCR4
  • Case-Control Studies
  • Neoplasm Metastasis
  • Disease Progression
  • Staging
  • Cell Movement
  • Chemokines, CXC
  • Lymphocytes, Tumor-Infiltrating
  • Cervical Cancer
  • Survival Rate
  • Interferon-gamma
  • Single Nucleotide Polymorphism
  • Cancer Gene Expression Regulation
  • Kidney Cancer
  • Receptors, Interleukin-8B
  • Stomach Cancer
  • Down-Regulation
  • Receptors, Cytokine
  • Th2 Cells
  • Signal Transduction
  • Biomarkers, Tumor
  • Cell Proliferation
  • Statistics, Nonparametric
  • Lung Cancer
  • Messenger RNA
  • T-Lymphocytes, Regulatory
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CXCR3 (cancer-related)

Wei Y, Lao XM, Xiao X, et al.
Plasma Cell Polarization to the Immunoglobulin G Phenotype in Hepatocellular Carcinomas Involves Epigenetic Alterations and Promotes Hepatoma Progression in Mice.
Gastroenterology. 2019; 156(6):1890-1904.e16 [PubMed] Related Publications
BACKGROUND & AIMS: Little is known about the composition and generation of plasma cell subsets in patients with hepatocellular carcinoma (HCC) and how these associate with outcomes. We investigated whether, or how, plasma cells differentiate and function in patients with HCC and mice with liver tumors.
METHODS: We analyzed subset composition and distribution of plasma cells in HCC samples from 342 patients who underwent curative resection at the Cancer Center of Sun Yat-sen University in China; samples of non-tumor liver tissue were used as controls. We associated plasma cell profiles with patient outcomes. Tissue-derived leukocytes were analyzed by flow cytometry and real-time polymerase chain reaction. The ability of macrophages to regulate plasma cell differentiation was determined in ex vivo cultures of cells from human HCC tissues. C57BL/6 and BALB/c mice were given injections of Hepa1-6 cells, which formed hepatomas, or H22 cells, which formed ascitic hepatomas. Gene expression patterns were analyzed in human HCC, mouse hepatoma, and non-tumor tissues by real-time polymerase chain reaction. Mice with hepatomas were given injections of GSK126 (an inhibitor of histone H3 lysine 27 methyltransferase [EZH2]) and 5-AZA-dC (an inhibitor of DNA methyltransferases); tumor tissues were analyzed by immunofluorescence and immunohistochemistry for the presence of immune cells and cytokines.
RESULTS: B cells isolated from HCCs had somatic hypermutations and class-switch recombinations to the IgG phenotype that were not observed in non-tumor tissues. Increased level of plasma cells correlated with poor outcomes of patients. Activated CD4
CONCLUSIONS: Human HCC tissues contain B cells with class-switch recombinations to the IgG phenotype. Activated CD4

Qian L, Yu S, Yin C, et al.
Plasma IFN-γ-inducible chemokines CXCL9 and CXCL10 correlate with survival and chemotherapeutic efficacy in advanced pancreatic ductal adenocarcinoma.
Pancreatology. 2019; 19(2):340-345 [PubMed] Related Publications
OBJECTIVES: Recent studies have suggested that the CXCL9, 10, 11/CXCR3 axis is significant in immune regulation and therapeutic efficacy in human cancers; however, its role in pancreatic ductal adenocarcinoma (PDAC) remains unknown. This study serves to evaluate the prognostic prediction value of plasma IFN-γ-inducible chemokines, CXCL9 and CXCL10, in advanced PDAC.
METHODS: Two hundred patients with advanced PDAC receiving palliative chemotherapy were retrospectively recruited. The association between Plasma CXCL9/CXCL10 levels and survival time was first analyzed in a test group of 110 patients and then confirmed in a validation group of 90 patients.
RESULTS: High levels of CXCL9 and CXCL10 were significantly correlated with longer overall survival (OS) in advanced PDAC patients (314 vs. 136 days for CXCL9, P < 0.0001, and 374 vs. 163 days for CXCL10, P < 0.0001, respectively) in the test group, which was consistent with the results derived from the validation group. In addition, high levels of CXCL9 and CXCL10 were associated with longer time to progression (TTP) in patients receiving chemotherapy (100 vs. 60 days for CXCL9, P = 0.0021, and 104 vs. 67 days for CXCL10, P = 0.0057, respectively). Multivariate analyses confirmed that CXCL9 and CXCL10 were independent prognostic predictors for OS (hazard ratio [HR]: 0.452, P < 0.001 for CXCL9; and HR: 0.586, P = 0.007 for CXCL10, respectively) and TTP (HR: 0.656, P = 0.015 for CXCL9; and HR: 0.687, P = 0.040 for CXCL10, respectively).
CONCLUSIONS: Plasma CXCL9 and CXCL10 can be used to predict survival of advanced PDAC patients receiving chemotherapy, allowing clinicians to potentially improve treatment outcomes by identifying candidates for aggressive therapy.

Cabrero-de Las Heras S, Martínez-Balibrea E
CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer.
World J Gastroenterol. 2018; 24(42):4738-4749 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women, worldwide. In the early stages of the disease, biomarkers predicting early relapse would improve survival rates. In metastatic patients, the use of predictive biomarkers could potentially result in more personalized treatments and better outcomes. The CXC family of chemokines (CXCL1 to 17) are small (8 to 10 kDa) secreted proteins that attract neutrophils and lymphocytes. These chemokines signal through chemokine receptors (CXCR) 1 to 8. Several studies have reported that these chemokines and receptors have a role in either the promotion or inhibition of cancer, depending on their capacity to suppress or stimulate the action of the immune system, respectively. In general terms, activation of the CXCR1/CXCR2 pathway or the CXCR4/CXCR7 pathway is associated with tumor aggressiveness and poor prognosis; therefore, the specific inhibition of these receptors is a possible therapeutic strategy. On the other hand, the lesser known CXCR3 and CXCR5 axes are generally considered to be tumor suppressor signaling pathways, and their stimulation has been suggested as a way to fight cancer. These pathways have been studied in tumor tissues (using immunohistochemistry or measuring mRNA levels) or serum [using enzyme-linked immuno sorbent assay (ELISA) or multiplexing techniques], among other sample types. Common variants in genes encoding for the CXC chemokines have also been investigated as possible biomarkers of the disease. This review summarizes the most recent findings on the role of CXC chemokines and their receptors in CRC and discusses their possible value as prognostic or predictive biomarkers as well as the possibility of targeting them as a therapeutic strategy.

Kikuchi N, Ye J, Hirakawa J, Kawashima H
Forced Expression of CXCL10 Prevents Liver Metastasis of Colon Carcinoma Cells by the Recruitment of Natural Killer Cells.
Biol Pharm Bull. 2019; 42(1):57-65 [PubMed] Related Publications
CXC chemokine ligand 10 (CXCL10) is a CXC chemokine family protein that transmits signals by binding to its specific receptor, CXCR3. CXCL10 is also known as an interferon-γ-inducible chemokine involved in various biological phenomena, including chemotaxis of natural killer (NK) cells and cytotoxic T lymphocytes, that suppress tumor growth and inhibition of angiogenesis. In this study, we examined the effects of forced expression of CXCL10 in a murine colon carcinoma cell line (CT26) on growth and metastasis in syngeneic mice. We first established CT26 cells that were stably expressing murine CXCL10 (CT26/CXCL10) and compared their growth with their parental CT26 cells in vitro and in vivo. The in vitro growth of the CT26/CXCL10 and CT26 cells was comparable, whereas the in vivo growth of the CT26/CXCL10 cells in the skin was strongly suppressed. Liver metastasis of the CT26/CXCL10 cells was also significantly suppressed after intra-splenic implantation. Removal of NK cells by the administration of anti-asialo GM1 antibody canceled the suppression of subcutaneous growth and liver metastasis of CT26/CXCL10 cells. Immunofluorescence clearly showed that abundant NKp46-positive NK cells were recruited into the liver metastatic lesions of the CT26/CXCL10 cells, consistent with specific NK cell migration towards the culture supernatant from the CT26/CXCL10 cells in the chemotaxis assay using transwells. These findings indicate that CXCL10 prevents in vivo growth and metastasis of colon carcinoma cells by recruiting NK cells, suggesting that forced expression of CXCL10 in the colon tumors by gene delivery should lead to a favorable clinical outcome.

Li H, Rong S, Chen C, et al.
Disparate roles of CXCR3A and CXCR3B in regulating progressive properties of colorectal cancer cells.
Mol Carcinog. 2019; 58(2):171-184 [PubMed] Related Publications
Human C-X-C Motif Chemokine Receptor 3A (CXCR3A) and CXCR3B are two splice variants of CXCR3 that is involved in a variety of progressive processes of cancer cells, including proliferation, migration, invasion, and tumorigenicity. However, the molecular mechanisms of CXCR3 in colorectal cancer (CRC) remain incomplete understood. In the present study, a significantly up-regulated CXCR3 protein was firstly observed in CRC tissues and cell lines in comparison with the paired non-tumor tissues and normal intestinal epithelial cells, which was positively associated with CRC TNM stages. In contrast, CXCR3B was down-regulated in CRC tumor tissues compared with that in the corresponding paired paracancerous tissues, and negatively correlated with the TNM stages of cancer. Of interest, the overexpression of CXCR3A enhanced the progressive capacity of cell proliferation, migration, invasion in CRC LOVO and HCT116 cells in vitro, and the tumorigenicity in nude mice in vivo. Conversely, the overexpression of CXCR3B exhibited an opposite phenotype of CXCR3A, with an ability to inhibit the progressive properties in CRC cell lines in vitro and tumorigenesis in vivo. In addition, immunoblotting analysis further demonstrated that an increased expression of CXCR3A inhibited the expression of CXCR3B in CRC cells and NCM460 normal colon epithelial cells; vice verse, an overexpression of CXCR3B suppressed the expression of CXCR3A in these cells. These data imply that an interaction between the CXCR3A and CXCR3B may play an important regulatory role in tumorigenicity of CRC, which warrants for further investigation.

Saahene RO, Wang J, Wang ML, et al.
The role of CXC chemokine ligand 4/CXC chemokine receptor 3-B in breast cancer progression.
Biotech Histochem. 2019; 94(1):53-59 [PubMed] Related Publications
Chemokines and their receptors participate in the development of cancers by enhancing tumor cell proliferation, angiogenesis, invasion, metastasis and penetration of tumor immune cells. It remains unclear whether CXC chemokine ligand 4 (CXCL4)/CXC chemokine receptor 3-B (CXCR3-B) can be used as an independent molecular marker for establishing prognosis for breast cancer patients. We evaluated CXCL4 and CXCR3-B expression in 114 breast cancer tissues and 30 matched noncancerous tissues using immunohistochemistry and western blot, and determined the correlation between their expression and clinicopathologic findings. We observed that breast cancer tissues express CXCL4 strongly and CXCR3-B weakly compared to noncancerous tissues. Strong CXCL4 expression was detected in 94.7% and weak CXCR3-B expression was detected in 78.9% of the tissues. Therefore, CXCL4/CXCR3-B might play a crucial role in breast cancer progression. We found no significant correlation between CXCL4 and age, tumor stage, tumor grade or TNM stage. CXCR3-B was associated significantly with tumor grade. Moreover, the Chi-square test of association showed that the expression of CXCL4/CXCR3-B might be an independent prognostic marker for breast cancer. Therefore, we suggest that CXCR3-B is an indicator of poor prognosis and may also be a chemotherapeutic target.

Choi J, Ahn SS, Lim Y, et al.
Inhibitory Effect of
Int J Mol Sci. 2018; 19(9) [PubMed] Free Access to Full Article Related Publications
CXC motif chemokine ligand 10 (CXCL10) and its receptor CXC motif chemokine receptor 3 (CXCR3), play important roles in the motility of breast cancer cells.

Benhadjeba S, Edjekouane L, Sauvé K, et al.
Feedback control of the CXCR7/CXCL11 chemokine axis by estrogen receptor α in ovarian cancer.
Mol Oncol. 2018; 12(10):1689-1705 [PubMed] Free Access to Full Article Related Publications
Ovarian cancer (OC) is one of the most intractable diseases, exhibiting tremendous molecular heterogeneity and lacking reliable methods for screening, resulting in late diagnosis and widespread peritoneal dissemination. Menopausal estrogen replacement therapy is a well-recognized risk factor for OC, but little is known about how estrogen might contribute to this disease at the cellular level. This study identifies chemokine receptor CXCR7/ACKR3 as an estrogen-responsive gene, whose expression is markedly enhanced by estrogen through direct recruitment of ERα and transcriptional active histone modifications in OC cells. The gene encoding CXCR7 chemokine ligand I-TAC/CXCL11 was also upregulated by estrogen, resulting in Ser-118 phosphorylation, activation, and recruitment of estrogen receptor ERα at the CXCR7 promoter locus for positive feedback regulation. Both CXCR7 and CXCL11, but not CXCR3 (also recognized to interact with CXCL11), were found to be significantly increased in stromal sections of microdissected tumors and positively correlated in mesenchymal subtype of OC. Estrogenic induction of mesenchymal markers SNAI1, SNAI2, and CDH2 expression, with a consequent increase in cancer cell migration, was shown to depend on CXCR7, indicating a key role for CXCR7 in mediating estrogen upregulation of mesenchymal markers to induce invasion of OC cells. These findings identify a feed-forward mechanism that sustains activation of the CXCR7/CXCL11 axis under ERα control to induce the epithelial-mesenchymal transition pathway and metastatic behavior of OC cells. Such interplay underlies the complex gene profile heterogeneity of OC that promotes changes in tumor microenvironment and metastatic acquisition.

Zhang B, Wang W, Li C, Liu R
Inositol polyphosphate-4-phosphatase type II plays critical roles in the modulation of cadherin-mediated adhesion dynamics of pancreatic ductal adenocarcinomas.
Cell Adh Migr. 2018; 12(6):548-563 [PubMed] Free Access to Full Article Related Publications
The inositol polyphosphate-4-phosphatase type II (INPP4B) has been mostly proposed to act as a tumor suppressor whose expression is frequently dysregulated in numerous human cancers. To date, little is unveiled about whether and how INPP4B will exert its tumor suppressive function on the turnover of cadherin-based cell-cell adhesion system in pancreatic ductal adenocarcinomas (PDACs) in vitro. Here we provide the evidence that INPP4B manipulates cadherin switch in certain PDAC cell lines through a phosphorylated AKT-inactivation manner. The knockdown of INPP4B in AsPC-1 results in a more invasive phenotype, and overexpression of it in PANC-1 leads to partial reversion of mesenchymal status and impediment of in vitro invasion but not migration. More importantly, E-cadherin (Ecad) is enriched in the early and sorting endosomes containing INPP4B by which its recycling rather than degradation is enabled. Immunohistochemical analysis of 39 operatively resected PDAC specimens reveals it is poorly differentiated, non-cohesive ones in which the INPP4B and Ecad are partially or completely compromised in expression. We therefore identify INPP4B as an tumor suppressor in PDAC which attenuates AKT activation and participates in preservation of Ecad in endocytic pool and cellular membrane.

Saby C, Rammal H, Magnien K, et al.
Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.
Cell Adh Migr. 2018; 12(4):335-347 [PubMed] Free Access to Full Article Related Publications
Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

Zhang C, Li Z, Xu L, et al.
CXCL9/10/11, a regulator of PD-L1 expression in gastric cancer.
BMC Cancer. 2018; 18(1):462 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Programmed death-ligand 1 (PD-L1) is an immunosuppressor that plays an important role in cancer treatments. Although majority of the studies demonstrated that PD-L1 expression was regulated by cellular intrinsic and extrinsic controls, and IFN-γ was a key molecule of extrinsic control, other studies imply that other cytokines play important roles in PD-L1 expression. In this study, we investigated the regulation of PD-L1 by chemokine signaling pathway in gastric cancer (GC) cells.
METHODS: Bioinformatics was used to explore the PD-L1-related genes in GC and propose a hypothesis. PD-L1 and CXCR3 expression were detected by western blot in SGC7901 and MKN74 cell lines. Meanwhile, PD-L1 and CXCR3 expressions were immunohistochemically assessed for their relevance. Moreover, PD-L1, pSTAT3 and pAkt were detected after treatment with CXCL9/10/11. Furthermore,PD-L1, pSTAT3 and pAkt were evaluated after blocking chemokine signaling in SGC7901 cells.
RESULTS: Based on online database analysis, CXCL9/10/11-CXCR3 is proposed to upregulate PD-L1 expression by activating the STAT and PI3K-Akt pathways. This hypothesis was confirmed by in vitro and vivo experiments. CXCR3 and PD-L1 were expressed in GC cell lines and tissues, and the expression of CXCR3 and PD-L1 was positively related. PD-L1 was upregulated after treatment with CXCL9/10/11, accompanied by activation of STAT3 and Akt. After blocking chemokine signaling, upregulation of PD-L1 and activation of STAT3 and Akt were diminished.
CONCLUSIONS: CXCL9/10/11-CXCR3 upregulated the expression of PD-L1 by activating the STAT and PI3K-Akt signaling pathways in GC cells. There was a significant positive correlation between the expression of PD-L1 and CXCR3 in gastric cancer patient tissues.

Seo H, Kim BS, Bae EA, et al.
IL21 Therapy Combined with PD-1 and Tim-3 Blockade Provides Enhanced NK Cell Antitumor Activity against MHC Class I-Deficient Tumors.
Cancer Immunol Res. 2018; 6(6):685-695 [PubMed] Related Publications
Increased expression of coinhibitory molecules such as PD-1 and Tim-3 on NK cells has been demonstrated in advanced cancer patients who harbor MHC class I-deficient tumors. However, even in preclinical models, the antitumor effects of checkpoint blockade on NK cells have not been clearly elucidated. Here, we show that anti-PD-1/anti-Tim-3 treatment suppressed tumor progression in mice bearing MHC class I-deficient tumors, and the suppression was further enhanced by recombinant IL21 (rIL21) treatments through an NK-cell-dependent mechanism. We also show that the intratumoral delivery of rIL21 attracted NK cells to the tumor site in a CXCR3-dependent fashion. A combination of IL21 and checkpoint blockade facilitated the effector function of exhausted NK cells in cancer patients. Given the effects of the checkpoint blockade and rIL21 combination on NK cells infiltrating into MHC class I-deficient tumors, we suggest that the efficacy of checkpoint blockade can be enhanced through the administration of IL21 for advanced cancer patients with MHC class I-low/deficient tumors.

de Mingo Pulido Á, Gardner A, Hiebler S, et al.
TIM-3 Regulates CD103
Cancer Cell. 2018; 33(1):60-74.e6 [PubMed] Free Access to Full Article Related Publications
Intratumoral CD103

Timaner M, Letko-Khait N, Kotsofruk R, et al.
Therapy-Educated Mesenchymal Stem Cells Enrich for Tumor-Initiating Cells.
Cancer Res. 2018; 78(5):1253-1265 [PubMed] Free Access to Full Article Related Publications
Stromal cells residing in the tumor microenvironment contribute to the development of therapy resistance. Here we show that chemotherapy-educated mesenchymal stem cells (MSC) promote therapy resistance via cross-talk with tumor-initiating cells (TIC), a resistant tumor cell subset that initiates tumorigenesis and metastasis. In response to gemcitabine chemotherapy, MSCs colonized pancreatic adenocarcinomas in large numbers and resided in close proximity to TICs. Furthermore, gemcitabine-educated MSCs promoted the enrichment of TICs

Li Z, Liu J, Li L, et al.
Epithelial mesenchymal transition induced by the CXCL9/CXCR3 axis through AKT activation promotes invasion and metastasis in tongue squamous cell carcinoma.
Oncol Rep. 2018; 39(3):1356-1368 [PubMed] Related Publications
The present study aimed to assess the induction of epithelial-mesenchymal transition (EMT), invasion, and metastasis by the chemokine CXCL9/receptor CXCR3 axis in tongue squamous cell carcinoma (TSCC), unveiling the underlying mechanisms and providing new insights into the prevention and treatment of oral cancer metastasis. The expression levels of CXCL9 and CXCR3 in TSCC tissue specimens were determined by immunohistochemistry, assessing differences between samples with cervical lymph node metastasis and those without. Moreover, protein expression or activity in the TSCC Cal-27 cell line was controlled by neutralizing antibodies, gene transfection, or knock-out. Then, alterations of cell proliferation, migration, invasion, and the cytoskeleton were analyzed by CCK-8, cell scratch, Transwell, and cyto-skeleton staining assays, respectively. Alterations of EMT markers (E-cadherin and vimentin) in Cal-27 cells were detected by immunofluorescence and western blotting. In addition, western blotting was utilized to detect protein expression levels of Akt2, p-Akt2, eIF4E and p-eIF4E, and to explore the regulatory roles and mechanisms of the CXCL9/CXCR3 axis in invasion and metastasis. Significantly increased expression levels of CXCL9 and CXCR3 were detected in tissue specimens with lymph node metastasis compared with those without (P<0.01). Overexpression of CXCL9/CXCR3 in Cal-27 cells resulted in cytoskeleton alterations, decreased E-cadherin expression, increased vimentin levels, enhanced migration and invasion (P<0.05), and increased phosphorylated Akt2 and eIF4E levels (P<0.05). These results revealed that in TSCC, the CXCL9/CXCR3 axis could activate the Akt signaling pathway, with EMT and cytoskeleton rearrangement, promoting invasion and metastasis.

Tooze JA, Hamzic E, Willis F, Pettengell R
Differences between chronic lymphocytic leukaemia and small lymphocytic lymphoma cells by proteomic profiling and SNP microarray analysis.
Cancer Genet. 2017; 218-219:20-38 [PubMed] Related Publications
The majority of malignant cells in chronic lymphocytic leukaemia (CLL) circulate in the peripheral blood whereas small lymphocytic lymphoma (SLL) cells reside in tissues. The aim of this study was to detect differences in chemokine receptor expression, DNA single nucleotide polymorphism (SNP) microarray analysis and proteomic profiling to help elucidate why the cells remain in their respective environments. We identified by flow cytometric studies of chemokine receptors and DNA SNP microarray analysis significant differences between cells from CLL and SLL patients. Proteomic analysis revealed two potential markers (m/z 3091 and 8707) to distinguish the two disorders. There was a significantly greater expression of leucocyte trafficking receptor CXCR3 (CD183) and migration and homing receptor CXCR4 (CD184), and significantly lower expression of cell adhesion molecule integrin α

Boyé K, Pujol N, D Alves I, et al.
The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors.
Nat Commun. 2017; 8(1):1571 [PubMed] Free Access to Full Article Related Publications
CXCR3 plays important roles in angiogenesis, inflammation, and cancer. However, the precise mechanism of regulation and activity in tumors is not well known. We focused on CXCR3-A conformation and on the mechanisms controlling its activity and trafficking and investigated the role of CXCR3/LRP1 cross talk in tumor cell invasion. Here we report that agonist stimulation induces an anisotropic response with conformational changes of CXCR3-A along its longitudinal axis. CXCR3-A is internalized via clathrin-coated vesicles and recycled by retrograde trafficking. We demonstrate that CXCR3-A interacts with LRP1. Silencing of LRP1 leads to an increase in the magnitude of ligand-induced conformational change with CXCR3-A focalized at the cell membrane, leading to a sustained receptor activity and an increase in tumor cell migration. This was validated in patient-derived glioma cells and patient samples. Our study defines LRP1 as a regulator of CXCR3, which may have important consequences for tumor biology.

Li D, Liu K, Li Z, et al.
miR-19a and miR-424 target TGFBR3 to promote epithelial-to-mesenchymal transition and migration of tongue squamous cell carcinoma cells.
Cell Adh Migr. 2018; 12(3):236-246 [PubMed] Free Access to Full Article Related Publications
Previous studies indicate that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), a novel suppressor of progression in certain cancers, is down-regulated in tongue squamous cell carcinoma (TSCC). However, the role of this factor as an upstream regulator in TSCC cells remains to be elucidated. The present study was designed to elucidate whether TGFBR3 gene expression is regulated by two microRNA molecules, miR-19a and miR-424. The study also aimed to determine if these microRNAs promote migration of CAL-27 human oral squamous cells. Immunohistochemistry (IHC) and western blot analyses demonstrated that TGFBR3 protein levels were dramatically down-regulated in clinical TSCC specimens. Conversely, bioinformatics analyses and qRT-PCR results confirmed that both miR-19a and miR-424 were markedly up-regulated in clinical TSCC specimens. In this study, we observed that transfection of a TGFBR3-containing plasmid dramatically inhibited epithelial-to-mesenchymal transition (EMT) and migration in CAL-27 cells. Co-immunoprecipitation analyses also revealed that TGFBR3 forms a complex with the β-arrestin 2 scaffolding protein and IκBα. Furthermore, overexpression of TGFBR3 decreased p-p65 expression and increased IκBα expression; these effects were subsequently abolished following knockdown of β-arrestin 2. Moreover, over-expression of miR-19a and miR-424 promoted migration and EMT in CAL-27 cells. We also observed that the promotion of EMT by miR-19a and miR-424 was mediated by the inhibition of TGFBR3. Our study provides evidence that miR-19a and miR-424 play important roles in the development of TSCC. These results expand our understanding of TGFBR3 gene expression and regulatory mechanisms pertaining to miRNAs.

You FP, Zhang J, Cui T, et al.
Th9 cells promote antitumor immunity via IL-9 and IL-21 and demonstrate atypical cytokine expression in breast cancer.
Int Immunopharmacol. 2017; 52:163-167 [PubMed] Related Publications
Breast cancer is a major cause of cancer-related death in women. Antitumor T cell responses play critical therapeutic roles, including direct cytotoxicity mediated by CD8

Haghshenas MR, Ashraf MJ, Khademi B, et al.
Chemokine and chemokine receptor patterns in patients with benign and malignant salivary gland tumors: a distinct role for CCR7.
Eur Cytokine Netw. 2017; 28(1):27-35 [PubMed] Related Publications
To explore the molecular mechanisms involved in pathophysiology of malignant and benign salivary gland tumors (SGTs), we investigated main tumor-inducing chemokines and chemokine receptors, CXCL12/CXCR4/ACKR3 (CXCR7), CXCR3/CXCL10, CCR5/CCL5, CCL21/CCR7, CCL2, CCR4, CXCR5, CCR6, and CXCL8 in tumor tissues. Parotid tissues were obtained from 30 patients with malignant and benign SGTs. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the mRNA expression pattern of the mentioned chemokines/chemokine receptors and immunohistochemistry (IHC) was performed to verify the expression of CCR7. Expression levels of CCR7 and CCR4 transcripts were higher in the tumor tissues of malignant cases in comparison to benign ones (p = 0.03 and 0.02). Immunohistochemistry analysis confirmed that the protein level of CCR7 concurred with the mRNA expression. CCL2 gene transcripts were observed with a higher expression in patients with tumor-free lymph nodes (LN

Chew V, Lai L, Pan L, et al.
Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses.
Proc Natl Acad Sci U S A. 2017; 114(29):E5900-E5909 [PubMed] Free Access to Full Article Related Publications
The recent development of immunotherapy as a cancer treatment has proved effective over recent years, but the precise dynamics between the tumor microenvironment (TME), nontumor microenvironment (NTME), and the systemic immune system remain elusive. Here, we interrogated these compartments in hepatocellular carcinoma (HCC) using high-dimensional proteomic and transcriptomic analyses. By time-of-flight mass cytometry, we found that the TME was enriched in regulatory T cells (Tregs), tissue resident memory CD8

Bonatto N, Carlini MJ, de Bessa Garcia SA, Nagai MA
PHLDA1 (pleckstrin homology-like domain, family A, member 1) knockdown promotes migration and invasion of MCF10A breast epithelial cells.
Cell Adh Migr. 2018; 12(1):37-46 [PubMed] Free Access to Full Article Related Publications
PHLDA1 (pleckstrin homology-like domain, family A, member 1) is a multifunctional protein that plays distinct roles in several biological processes including cell death and therefore its altered expression has been identified in different types of cancer. Progressively loss of PHLDA1 was found in primary and metastatic melanoma while its overexpression was reported in intestinal and pancreatic tumors. Previous work from our group showed that negative expression of PHLDA1 protein was a strong predictor of poor prognosis for breast cancer disease. However, the function of PHLDA1 in mammary epithelial cells and the tumorigenic process of the breast is unclear. To dissect PHLDA1 role in human breast epithelial cells, we generated a clone of MCF10A cells with stable knockdown of PHLDA1 and performed functional studies. To achieve reduced PHLDA1 expression we used shRNA plasmid transfection and then changes in cell morphology and biological behavior were assessed. We found that PHLDA1 downregulation induced marked morphological alterations in MCF10A cells, such as changes in cell-to-cell adhesion pattern and cytoskeleton reorganization. Regarding cell behavior, MCF10A cells with reduced expression of PHLDA1 showed higher proliferative rate and migration ability in comparison with control cells. We also found that MCF10A cells with PHLDA1 knockdown acquired invasive properties, as evaluated by transwell Matrigel invasion assay and showed enhanced colony-forming ability and irregular growth in low attachment condition. Altogether, our results indicate that PHLDA1 downregulation in MCF10A cells leads to morphological changes and a more aggressive behavior.

Doorduijn EM, Sluijter M, Salvatori DC, et al.
CD4
Cancer Immunol Res. 2017; 5(8):642-653 [PubMed] Related Publications
One of the next challenges in cancer immunotherapy is the resistance of tumors to T-cell-based treatments through loss of MHC class I. Here, we show that under these circumstances, the Toll-like receptor (TLR)-7/8 ligand imiquimod, but not the TLR3 ligand poly I:C or TLR9 ligand CpG, mediated an effective antitumor response. The rejection of these immune-escaped cancers was mediated by NK cells and CD4

Maeda M, Chen Y, Lee S, et al.
Induction of IL-17 production from human peripheral blood CD4+ cells by asbestos exposure.
Int J Oncol. 2017; 50(6):2024-2032 [PubMed] Related Publications
We have previously reported that chronic, recurrent and low-dose exposure to asbestos fibers causes a reduction in antitumor immunity. Investigation of natural killer (NK) cells using an in vitro cell line model and comprising in vitro activation using freshly isolated NK cells co-cultured with chrysotile fibers, as well as NK cells derived from asbestos-exposed patients with pleural plaque (PP) or malignant mesothelioma (MM), revealed decreased expression of NK cell activating receptors such as NKG2D, 2B4 and NKp46. An in vitro differentiation and clonal expansion model for CD8+ cytotoxic T lymphocytes (CTLs) showed reduced cytotoxicity with decreased levels of cytotoxic molecules such as granzyme B and perforin, as well as suppressed proliferation of CTLs. Additionally, analysis of T helper cells showed that surface CXCR3, chemokine receptor, and the productive potential of interferon (IFN)γ were reduced following asbestos exposure in an in vitro cell line model and in peripheral CD4+ cells of asbestos-exposed patients. Moreover, experiments revealed that asbestos exposure enhanced regulatory T cell (Treg) function. This study also focused on CXCR3 expression and the Th-17 cell fraction. Following activation with T-cell receptor and co-culture with various concentrations of chrysotile fibers using freshly isolated CD4+ surface CXCR3 positive and negative fractions, the intracellular expression of CXCR3, IFNγ and IL-17 remained unchanged when co-cultured with chrysotile. However, subsequent re-stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin resulted in enhanced IL-17 production and expression, particularly in CD4+ surface CXCR3 positive cells. These results indicated that the balance and polarization between Treg and Th-17 fractions play an important role with respect to the immunological effects of asbestos and the associated reduction in antitumor immunity.

Goodyear OC, Essex S, Seetharam A, et al.
Neoplastic plasma cells generate an inflammatory environment within bone marrow and markedly alter the distribution of T cells between lymphoid compartments.
Oncotarget. 2017; 8(18):30383-30394 [PubMed] Free Access to Full Article Related Publications
Monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) are characterised by the accumulation of malignant plasma cells within bone marrow and lead to a range of abnormalities in the peripheral blood T cell repertoire. We investigated the level of inflammatory chemokines within the bone marrow and blood of patients with MGUS and MM and related this to the pattern of chemokine receptor expression on T cells in both compartments.The expression of a wide range of chemokine ligands for CXCR3 and CCR4 was markedly increased within the bone marrow of patients with MGUS and MM compared to healthy donors. The most marked effects were seen for CCL4 and CXCL9 which were increased by 4 and 6 fold respectively in the bone marrow of patients with myeloma. The expression of CXCR3 and CCR4, the major TH1 and TH2-associated chemokine receptors, was increased substantially on T cells within the bone marrow of patients whereas the percentage of CXCR3-expressing T cells within blood was correspondingly decreased. The presence of even small numbers of neoplastic plasma cells or associated stroma can therefore generate an inflammatory chemokine tumour microenvironment. This leads to the selective recruitment or retention of specific T cell subsets which is likely to underlie many of the features regarding the peripheral T cell repertoire in myeloma and may also contribute to the immune suppression associated with this disease. This local inflammatory reaction may represent a tumour-specific immune response or may itself play an important role in tumour progression and as such may offers a potential novel target for therapeutic intervention.

Chen L, Yang J, Xing Z, et al.
An integrated method for the identification of novel genes related to oral cancer.
PLoS One. 2017; 12(4):e0175185 [PubMed] Free Access to Full Article Related Publications
Cancer is a significant public health problem worldwide. Complete identification of genes related to one type of cancer facilitates earlier diagnosis and effective treatments. In this study, two widely used algorithms, the random walk with restart algorithm and the shortest path algorithm, were adopted to construct two parameterized computational methods, namely, an RWR-based method and an SP-based method; based on these methods, an integrated method was constructed for identifying novel disease genes. To validate the utility of the integrated method, data for oral cancer were used, on which the RWR-based and SP-based methods were trained, thereby building two optimal methods. The integrated method combining these optimal methods was further adopted to identify the novel genes of oral cancer. As a result, 85 novel genes were inferred, among which eleven genes (e.g., MYD88, FGFR2, NF-κBIA) were identified by both the RWR-based and SP-based methods, 70 genes (e.g., BMP4, IFNG, KITLG) were discovered only by the RWR-based method and four genes (L1R1, MCM6, NOG and CXCR3) were predicted only by the SP-based method. Extensive analyses indicate that several novel genes have strong associations with cancers, indicating the effectiveness of the integrated method for identifying disease genes.

Valverde-Villegas JM, de Medeiros RM, Almeida SEM, Chies JAB
Immunogenetic profiling of 23 SNPs of cytokine and chemokine receptor genes through a minisequencing technique: Design, development and validation.
Int J Immunogenet. 2017; 44(3):135-144 [PubMed] Related Publications
The minisequencing technique offers accuracy and robustness to genotyping of polymorphic DNA variants, being an excellent option for the identification and analyses of prognostic/susceptibility markers in human diseases. Two multiplex minisequencing assays were designed and standardized to screen 23 candidate SNPs in cytokine, chemokine receptor and ligand genes previously associated with susceptibility to cancer and autoimmune disorders as well as to infectious diseases outcome. The SNPs were displayed in two separate panels (panel 1-IL2 rs2069762, TNFα rs1800629, rs361525; IL4 rs2243250; IL6 rs1800795; IL10 rs1800896, rs1800872; IL17A rs8193036, rs2275913 and panel 2-CCR3 rs309125, CCR4 rs6770096, rs2228428; CCR6 rs968334; CCR8 rs2853699; CXCR3 rs34334103, rs2280964;CXCR6 rs223435, rs2234358; CCL20 rs13034664, rs6749704; CCL22 rs4359426; CXCL10/IP-10 rs3921, rs56061981). A total of 305 DNA samples from healthy individuals were genotyped by minisequencing. To validate the minisequencing technique and to encompass the majority of the potential genotypes for all 23 SNPs, 20 of these samples were genotyped by Sanger sequencing. The results of both techniques were 100% in agreement. The technique of minisequencing showed high accuracy and robustness, avoiding the need for high quantities of DNA template samples. It was easily to be conducted in bulk samples derived from a highly admixed human population, being therefore an excellent option for immunogenetic studies.

Chen Y, Liu J, Lv P, et al.
IL-6 is involved in malignancy and doxorubicin sensitivity of renal carcinoma cells.
Cell Adh Migr. 2018; 12(1):28-36 [PubMed] Free Access to Full Article Related Publications
Various survival factors such as the pleiotropic cytokine interleukin-6 (IL-6), a major mediator of inflammation and activator of signal transducer and activator of transcription 3 (STAT3), serve to block apoptosis in cancer cells. Our present study revealed that the expression of IL-6, while not other IL-2, IL-4, IL-8, or IL-10, was significantly elevated in resistance of renal carcinoma cells (RCC) when compared with human renal proximal tubule epithelial cell line HK-2. The inhibition of IL-6 by siRNA can suppress the proliferation, migration and invasion of RCC cells and increase the doxorubicin (Dox) sensitivity. While recombination IL-6 can attenuate the inhibition effects of Dox on proliferation of RCC cells. Further studies indicated that inhibition of IL-6 by siRNA can decrease the phosphorylation of STAT3 in RCC cells. Over expression of STAT3 increased the proliferation, migration and invasion of RCC cells and reversed si-IL-6 induced increase of Dox sensitivity of ACHN and A498 cells. In addition, IL-6 treatment can activate ERK1/2 via increasing its phosphorylation. PD98059, the ERK1/2 inhibitor, attenuated IL-6 induced proliferation and synergistically increased the Dox sensitivity of si-IL-6 transfected ACHN cells. Collectively, our data suggested that IL-6 plays an important role in malignancy and Dox sensitivity of RCC. The targeted inhibition of IL-6 signals might be a promising therapeutic strategy for the treatment of renal cancer.

Elia G, Fallahi P
Hepatocellular carcinoma and CXCR3 chemokines: a narrative review.
Clin Ter. 2017 Jan-Feb; 168(1):e37-e41 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) results from several factors like viral hepatitis infection [hepatitis B, or C (25%)] or occupational exposure. T-helper (Th)1 inflammatory cells, characterized by interferon (IFN)-γ and interleukin (IL)-2 secretion, predominate in the liver during chronic HCV infection, and chemokines attracting these cells are particularly important in disease progression. Among C-X-C chemokines, the non-ELR group [as IFN-γ-induced protein 10 (IP-10), monokine induced by IFN-γ (MIG) and IFN-inducible T-cell-alpha chemoattractant (I-TAC)], attracts Th1-cells interacting with chemokine C-X-C receptor (CXCR3). IP-10 has uniquely been shown to have prognostic utility as a marker of treatment outcome. IFN- γ-induced chemokines, as MIG and IP-10, may promote lymphocyte recruitment to HCC playing important roles in cancer immunology. The production of CXC chemokines by HCC cell lines has been shown. It has been identified immune-gene signature that predicts patient survival including the chemokine gene IP-10. Inflammatory cytokines (tumour necrosis factor-α, IFN-γ) and Toll-like receptor 3 ligands stimulate intratumoral production of these chemokines which drive T and Natural Killer cells tumor infiltration, leading to enhanced cancer cell death. Furthermore selective recruitment of CXCR3(+) B-cells that bridges proinflammatory IL-17 response and protumorigenic macrophage polarization in HCC has been shown, suggesting that blocking CXCR3(+) B-cell migration or function may help defeat HCC. It has been also shown that the overexpression of IP-10, which induced by liver graft injury, may lead to cisplatin resistance via ATF6/Grp78 ER stress signaling pathway in HCC; IP-10 neutralizing antibody could be a potential adjuvant therapy to sensitize HCC-cisplatin treatment.

Dinsart C, Pervolaraki K, Stroh-Dege A, et al.
Recombinant Parvoviruses Armed to Deliver CXCL4L1 and CXCL10 Are Impaired in Their Antiangiogenic and Antitumoral Effects in a Kaposi Sarcoma Tumor Model Due To the Chemokines' Interference with the Virus Cycle.
Hum Gene Ther. 2017; 28(3):295-306 [PubMed] Related Publications
Application of oncolytic viruses is a valuable option to broaden the armament of anticancer therapies, as these combine specific cytotoxic effects and immune-stimulating properties. The self-replicating H-1 parvovirus (H-1PV) is a prototypical oncolytic virus that, besides targeting tumor cells, also infects endothelial cells, thus combining oncolytic and angiostatic traits. To increase its therapeutic value, H-1PV can be armed with cytokines or chemokines to enhance the immunological response. Some chemokines-more specifically, the CXCR3 ligands CXCL4L1 and CXCL10-combine immune-stimulating properties with angiostatic activity. This study explores the therapeutic value of recombinant parvoviruses carrying CXCL4L1 or CXCL10 transgenes (Chi-H1/CXCL4L1 or Chi-H1/CXCL10, respectively) to inhibit the growth of the human Kaposi sarcoma cell line KS-IMM. KS-IMM cells infected by Chi-H1/CXCL4L1 or Chi-H1/CXCL10 released the corresponding chemokine and showed reduced migratory capacity. Therefore, the antitumoral capacity of Chi-H1/CXCL4L1 or Chi-H1/CXCL10 was tested in mice. Either in vitro infected KS-IMM cells were injected or subcutaneously growing KS-IMM xenografts were treated by peritumoral injections of the different viruses. Surprisingly, the transgenes did not increase the antitumoral effect of natural H-1PV. Further experiments indicated that CXCL4L1 and CXCL10 interfered with the expression of the viral NS1 protein in KS-IMM cells. These results indicate that the outcome of parvovirus-based delivery of CXCR3 ligands might be tumor cell type dependent, and hence its application must be considered carefully.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CXCR3, Cancer Genetics Web: http://www.cancer-genetics.org/CXCR3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999