CXCR1

Gene Summary

Gene:CXCR1; C-X-C motif chemokine receptor 1
Aliases: C-C, CD128, CD181, CKR-1, IL8R1, IL8RA, CMKAR1, IL8RBA, CDw128a, C-C-CKR-1
Location:2q35
Summary:The protein encoded by this gene is a member of the G-protein-coupled receptor family. This protein is a receptor for interleukin 8 (IL8). It binds to IL8 with high affinity, and transduces the signal through a G-protein activated second messenger system. Knockout studies in mice suggested that this protein inhibits embryonic oligodendrocyte precursor migration in developing spinal cord. This gene, IL8RB, a gene encoding another high affinity IL8 receptor, as well as IL8RBP, a pseudogene of IL8RB, form a gene cluster in a region mapped to chromosome 2q33-q36. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-X-C chemokine receptor type 1
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (15)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Phosphorylation
  • Single Nucleotide Polymorphism
  • Cancer Gene Expression Regulation
  • Transfection
  • Mice, Inbred BALB C
  • Neoplasm Metastasis
  • Case-Control Studies
  • Cell Proliferation
  • RTPCR
  • Receptors, Interleukin-8B
  • RNA Interference
  • Chromosome 2
  • Smoking
  • Risk Factors
  • AKT1
  • Uterine Cancer
  • Angiogenesis
  • Neoplasm Invasiveness
  • Receptors, Interleukin-8A
  • Prostate Cancer
  • src-Family Kinases
  • Messenger RNA
  • Cancer Stem Cells
  • Gene Expression Profiling
  • Cell Movement
  • beta-Thromboglobulin
  • Genetic Predisposition
  • Chemokines
  • Stomach Cancer
  • Lung Cancer
  • Staging
  • Disease Progression
  • Immunohistochemistry
  • Biomarkers, Tumor
  • Breast Cancer
  • Young Adult
  • Apoptosis
  • Disease-Free Survival
  • DNA Sequence Analysis
  • Interleukin-8
  • Gene Expression
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CXCR1 (cancer-related)

Bien SA, Su YR, Conti DV, et al.
Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer.
Hum Genet. 2019; 138(4):307-326 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis-regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon (n = 169) and whole blood (n = 922) transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR ≤ 0.2 and further evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P = 2.2 × 10

Fisher RC, Bellamkonda K, Alex Molina L, et al.
Disrupting Inflammation-Associated CXCL8-CXCR1 Signaling Inhibits Tumorigenicity Initiated by Sporadic- and Colitis-Colon Cancer Stem Cells.
Neoplasia. 2019; 21(3):269-281 [PubMed] Free Access to Full Article Related Publications
Dysfunctional inflammatory pathways are associated with an increased risk of cancer, including colorectal cancer. We have previously identified and enriched for a self-renewing, colon cancer stem cell (CCSC) subpopulation in primary sporadic colorectal cancers (CRC) and a related subpopulation in ulcerative colitis (UC) patients defined by the stem cell marker, aldehyde dehydrogenase (ALDH). Subsequent work demonstrated that CCSC-initiated tumors are dependent on the inflammatory chemokine, CXCL8, a known inducer of tumor proliferation, angiogenesis and invasion. Here, we use RNA interference to target CXCL8 and its receptor, CXCR1, to establish the existence of a functional signaling pathway promoting tumor growth initiated by sporadic and colitis CCSCs. Knocking down either CXCL8 or CXCR1 had a dramatic effect on inhibiting both in vitro proliferation and angiogenesis. Likewise, tumorigenicity was significantly inhibited due to reduced levels of proliferation and angiogenesis. Decreased expression of cycle cell regulators cyclins D1 and B1 along with increased p21 levels suggested that the reduction in tumor growth is due to dysregulation of cell cycle progression. Therapeutically targeting the CXCL8-CXCR1 signaling pathway has the potential to block sustained tumorigenesis by inhibiting both CCSC- and pCCSC-induced proliferation and angiogenesis.

Cabrero-de Las Heras S, Martínez-Balibrea E
CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer.
World J Gastroenterol. 2018; 24(42):4738-4749 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women, worldwide. In the early stages of the disease, biomarkers predicting early relapse would improve survival rates. In metastatic patients, the use of predictive biomarkers could potentially result in more personalized treatments and better outcomes. The CXC family of chemokines (CXCL1 to 17) are small (8 to 10 kDa) secreted proteins that attract neutrophils and lymphocytes. These chemokines signal through chemokine receptors (CXCR) 1 to 8. Several studies have reported that these chemokines and receptors have a role in either the promotion or inhibition of cancer, depending on their capacity to suppress or stimulate the action of the immune system, respectively. In general terms, activation of the CXCR1/CXCR2 pathway or the CXCR4/CXCR7 pathway is associated with tumor aggressiveness and poor prognosis; therefore, the specific inhibition of these receptors is a possible therapeutic strategy. On the other hand, the lesser known CXCR3 and CXCR5 axes are generally considered to be tumor suppressor signaling pathways, and their stimulation has been suggested as a way to fight cancer. These pathways have been studied in tumor tissues (using immunohistochemistry or measuring mRNA levels) or serum [using enzyme-linked immuno sorbent assay (ELISA) or multiplexing techniques], among other sample types. Common variants in genes encoding for the CXC chemokines have also been investigated as possible biomarkers of the disease. This review summarizes the most recent findings on the role of CXC chemokines and their receptors in CRC and discusses their possible value as prognostic or predictive biomarkers as well as the possibility of targeting them as a therapeutic strategy.

Reshadmanesh A, Rahbarizadeh F, Ahmadvand D, Jafari Iri Sofla F
Evaluation of cellular and transcriptional targeting of breast cancer stem cells via anti-HER2 nanobody conjugated PAMAM dendrimers.
Artif Cells Nanomed Biotechnol. 2018; 46(sup3):S105-S115 [PubMed] Related Publications
According to the cancer stem cell (CSC) theory, a small subset of cells with stem cell-like characteristics is responsible for tumor initiation, progression, and recurrence. CD44

Uddin MM, Zou Y, Sharma T, et al.
Proteasome inhibition induces IKK-dependent interleukin-8 expression in triple negative breast cancer cells: Opportunity for combination therapy.
PLoS One. 2018; 13(8):e0201858 [PubMed] Free Access to Full Article Related Publications
Triple negative breast cancer (TNBC) cells express increased levels of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which promotes their proliferation and migration. Because TNBC patients are unresponsive to current targeted therapies, new therapeutic strategies are urgently needed. While proteasome inhibition by bortezomib (BZ) or carfilzomib (CZ) has been effective in treating hematological malignancies, it has been less effective in solid tumors, including TNBC, but the mechanisms are incompletely understood. Here we report that proteasome inhibition significantly increases expression of IL-8, and its receptors CXCR1 and CXCR2, in TNBC cells. Suppression or neutralization of the BZ-induced IL-8 potentiates the BZ cytotoxic and anti-proliferative effect in TNBC cells. The IL-8 expression induced by proteasome inhibition in TNBC cells is mediated by IκB kinase (IKK), increased nuclear accumulation of p65 NFκB, and by IKK-dependent p65 recruitment to IL-8 promoter. Importantly, inhibition of IKK activity significantly decreases proliferation, migration, and invasion of BZ-treated TNBC cells. These data provide the first evidence demonstrating that proteasome inhibition increases the IL-8 signaling in TNBC cells, and suggesting that IKK inhibitors may increase effectiveness of proteasome inhibitors in treating TNBC.

Sharma I, Singh A, Siraj F, Saxena S
IL-8/CXCR1/2 signalling promotes tumor cell proliferation, invasion and vascular mimicry in glioblastoma.
J Biomed Sci. 2018; 25(1):62 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma multiforme (GBM) is one of the lethal malignant tumors of the central nervous system. Despite advances made in understanding this complex disease, little has been achieved in improving clinical efficacy towards it. Factors such as chemokines play important role in shaping the tumor microenvironment which in turn plays a significant role in deciding course of tumor progression. In this study, we investigated the role of chemokine IL-8 in glioblastoma progression with particular emphasis on immunomodulation, cellular proliferation, invasion and vascular mimicry.
METHODS: Role of IL-8 in GBM immunology was determined by correlating the expression of IL-8 by immunohistochemistry with other immune cell markers such as CD3 and CD68. Effect of high IL-8 expression on overall survival, the difference in expression level between different GBM subgroups and anatomic structures were analyzed using other databases. Two GBM cell lines -U-87MG and LN-18 were used to study the impact of targeting IL-8-CXCR1/2 signalling using neutralizing antibodies and pharmacological antagonist. Reverse transcriptase-polymerase chain reaction and immunocytochemistry were used to determine the expression of these axes. Impact on cell viability and proliferation was assessed by MTT, proliferation marker-ki-67 and clonogenic survival assays. Multicellular tumor spheroids generated from GBM cell lines were used to study invasion in matrigel.
RESULTS: Weak Positive correlation was observed between IL-8 and CD3 as well as between IL-8 and CD68. High IL-8 expression in GBM patients was found to be associated with dismal survival. No significant difference in IL-8 expression between different molecular subgroups of GBM was observed. In vitro targeting of IL-8-CXCR1/2 signalling displayed a significant reduction in cell viability and proliferation, and spheroid invasion. Furthermore, the presence of CD34-/CXCR1+ vessels in GBM tissues showed the involvement of IL-8/CXCR1 in vascular mimicry structure formation.
CONCLUSION: These results suggest a direct involvement of IL-8-CXCR1/2 axes in GBM progression by promoting both cell proliferation and invasion and indirectly by promoting neovascularization in the form of vascular mimicry.

Zacharias M, Brcic L, Eidenhammer S, Popper H
Bulk tumour cell migration in lung carcinomas might be more common than epithelial-mesenchymal transition and be differently regulated.
BMC Cancer. 2018; 18(1):717 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is one mechanism of carcinoma migration, while complex tumour migration or bulk migration is another - best demontrated by tumour cells invading blood vessels.
METHODS: Thirty cases of non-small cell lung carcinomas were used for identifying genes responsible for bulk cell migration, 232 squamous cell and adenocarcinomas to identify bulk migration rates. Genes expressed differently in the primary tumour and in the invasion front were regarded as relevant in migration and further validated in 528 NSCLC cases represented on tissue microarrays (TMAs) and metastasis TMAs.
RESULTS: Markers relevant for bulk cancer cell migration were regulated differently when compared with EMT: Twist expressed in primary tumour, invasion front, and metastasis was not associated with TGFβ1 and canonical Wnt, as Slug, Snail, and Smads were negative and β-Catenin expressed membraneously. In the majority of tumours, E-Cadherin was downregulated at the invasive front, but not absent, but, coexpressed with N-Cadherin. Vimentin was coexpressed with cytokeratins at the invasion site in few cases, whereas fascin expression was seen in a majority. Expression of ERK1/2 was downregulated, PLCγ was only expressed at the invasive front and in metastasis. Brk and Mad, genes identified in Drosophila border cell migration, might be important for bulk migration and metastasis, together with invadipodia proteins Tks5 and Rab40B, which were only upregulated at the invasive front and in metastasis. CXCR1 was expressed equally in all carcinomas, as opposed to CXCR2 and 4, which were only expressed in few tumours.
CONCLUSION: Bulk cancer cell migration seems predominant in AC and SCC. Twist, vimentin, fascin, Mad, Brk, Tsk5, Rab40B, ERK1/2 and PLCγ are associated with bulk cancer cell migration. This type of migration requires an orchestrated activation of proteins to keep the cells bound to each other and to coordinate movement. This hypothesis needs to be proven experimentally.

Chen X, Liu L, Wang J, et al.
CXCR1 expression predicts benefit from tyrosine kinase inhibitors therapy in patients with metastatic renal cell carcinoma.
Urol Oncol. 2018; 36(5):242.e15-242.e21 [PubMed] Related Publications
PURPOSE: CXCR1 signaling promotes tumor progression in various cancers, and clinical trial has proved efficacy of CXCR1 inhibitor in metastatic breast cancer. Therefore, we investigated the prognostic value of CXCR1 in patients with metastatic renal cell carcinoma (mRCC) receiving tyrosine kinase inhibitors (TKIs) therapy.
MATERIALS AND METHODS: Patients treated with sunitinib or sorafenib were retrospectively enrolled (n = 111). CXCR1 expression was assessed by immunohistochemical staining of tissue microarrays of primary tumor, and its association with prognosis and therapeutic response were evaluated. To explore possible mechanism related to CXCR1 expression, gene set enrichment analysis was performed based on The Cancer Genome Atlas cohort.
RESULTS: High CXCR1 expression was associated with poorer overall survival (P = 0.015) and was an independent prognostic factor for patients with mRCC treated by TKIs (Hazard Ratio = 1.683, 95% Confidence Interval: 1.109-2.553, P = 0.014). CXCR1 expression was also associated with worse therapeutic response of TKIs (P = 0.017). Thirteen pathways, including hypoxia and angiogenesis, were identified to be enriched in CXCR1 positive patients.
CONCLUSIONS: High CXCR1 expression indicates reduced benefit from TKIs therapy in patients with mRCC. The mechanism may be attributed to the enriched pathways of hypoxia and angiogenesis in CXCR1 positive patients. CXCR1 may be a potential therapeutic target for mRCC, but further studies are required.

Wu S, Saxena S, Varney ML, Singh RK
CXCR1/2 Chemokine Network Regulates Melanoma Resistance to Chemotherapies Mediated by NF-κB.
Curr Mol Med. 2017; 17(6):436-449 [PubMed] Related Publications
BACKGROUND: Cancer-related inflammation is recognized as a driver for tumor progression and chemokines are important players in both inflammation and the progression of many cancer types. CXC chemokines, especially CXCL8, have been implicated in melanoma growth and metastasis, while less is known for their roles in drug resistance.
METHODS: We generated drug-resistant cells by continuous exposure to chemotherapeutic drugs and analyzed the mechanism(s) of therapy resistance in malignant melanoma.
RESULTS: We report chemotherapies induced upregulation of a variety of chemokines in the CXCR1/CXCR2 network by an NF-κB-dependent mechanism. Notably, analysis of the drug-resistant melanoma cell line selected after prolonged exposure to chemotherapeutic drug dacarbazine revealed higher levels of CXCL8 and CXCR2 compared with parent cells as a signature of drug resistance. CXCR2 neutralization markedly improved sensitivity to dacarbazine in melanoma cells.
CONCLUSION: These data provide insights into what drives melanoma cells to survive after chemotherapy treatment, thus pointing to strategies for developing combined drug therapies for combating the problem of chemotherapy resistance in melanoma.

Semango G, Heinhuis B, Plantinga TS, et al.
Exploring the Role of IL-32 in HIV-Related Kaposi Sarcoma.
Am J Pathol. 2018; 188(1):196-203 [PubMed] Related Publications
The intracellular proinflammatory mediator IL-32 is associated with tumor progression; however, the mechanisms remain unknown. We studied IL-32 mRNA expression as well as expression of other proinflammatory cytokines and mediators, including IL-1α, IL-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, the proangiogenic and antiapoptotic enzyme cyclooxygenase-2, the IL-8 receptor C-X-C chemokine receptor (CXCR) 1, and the intracellular kinase focal adhesion kinase-1. The interaction of IL-32 expression with expression of IL-6, TNF-α, IL-8, and cyclooxygenase-2 was also investigated. Biopsy specimens of 11 HIV-related, 7 non-HIV-related Kaposi sarcoma (KS), and 7 normal skin tissues (NSTs) of Dutch origin were analyzed. RNA was isolated from the paraffin material, and gene expression levels of IL-32 α, β, and γ isoforms, IL1a, IL1b, IL6, IL8, TNFA, PTGS2, CXCR1, and PTK2 were determined using real-time quantitative PCR. Significantly higher expression of IL-32β and IL-32γ isoforms was observed in HIV-related KS biopsy specimens compared with non-HIV-related KS and NST. The splicing ratio of the IL-32 isoforms showed IL-32γ as the highest expressed isoform, followed by IL-32β, in HIV-related KS cases compared with non-HIV-related KS and NST. Our data suggest a possible survival mechanism by the splicing of IL-32γ to IL-32β and also IL-6, IL-8, and CXCR1 signaling pathways to reverse the proapoptotic effect of the IL-32γ isoform, leading to tumor cell survival and thus favoring tumor progression.

Sharafeldin N, Slattery ML, Liu Q, et al.
Multiple Gene-Environment Interactions on the Angiogenesis Gene-Pathway Impact Rectal Cancer Risk and Survival.
Int J Environ Res Public Health. 2017; 14(10) [PubMed] Free Access to Full Article Related Publications
Characterization of gene-environment interactions (GEIs) in cancer is limited. We aimed at identifying GEIs in rectal cancer focusing on a relevant biologic process involving the angiogenesis pathway and relevant environmental exposures: cigarette smoking, alcohol consumption, and animal protein intake. We analyzed data from 747 rectal cancer cases and 956 controls from the Diet, Activity and Lifestyle as a Risk Factor for Rectal Cancer study. We applied a 3-step analysis approach: first, we searched for interactions among single nucleotide polymorphisms on the pathway genes; second, we searched for interactions among the genes, both steps using Logic regression; third, we examined the GEIs significant at the 5% level using logistic regression for cancer risk and Cox proportional hazards models for survival. Permutation-based test was used for multiple testing adjustment. We identified 8 significant GEIs associated with risk among 6 genes adjusting for multiple testing:

Shih CH, Chiang TB, Wang WJ
Synergistic suppression of a disintegrin acurhagin-C in combination with AZD4547 and reparixin on terminating development for human osteosarcoma MG-63 cell.
Biochem Biophys Res Commun. 2017; 492(3):513-519 [PubMed] Related Publications
Current therapies available for the treatment of human osteosarcoma, an aggressive bone tumor, are insufficient. To examine an alternative approach of integrin-based anti-osteosacoma strategy, acurhagin-C, a Glu-Cys-Asp (ECD)-disintegrin, was isolated and evaluated for its application in combination with two potent inhibitors of basic fibroblast growth factor (bFGF) and interleukin-8 (IL-8). The investigation of human osteosarcoma MG-63 cells pre-incubated with a FGF receptor-1 (FGFR-1) blocker AZD4547, a CXC-chemokine receptor-1/-2 (CXCR1/2) antagonist reparixin, and acurhagin-C via two given modes of separation and combination was executed. Detected by flow cytometry, integrins-α2/-α5/-αv/-β1, FGFR-1, CXCR1 and CXCR2 constitutively express on the resting membrane. However, bFGF/IL-8-activated MG-63 cells only statistically enhanced the surface exposure of integrins-α5/-β1, FGFR-1 and CXCR2. In activated MG-63 cells, acurhagin-C targeting integrin-α5 not only might potentiate the inhibitory effect of AZD4547 and reparixin on the surface expression of integrin-α5, FGFR-1 and CXCR2, but also acurhagin-C used alone remained effectively to diminish the surface exposure of those targeted receptors. Hence, a complicated crosstalk mechanism should be involved in the membrane interactions. Furthermore, co-administration of acurhagin-C with AZD4547 and reparixin also showed to have the synergistic suppression toward cell proliferation and the gene expression of matrix metalloproteinase-2. Also, the administration of three-in-one mode could nearly abrogate the cellular attachment onto collagen-IV- and fibronectin-coated wells, as well as penetration into Matrigel-barrier. These data supported an ECD-disintegrin acurhagin-C targeting integrin-α5 upon combined used with AZD4547 and reparixin may become a promising therapeutic approach for attenuating osteosarcoma development.

Jiang J, Ye F, Yang X, et al.
Peri-tumor associated fibroblasts promote intrahepatic metastasis of hepatocellular carcinoma by recruiting cancer stem cells.
Cancer Lett. 2017; 404:19-28 [PubMed] Related Publications
Fibroblasts have been reported to play an important role in hepatocellular carcinoma (HCC). However, the role of fibroblasts have not been fully understood. Conditioned medium collected from human peri-tumor tissue-derived fibroblasts (CM-pTAFs) showed high metastasis ability than human HCC tissues-derived fibroblasts (CM-TAFs). To determine what component was secreted from fibroblasts, we used Bio-Plex analysis system and compared the factors secreted from CM-pTAFs and CM-TAFs, found a series of up-regulated cytokines in the CM-pTAFs, including IL-6, CCL2, CXCL1, CXCL8, SCGF-β, HGF and VEGF. Pretreatment of IL-6 inhibitor Tocilizumab could inhibit metastasis the HCC cell treated with CM-pTAFs in vitro and in vivo. The expression of CCR2 and CXCR1 were up-regulated after CM-pTAFs treatment in HCC cell line SMMC-7721. Flow cytometric analysis experiment showed that most CCR2 or CXCR1 positive cells were also EpCAM positive. In vitro studies also showed that CM-pTAFs could increase stemness of SMMC-7721. In addition, neutralization of SCGF-β and HGF could significantly reduce metastasis and viability of cancer stem cells treated with CM-pTAFs. Taken together, these results indicated that the peri-tumor tissues derived fibroblasts may promote development of HCC by recruiting cancer stem cells and maintaining their stemness characteristic.

Jia D, Li L, Andrew S, et al.
An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells.
Cell Death Dis. 2017; 8(7):e2932 [PubMed] Free Access to Full Article Related Publications
Stromal cells, infiltrating immune cells, paracrine factors and extracellular matrix have been extensively studied in cancers. However, autocrine factors produced by tumor cells and communications between autocrine factors and intracellular signaling pathways in the development of drug resistance, cancer stem-like cells (CSCs) and tumorigenesis have not been well investigated, and the precise mechanism and tangible approaches remain elusive. Here we reveal a new mechanism by which cytokines produced by breast cancer cells after chemotherapy withdrawal activate both Wnt/β-catenin and NF-κB pathways, which in turn further promote breast cancer cells to produce and secrete cytokines, forming an autocrine inflammatory forward-feedback loop to facilitate the enrichment of drug-resistant breast cancer cells and/or CSCs. Such an unexpected autocrine forward-feedback loop and CSC enrichment can be effectively blocked by inhibition of Wnt/β-catenin and NF-κB signaling. It can also be diminished by IL8-neutralizing antibody or blockade of IL8 receptors CXCR1/2 with reparixin. Administration of reparixin after chemotherapy withdrawal effectively attenuates tumor masses in a human xenograft model and abolishes paclitaxel-enriched CSCs in the secondary transplantation. These results are partially supported by the latest clinical data set. Breast cancer patients treated with chemotherapeutic drugs exhibited poor survival rate (66.7 vs 282.8 months, P=0.00071) and shorter disease-free survival time if their tumor samples expressed high level of IL8, CXCR1, CXCR2 genes and Wnt target genes. Taken together, this study provides new insights into the communication between autocrine niches and signaling pathways in the development of chemotherapy resistance and CSCs; it also offers a tangible approach in breast cancer treatment.

Franz JM, Portela P, Salim PH, et al.
CXCR2 +1208 CT genotype may predict earlier clinical stage at diagnosis in patients with prostate cancer.
Cytokine. 2017; 97:193-200 [PubMed] Related Publications
Interleukin-8 (IL-8) is an angiogenic CXC chemokine that plays an important role in both the development and progression of several human malignancies including prostate cancer (PC). A single nucleotide polymorphism (SNP) at -251 upstream of the transcriptional start site of the IL-8 gene has been shown to influence its production. The effects of IL-8 are mediated by two highly related chemokine receptors, CXCR1 and CXCR2. The present study investigated the influence of the IL-8 and CXCR2 gene variation on susceptibility and clinicopathological characteristics of PC in a group of Brazilian subjects.
METHODS: Two hundred and one patients and 185 healthy controls were enrolled in a case-control study. Blood was collected for DNA extraction; typing of IL-8 -251 T/A and CXCR2 +1208 C/T genes was performed by polymerase chain reaction with sequence-specific primers (PCR-SSP), followed by agarose gel electrophoresis. Risk association between the genotypes, PC susceptibility and tumor characteristics was estimated by odds ratio (OR) and 95% confidence intervals (95% CI) using logistic regression analysis, after adjusting for age at diagnosis.
RESULTS: A significant association was found between the heterozygous CXCR2 +1208 CT genotype and stage of PC. The CXCR2 +1208 CT genotype was significantly less frequent in patients with clinical stage T3-T4 compared to T1-T2 (56.7 versus 80.5%). Our findings suggest that carriers of the CXCR2 +1208 CT genotype had a protective effect for advanced PC (CT versus CC: adjusted OR=0.25; P=0.02). No association was observed between the SNP for IL-8 -251 T/A and clinicopathological parameters of PC.
CONCLUSION: These results indicated that the CXCR2 +1208 CT genotype is less frequent in advanced stages of PC, suggesting that this chemokine receptor plays a role in the pathogenesis of this disease.

Ha H, Debnath B, Neamati N
Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases.
Theranostics. 2017; 7(6):1543-1588 [PubMed] Free Access to Full Article Related Publications
The chemokine receptors CXCR1/2 and their ligand CXCL8 are essential for the activation and trafficking of inflammatory mediators as well as tumor progression and metastasis. The CXCL8-CXCR1/2 signaling axis is involved in the pathogenesis of several diseases including chronic obstructive pulmonary diseases (COPD), asthma, cystic fibrosis and cancer. Interaction between CXCL8 secreted by select cancer cells and CXCR1/2 in the tumor microenvironment is critical for cancer progression and metastasis. The CXCL8-CXCR1/2 axis may play an important role in tumor progression and metastasis by regulating cancer stem cell (CSC) proliferation and self-renewal. During the past two decades, several small-molecule CXCR1/2 inhibitors, CXCL8 releasing inhibitors, and neutralizing antibodies against CXCL8 and CXCR1/2 have been reported. As single agents, such inhibitors are expected to be efficacious in various inflammatory diseases. Several preclinical studies suggest that combination of CXCR1/2 inhibitors along with other targeted therapies, chemotherapies, and immunotherapy may be effective in treating select cancers. Currently, several of these inhibitors are in advanced clinical trials for COPD, asthma, and metastatic breast cancer. In this review, we provide a comprehensive analysis of the role of the CXCL8-CXCR1/2 axis and select genes co-expressed in this pathway in disease progression. We also discuss the latest progress in developing small-molecule drugs targeting this pathway.

Xue MQ, Liu J, Sang JF, et al.
Expression characteristic of CXCR1 in different breast tissues and the relevance between its expression and efficacy of neo-adjuvant chemotherapy in breast cancer.
Oncotarget. 2017; 8(30):48930-48937 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: To investigate chemokine receptor CXCR1 expression characteristic in different breast tissues and analyze the relationship between CXCR1 expression changes in breast cancer tissue and efficacy of neo-adjuvant chemotherapy.
RESULTS: Chemokine receptor CXCR1 was lowly expressed in normal breast tissues and breast fibroadenoma, but highly expressed in breast cancer. It was significantly correlated with pathological stage, tumor cell differentiation, and lymph node metastasis (P < 0.05). After neo-adjuvant chemotherapy, CXCR1 expression in breast cancer tissues decreased. Among these 104 breast cancer patients with different molecular subtypes, the survival rate with Luminal A was the highest, followed by the Luminal B breast cancer, TNBC was the worst.
MATERIALS AND METHODS: 104 cases with breast carcinoma, 20 cases with normal breast and 20 cases with breast fibroadenoma were included and followed up. Immunohistochemistry was used to detect the expression of CXCR1 in the various tissues. The relationship between the CXCR1 expression changes in breast cancer biopsies and surgical specimens, as well as the efficacy of neo-adjuvant chemotherapy, was analyzed.
CONCLUSIONS: Chemokine receptor CXCR1 could be used as an indicator to predict benign or malignant breast disease, and it can even predict the malignancy degree of breast cancer, as well as its invasive ability and prognosis.

Giannou AD, Marazioti A, Kanellakis NI, et al.
EMBO Mol Med. 2017; 9(5):672-686 [PubMed] Free Access to Full Article Related Publications
The lungs are frequently affected by cancer metastasis. Although

Park CR, You DJ, Park S, et al.
The accessory proteins REEP5 and REEP6 refine CXCR1-mediated cellular responses and lung cancer progression.
Sci Rep. 2016; 6:39041 [PubMed] Free Access to Full Article Related Publications
Some G-protein-coupled receptors have been reported to require accessory proteins with specificity for proper functional expression. In this study, we found that CXCR1 interacted with REEP5 and REEP6, but CXCR2 did not. Overexpression of REEP5 and REEP6 enhanced IL-8-stimulated cellular responses through CXCR1, whereas depletion of the proteins led to the downregulation of the responses. Although REEPs enhanced the expression of a subset of GPCRs, in the absence of REEP5 and REEP6, CXCR1 was expressed in the plasma membrane, but receptor internalization and intracellular clustering of β-arrestin2 following IL-8 treatment were impaired, suggesting that REEP5 and REEP6 might be involved in the ligand-stimulated endocytosis of CXCR1 rather than membrane expression, which resulted in strong cellular responses. In A549 lung cancer cells, which endogenously express CXCR1, the depletion of REEP5 and REEP6 significantly reduced growth and invasion by downregulating IL-8-stimulated ERK phosphorylation, actin polymerization and the expression of genes related to metastasis. Furthermore, an in vivo xenograft model showed that proliferation and metastasis of A549 cells lacking REEP5 and REEP6 were markedly decreased compared to the control group. Thus, REEP5 and REEP6 could be novel regulators of G-protein-coupled receptor signaling whose functional mechanisms differ from other accessory proteins.

Han KQ, Han H, He XQ, et al.
Chemokine CXCL1 may serve as a potential molecular target for hepatocellular carcinoma.
Cancer Med. 2016; 5(10):2861-2871 [PubMed] Free Access to Full Article Related Publications
The purpose of this study was to screen for changes in chemokine and chemokine-related genes that are expressed in hepatocellular carcinoma (HCC) as potential markers of HCC progression. Total RNA was extracted from tumor and peritumor tissues from mice with HCC and analyzed using a PCR microarray comprising 98 genes. Changes in gene expression of threefold or more were screened and subsequently confirmed by immunohistochemical analyses and western blotting. Furthermore, whether chemokine knockdown by RNA interference (RNAi) could significantly suppress tumor growth in vivo was also evaluated. Finally, total serum samples were collected from HCC patients with HBV/cirrhosis (n = 16) or liver cirrhosis (n = 16) and from healthy controls (n = 16). The serum mRNA and protein expression levels of CXCL1 in primary liver cancer patients were detected by qRT-PCR and western blot analysis, respectively. Several genes were up-regulated in tumor tissues during the progression period, including CXCL1, CXCL2, CXCL3, and IL-1β, while CXCR1 expression was down-regulated. CBRH-7919 cells carrying CXCL1 siRNA resulted in decreased tumor growth in nude mice. The differences in serum CXCL1 mRNA and protein levels among the HCC, hepatic sclerosis (HS), and control groups were significant (P < 0.001). The mRNA and protein levels of CXCL1 in the HCC group were up-regulated compared with the HS group or the control group (P < 0.001). Several chemokine genes were identified that might play important roles in the tumor microenvironment of HCC. These results provide new insights into human HCC and may ultimately facilitate early HCC diagnosis and lead to the discovery of innovative therapeutic approaches for HCC.

Liotti F, Collina F, Pone E, et al.
Interleukin-8, but not the Related Chemokine CXCL1, Sustains an Autocrine Circuit Necessary for the Properties and Functions of Thyroid Cancer Stem Cells.
Stem Cells. 2017; 35(1):135-146 [PubMed] Related Publications
Interleukin-8 (IL-8/CXCL8) mediates its biological effects through two receptors, CXCR1 and CXCR2. While CXCR1 recognizes IL-8 and granulocyte chemotactic protein-2, CXCR2 binds to multiple chemokines including IL-8, CXCL1, 2 and 3. Both IL-8 and CXCL1 have been implicated in the neoplastic features of thyroid cancer (TC). Here, we assessed the role of the autocrine circuits sustained by IL-8 and CXCL1 in determining TC stem cell (TC SC) features. Using immunohistochemistry, we found that thyroid epithelial cancerous, but not normal, cells stained positive for IL-8, whose levels correlated with lymph-nodal metastases. We assessed the expression of endogenous IL-8 and CXCL1, by ELISA assays, and of their receptors CXCR1 and CXCR2, by flow cytometry, in a panel of TC cell lines. These molecules were expressed in TC cell lines grown in adherence, and at higher levels also in thyrospheres enriched in stem-like cells. RNA interference demonstrated that IL-8/CXCR1, but not CXCL1/CXCR2, is crucial for the sphere-forming, self-renewal and tumor-initiating ability of TC cells. Accordingly, treatment of TC cells with IL-8, but not with CXCL1, potentiated cell stemness. We identified CD34 as an IL-8-induced gene and as a TC SC marker, since it was overexpressed in thyrospheres compared to adherent cells. Moreover, CD34 is required for the efficient sphere-forming ability and tumorigenicity of TC cells. Our data indicate that IL-8, but not the CXCL1 circuit, is critical for the regulation of TC SCs, and unveils novel potential targets for the therapy of as yet untreatable forms of TC. Stem Cells 2017;35:135-146.

Chan LP, Wang LF, Chiang FY, et al.
IL-8 promotes HNSCC progression on CXCR1/2-meidated NOD1/RIP2 signaling pathway.
Oncotarget. 2016; 7(38):61820-61831 [PubMed] Free Access to Full Article Related Publications
NOD1 (nucleotide-binding oligomerization domain 1) is overexpressed in head and neck squamous cell carcinoma (HNSCC) cells, as is IL-8 in cancer cells. However, the mechanism of the IL-8-mediated overexpression of NOD in HNSCC not been identified. This study determines whether IL-8 promotes tumor progression via the NOD signaling pathway in HNSCC. Higher IL-8, NOD1 and receptor-interacting protein kinase (RIP2) expressions were observed in HNSCC tissue than in non-cancerous matched tissue (NCMT), whereas NOD2 was weakly expressed. Furthermore, IL-8 stimulated the proliferation of HNSCC cells (SCC4, SCC9 and SCC25) but not dysplastic oral mucosa DOK cells. Exposure to IL-8 increased the clonogenicity of HNSCC cells. IL-8 siRNA inhibited cell proliferation and cell colony formation, suggesting that IL-8 is involved in HNSCC cancer progression. The expressions of CXCR1 and CXCR2 were higher in HNSCC tissue than in NCMT. HNSCC cells that were exposed to IL-8 exhibited higher expression of CXCR1/2 than did controls. The blocking of IL-8 by siRNA reduced CXCR1/2 expression in HNSCC cells, suggesting that the cancer progression of HNSCC cells that is induced by IL-8 depends on CXCR1/2. Additionally, IL-8 is associated with increased NOD1 and RIP2 expression and reduced NOD2 expression in three types of HNSCC cells. The blocking of IL-8 by siRNA reduces IL-8, NOD1 and RIP2 expressions in HNSCC cells, but not the level of NOD2. These results suggest that IL-8 has an important role in HNSCC progression via a CXCR1/2-meidated NOD1/RIP2 signaling pathway.

Hampras SS, Sucheston-Campbell LE, Cannioto R, et al.
Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer.
Oncotarget. 2016; 7(43):69097-69110 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer.
METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients.
RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively).
CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients.

Pan MR, Hsu MC, Luo CW, et al.
The histone methyltransferase G9a as a therapeutic target to override gemcitabine resistance in pancreatic cancer.
Oncotarget. 2016; 7(38):61136-61151 [PubMed] Free Access to Full Article Related Publications
Gemcitabine (GEM) resistance is a critical issue for pancreatic cancer treatment. The involvement of epigenetic modification in GEM resistance is still unclear. We established a GEM-resistant subline PANC-1-R from the parental PANC-1 pancreatic cancer cells and found the elevation of various chromatin-modifying enzymes including G9a in GEM-resistant cells. Ectopic expression of G9a in PANC-1 cells increased GEM resistance while inactivation of G9a in PANC-1-R cells reduced it. Challenge of PANC-1 cells with GEM increased the expression of stemness markers including CD133, nestin and Lgr5 and promoted sphere forming activity suggesting chemotherapy enriched cancer cells with stem-like properties. Inhibition of G9a in PANC-1-R cells reduced stemness and invasiveness and sensitized the cells to GEM. We revealed interleukin-8 (IL-8) is a downstream effector of G9a to increase GEM resistance. G9a-overexpressing PANC-1-R cells exhibited autocrine IL-8/CXCR1/2 stimulation to increase GEM resistance which could be decreased by anti-IL-8 antibody and G9a inhibitor. IL-8 released by cancer cells also activated pancreatic stellate cell (PSC) to increase GEM resistance. In orthotopic animal model, GEM could not suppress tumor growth of PANC-1-R cells and eventually promoted tumor metastasis. Combination with G9a inhibitor and GEM reduced tumor growth, metastasis, IL-8 expression and PSC activation in animals. Finally, we showed that overexpression of G9a correlated with poor survival and early recurrence in pancreatic cancer patients. Collectively, our results suggest G9a is a therapeutic target to override GEM resistance in the treatment of pancreatic cancer.

Wang J, Hu W, Wu X, et al.
CXCR1 promotes malignant behavior of gastric cancer cells in vitro and in vivo in AKT and ERK1/2 phosphorylation.
Int J Oncol. 2016; 48(5):2184-96 [PubMed] Related Publications
CXCR1 is a member of the chemokine receptor family, which was reported to play an important role in several cancers. The present study investigated the influence of CXCR1 stable knockdown or overexpression on the malignant behavior of gastric cancer cells in vitro and in vivo and the potential mechanisms. MKN45 and BGC823 cells were stably transfected with plasmid pYr-1.1-CXCR1-shRNA (knockdown) and pIRES2-ZsGreen1-CXCR1 (overexpression), respectively. Malignant behavior was evaluated in vitro for changes in proliferation by MTT and colony forming assays; cell cycle and apoptosis by flow cytometry; and migration and invasion using transwell and wound-healing assays. Proliferation, cell cycle, apoptosis, migration and invasion-related signaling molecule expression were measured by real-time RT-PCR and western blot analysis. CXCR1 knockdown and overexpressing xenografts were monitored for in vivo tumor growth. Stable knockdown of CXCR1 inhibited MKN45 cell proliferation, migration and invasion, but were reversed in BGC823 cells stably overexpressing CXCR1. In addition, MKN45 cells stably transfected with CXCR1 shRNA inhibited AKT and ERK1/2 phosphorylation, protein expression of cyclin D1, EGFR, VEGF, MMP-9, MMP-2 and Bcl-2, and increased protein expression of Bax and E-cadherin (all P<0.05). In vivo CXCR1-shRNA-MKN45 cells transplanted into nude mice formed smaller tumors than non-transfected or scrambled-shRNA cells (both P<0.05). In contrast BGC823 cells overexpressing CXCR1 formed larger tumors in mice than cells carrying an empty expression plasmid or non-transfected cells (both P<0.05). CXCR1 promoted gastric cancer cell proliferation, migration and invasion. The present study provides preclinical data to support CXCR1 as a novel therapeutic target for gastric cancer.

Wang J, Hu W, Wang K, et al.
Repertaxin, an inhibitor of the chemokine receptors CXCR1 and CXCR2, inhibits malignant behavior of human gastric cancer MKN45 cells in vitro and in vivo and enhances efficacy of 5-fluorouracil.
Int J Oncol. 2016; 48(4):1341-52 [PubMed] Free Access to Full Article Related Publications
Chemokine-mediated activation of G protein-coupled receptors CXCR1/2 promotes tumor growth, invasion, inflammation and metastasis. Repertaxin, a CXCR1/2 small-molecule inhibitor, has been shown to attenuate many of these tumor-associated processes. The present study aimed to investigate the effects of repertaxin alone and in combination with 5-fluorouracil (5-FU) on the malignant behavior of gastric cancer and the potential mechanisms. Gastric cancer MKN45 cells were treated in vitro with repertaxin and 5-FU, either alone or in combination. MTT and colony formation assay were performed to assess proliferation. Cell cycle progression and apoptosis was completed by flow cytometry. Migration and invasion were also assessed by transwell and wound-healing assay. Western blot analysis and quantitative RT-PCR were performed to determine expression of signaling molecules. MKN45 cells were also grown as xenografts in nude mice. Mice were treated with repertaxin and 5-FU, and tumor volume and weight, angiogenesis, proliferation and apoptosis were monitored. Combination of repertaxin and 5-FU inhibited MKN45 cell proliferation and increased apoptosis better than either agent alone. Similarly, enhanced effect of the combination was also observed in migration and invasion assays. The improved effect of repertaxin and 5-FU was also observed in vivo, as xenograft models treated with both compounds exhibited significantly decreased tumor volume and increased apoptosis. In conclusion, repertaxin inhibited malignant behavior of human gastric cancer MKN45 cells in vitro and in vivo and enhances efficacy of 5-fluorouracil. These data provide rationale that targeting CXCR1/2 with small molecule inhibitors may enhance chemotherapeutic efficacy for the treatment of gastric cancer.

Kim S, Jeon M, Lee JE, Nam SJ
MEK activity controls IL-8 expression in tamoxifen-resistant MCF-7 breast cancer cells.
Oncol Rep. 2016; 35(4):2398-404 [PubMed] Related Publications
Although tamoxifen reduces disease progression, tamoxifen resistance occurs during the course of estrogen receptor-positive [ER+] breast cancer treatment. In the present study, we investigated the possibility that interleukin-8 (IL-8) is a prognostic marker for tamoxifen resistance and aimed to clarify the regulation of IL-8 expression in tamoxifen-resistant cells. Clinically, IL-8 expression is positively correlated with survival in luminal A type breast cancer patients, but not in luminal B type breast cancer patients. In addition, the levels of IL-8 mRNA and protein expression were significantly increased in tamoxifen-resistant (TamR) cells compared to tamoxifen-sensitive (TamS) cells. To determine the regulatory mechanism of IL-8 expression in TamR cells, we analyzed the activities of signaling molecules. Our results showed that the phosphorylation levels of MEK and Akt were markedly increased in TamR cells, but there was no change in the phosphorylation level of p38 MAPK. On the contrary, we observed that elevated IL-8 mRNA expression was suppressed by a specific MEK1/2 inhibitor, UO126, but not by the specific PI-3K inhibitor LY294002, in TamR cells, whereas, we found that overexpression of constitutively active-MEK (CA-MEK) significantly increased the levels of IL-8 mRNA expression in TamS cells. Finally, we investigated the effect of the specific CXCR1/2 inhibitor SB225002 on anchorage-independent growth of TamR cells, and found that the growth was completely suppressed by SB225002. Taken together, our results demonstrate that IL-8 expression is regulated through a MEK/ERK-dependent pathway in TamR cells, suggesting that IL-8 and its receptors may be promising therapeutic targets for overcoming tamoxifen resistance.

Yang L, Gao L, Chen Y, et al.
The Differential Expression and Function of the Inflammatory Chemokine Receptor CXCR5 in Benign Prostatic Hyperplasia and Prostate Cancer.
Int J Med Sci. 2015; 12(11):853-61 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chemokine and chemokine receptors could have played an important role in tumor angiogenesis and distant metastasis. The mechanism of inflammation, expression and function of chemokines and chemokine receptors in benign prostatic hyperplasia (BPH) and prostate cancer (PCa) remain unclear. The purpose of present study is to detect differential expression and function of chemokines and chemokine receptors (CCRs) in BPH and PCa.
METHODS: BPH-1 and peripheral blood mononuclear cells (PBMCs) were co-cultured in Transwell chambers, and human normal prostate (NP) tissues, BPH tissues and PCa tissues were collected. CCR gene-chips were used to analyze and compare the differential expression of CCRs in BPH-1 cells, BPH-1 cells co-cultured with PBMCs, and LNCaP cells. The differential expression of CCRs was detected and validated using real-time PCR, western blotting and immunofluorescence (IF). The proliferation of LNCaP cells was also investigated after the knockdown CXCR5.
RESULTS: RESULTS of gene-chips indicated that there was low or no expression of CCR10, CXCR1, CXCR3 and CXCR5 in BPH-1 cells, whereas the expression of these receptors in BPH-1 cells was increased by PBMCs, and the expression was high in LNCaP cells. Furthermore, real-time PCR and western blotting confirmed the above mentioned results. IF verified no or low expression of CXCR1, CXCR3 and CXCR5 in NP tissues, low or moderate expression in BPH and high expression in PCa. However, CCR10 was not expressed at detectable levels in the three groups. The growth and proliferation of LNCaP cells was markedly inhibited after down-regulation of CXCR5.
CONCLUSIONS: PCa cells expressed high levels of CCR10, CXCR1, CXCR3 and CXCR5. Although BPH cells did not express these factors, their expression was up-regulated when BPH-1 cells were incubated with inflammatory cells. Finally, down-regulation of CXCR5 inhibited the growth and proliferation of LNCaP cells.

Zhao L, Zhu XY, Jiang R, et al.
Role of GPER1, EGFR and CXCR1 in differentiating between malignant follicular thyroid carcinoma and benign follicular thyroid adenoma.
Int J Clin Exp Pathol. 2015; 8(9):11236-47 [PubMed] Free Access to Full Article Related Publications
It is extremely difficult to discriminate between follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA) before surgery, because the morphologies of carcinoma cells and adenoma cells obtained by fine needle aspiration biopsy (FNAB) are similar. Molecular markers may be helpful on this issue. The purpose of this study was to assess the role of GPER1, EGFR and CXCR1 in differential diagnosis between FTC and FTA. GPER1, EGFR and CXCR1 mRNA expression levels were examined in 15 FTCs and 10 FTAs using real-time RT-PCR. FTC showed to have significantly increased mRNA levels of the three molecules compared to FTA (P < 0.001 for all the three molecules). GPER1, EGFR and CXCR1 protein expression in 106 FTCs and 128 FTAs were analyzed using immunohistochemistry. The rates of GPER1, EGFR and CXCR1 high expression were 73.6%, 72.6% and 70.8% in FTC and 30.5%, 28.1% and 27.3% in FTA, respectively. Statistical analysis showed that GPER1, EGFR and CXCR1 protein expression were correlated with one another in FTC and concomitant high expression of the three molecules had stronger correlation with the occurrence of FTC than did each alone. The positive predictive values (PPV) for concomitant high expression of the three molecules for discriminating between FTC and FTA were 91.0% for GPER1/EGFR, 93.8% for GPER1/CXCR1, 92.3% for EGFR/CXCR1 and 98.2% for GPER1/EGFR/CXCR1, respectively. These results indicated that the evaluation of GPER1, EGFR and CXCR1 concomitant high expression may be helpful in differential diagnosis between FTC and FTA.

Pyatnitskiy M, Karpov D, Poverennaya E, et al.
Bringing Down Cancer Aircraft: Searching for Essential Hypomutated Proteins in Skin Melanoma.
PLoS One. 2015; 10(11):e0142819 [PubMed] Free Access to Full Article Related Publications
We propose an approach to detection of essential genes/proteins required for cancer cell survival. A gene is considered essential if a mutation with high impact upon the function of encoded protein causes death of the cancer cell. We draw an analogy between essential cancer proteins and well-known Abraham Wald's work on estimating the plane critical areas using data on survivability of aircraft encountering enemy fire. Wald reasoned that parts with no bullet holes on the airplanes returned to the airbase from a combat flight are the most crucial ones for the airplane functioning: a hit in one of these parts downs an airplane, so it does not return back for the survey. We have envisaged that the airplane surface is a cancer genome and the bullets are somatic mutations with high impact upon protein function. Similarly we propose that genes specifically essential for tumor cell survival should carry less high-impact mutations in cancer cells compared to polymorphisms found in normal cells. We used data on mutations from the Cancer Genome Atlas and polymorphisms found in healthy humans (from 1000 Genomes Project) to predict 91 protein-coding genes essential for melanoma. These genes were selected according to several criteria, including negative selection, expression in melanocytes and decrease in the proportion of high-impact mutations in cancer compared with normal cells. The Gene Ontology analysis revealed enrichment of essential proteins related to membrane and cell periphery. We speculate that this could be a sign of immune system-driven negative selection of cancer neo-antigens. Another finding is the overrepresentation of semaphorin receptors, which can mediate distinctive signaling cascades and are involved in various aspects of tumor development. Cytokine receptors CCR5 and CXCR1 were also identified as cancer essential proteins and this is confirmed by other studies. Overall, our goal was to illustrate the idea of detecting proteins whose sequence integrity and functioning is important for cancer cell survival. Hopefully, this prediction of essential cancer proteins may point to new targets for anti-tumor therapies.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CXCR1, Cancer Genetics Web: http://www.cancer-genetics.org/CXCR1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999