CD70

Gene Summary

Gene:CD70; CD70 molecule
Aliases: CD27L, LPFS3, CD27-L, CD27LG, TNFSF7, TNLG8A
Location:19p13.3
Summary:The protein encoded by this gene is a cytokine that belongs to the tumor necrosis factor (TNF) ligand family. This cytokine is a ligand for TNFRSF27/CD27. It is a surface antigen on activated, but not on resting, T and B lymphocytes. It induces proliferation of costimulated T cells, enhances the generation of cytolytic T cells, and contributes to T cell activation. This cytokine is also reported to play a role in regulating B-cell activation, cytotoxic function of natural killer cells, and immunoglobulin sythesis. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:CD70 antigen
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (14)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CD70 (cancer-related)

Ring NG, Herndler-Brandstetter D, Weiskopf K, et al.
Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity.
Proc Natl Acad Sci U S A. 2017; 114(49):E10578-E10585 [PubMed] Free Access to Full Article Related Publications
Cancer immunotherapy has emerged as a promising therapeutic intervention. However, complete and durable responses are only seen in a fraction of patients who have cancer. A key factor that limits therapeutic success is the infiltration of tumors by cells of the myeloid lineage. The inhibitory receptor signal regulatory protein-α (SIRPα) is a myeloid-specific immune checkpoint that engages the "don't eat me" signal CD47 expressed on tumors and normal tissues. We therefore developed the monoclonal antibody KWAR23, which binds human SIRPα with high affinity and disrupts its binding to CD47. Administered by itself, KWAR23 is inert, but given in combination with tumor-opsonizing monoclonal antibodies, KWAR23 greatly augments myeloid cell-dependent killing of a collection of hematopoietic and nonhematopoietic human tumor-derived cell lines. Following KWAR23 antibody treatment in a human

Burugu S, Dancsok AR, Nielsen TO
Emerging targets in cancer immunotherapy.
Semin Cancer Biol. 2018; 52(Pt 2):39-52 [PubMed] Related Publications
The first generation of immune checkpoint inhibitors (anti-CTLA-4 and anti-PD-1/PD-L1) targeted natural immune homeostasis pathways, co-opted by cancers, to drive anti-tumor immune responses. These agents led to unprecedented results in patients with previously incurable metastatic disease and may become first-line therapies for some advanced cancers. However, these agents are efficacious in only a minority of patients. Newer strategies are becoming available that target additional immunomodulatory mechanisms to activate patients' own anti-tumor immune responses. Herein, we present a succinct summary of emerging immune targets with reported pre-clinical efficacy that have progressed to active investigation in clinical trials. These emerging targets include co-inhibitory and co-stimulatory markers of the innate and adaptive immune system. In this review, we discuss: 1) T lymphocyte markers: Lymphocyte Activation Gene 3 [LAG-3], T-cell Immunoglobulin- and Mucin-domain-containing molecule 3 [TIM-3], V-domain containing Ig Suppressor of T cell Activation [VISTA], T cell ImmunoGlobulin and ITIM domain [TIGIT], B7-H3, Inducible T-cell Co-stimulator [ICOS/ICOS-L], CD27/CD70, and Glucocorticoid-Induced TNF Receptor [GITR]; 2) macrophage markers: CD47/Signal-Regulatory Protein alpha [SIRPα] and Indoleamine-2,3-Dioxygenase [IDO]; and 3) natural killer cell markers: CD94/NKG2A and the Killer Immunoglobulin-like receptor [KIR] family. Finally, we briefly highlight combination strategies and potential biomarkers of response and resistance to these cancer immunotherapies.

Jin L, Ge H, Long Y, et al.
CD70, a novel target of CAR T-cell therapy for gliomas.
Neuro Oncol. 2018; 20(1):55-65 [PubMed] Free Access to Full Article Related Publications
Background: Cancer immunotherapy represents a promising treatment approach for malignant gliomas but is hampered by the limited number of ubiquitously expressed tumor antigens and the profoundly immunosuppressive tumor microenvironment. We identified cluster of differentiation (CD)70 as a novel immunosuppressive ligand and glioma target.
Methods: Normal tissues derived from 52 different organs and primary and recurrent low-grade gliomas (LGGs) and glioblastomas (GBMs) were thoroughly evaluated for CD70 gene and protein expression. The association between CD70 and patients' overall survival and its impact on T-cell death was also evaluated. Human and mouse CD70-specific chimeric antigen receptors (CARs) were tested respectively against human primary GBMs and murine glioma lines. The antitumor efficacies of these CARs were also examined in orthotopic xenograft and syngeneic models.
Results: CD70 was not detected in peripheral and brain normal tissues but was constitutively overexpressed by isocitrate dehydrogenase (IDH) wild-type primary LGGs and GBMs in the mesenchymal subgroup and recurrent tumors. CD70 was also associated with poor survival in these subgroups, which may link to its direct involvement in glioma chemokine productions and selective induction of CD8+ T-cell death. To explore the potential for therapeutic targeting of this newly identified immunosuppressive axis in GBM tumors, we demonstrate that both human and mouse CD70-specific CAR T cells recognize primary CD70+ GBM tumors in vitro and mediate the regression of established GBM in xenograft and syngeneic models without illicit effect.
Conclusion: These studies identify a previously uncharacterized and ubiquitously expressed immunosuppressive ligand CD70 in GBMs that also holds potential for serving as a novel CAR target for cancer immunotherapy in gliomas.

Ge H, Mu L, Jin L, et al.
Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM.
Int J Cancer. 2017; 141(7):1434-1444 [PubMed] Related Publications
Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM.

Al Sayed MF, Ruckstuhl CA, Hilmenyuk T, et al.
CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies.
Blood. 2017; 130(3):297-309 [PubMed] Related Publications
The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia.

Riether C, Schürch CM, Bührer ED, et al.
CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia.
J Exp Med. 2017; 214(2):359-380 [PubMed] Free Access to Full Article Related Publications
Aberrant proliferation, symmetric self-renewal, increased survival, and defective differentiation of malignant blasts are key oncogenic drivers in acute myeloid leukemia (AML). Stem cell gene signatures predict poor prognosis in AML patients; however, with few exceptions, these deregulated molecular pathways cannot be targeted therapeutically. In this study, we demonstrate that the TNF superfamily ligand-receptor pair CD70/CD27 is expressed on AML blasts and AML stem/progenitor cells. CD70/CD27 signaling in AML cells activates stem cell gene expression programs, including the Wnt pathway, and promotes symmetric cell divisions and proliferation. Soluble CD27, reflecting the extent of CD70/CD27 interactions in vivo, was significantly elevated in the sera of newly diagnosed AML patients and is a strong independent negative prognostic biomarker for overall survival. Blocking the CD70/CD27 interaction by mAb induced asymmetric cell divisions and differentiation in AML blasts and AML stem/progenitor cells, inhibited cell growth and colony formation, and significantly prolonged survival in murine AML xenografts. Importantly, hematopoietic stem/progenitor cells from healthy BM donors express neither CD70 nor CD27 and were unaffected by blocking mAb treatment. Therefore, targeting CD70/CD27 signaling represents a promising therapeutic strategy for AML.

Zhao MY, Yu Y, Xie M, et al.
Digital gene expression profiling analysis of childhood acute lymphoblastic leukemia.
Mol Med Rep. 2016; 13(5):4321-8 [PubMed] Related Publications
Acute lymphoblastic leukemia (ALL) is the most commonly diagnosed malignancy in children. It is a heterogeneous disease, and is determined by multiple gene alterations and chromosomal rearrangements. To improve current understanding of the underlying molecular mechanisms of ALL, the present study profiled genome‑wide digital gene expression (DGE) in a population of children with ALL in China. Using second‑generation sequencing technology, the profiling revealed that 2,825 genes were upregulated and 1,952 were downregulated in the ALL group. Based on the DGE profiling data, the present study further investigated seven genes (WT1, RPS26, MSX1, CD70, HOXC4, HOXA5 and HOXC6) using reverse transcription‑quantitative polymerase chain reaction analysis. Gene Ontology analysis suggested that the differentially expressed genes were predominantly involved in immune cell differentiation, metabolic processes and programmed cell death. The results of the present study provided novel insights into the gene expression patterns in children with ALL.

Kumari A, Garnett-Benson C
Effector function of CTLs is increased by irradiated colorectal tumor cells that modulate OX-40L and 4-1BBL and is reversed following dual blockade.
BMC Res Notes. 2016; 9:92 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Sub-lethal doses of ionizing radiation (IR) can alter the phenotype of target tissue by modulating genes that influence effector T cell activity. Previous studies indicate that cancer cells respond to radiation by up-regulating surface expression of death receptors, cell adhesion molecules and tumor-associated antigens (TAA). However, there is limited information available regarding how T cells themselves are altered following these interactions with irradiated tumor cells.
METHODS: Here, several human colorectal tumor cell lines were exposed to radiation (0-10 Gy) in vitro and changes in the expression of molecules costimulatory to effector T cells (4-1BBL, OX-40L, CD70, ICOSL) were examined by flow cytometry. T cell effector function was assessed to determine if changes in these proteins were directly related to the changes in T cell function.
RESULTS: We found OX-40L and 4-1BBL to be the most consistently upregulated proteins on the surface of colorectal tumor cells post-IR while ICOSL and CD70 remained largely unaltered. Expression of these gene products correlated with enhanced killing of irradiated human colorectal tumor cells by TAA-specific T-cells. Importantly, blocking of both OX-40L and 4-1BBL reversed radiation-enhanced T-cell killing of human tumor targets as well as T-cell survival and activation.
CONCLUSIONS: Overall, results of this study suggest that, beyond simply rendering tumor cells more sensitive to immune attack, radiation can be used to specifically modulate expression of genes that directly stimulate effector T cell activity.

Pich C, Teiti I, Sarrabayrouse G, et al.
Melanoma Expressed-CD70 Is Regulated by RhoA and MAPK Pathways without Affecting Vemurafenib Treatment Activity.
PLoS One. 2016; 11(2):e0148095 [PubMed] Free Access to Full Article Related Publications
CD70 is a costimulatory molecule member of the Tumor Necrosis Factor family that is expressed on activated immune cells. Its ectopic expression has been described in several types of cancer cells including lymphomas, renal cell carcinomas and glioblastomas. We have recently described its expression in a part of tumor cells from the vast majority of melanoma biopsies and human melanoma cell lines, and found that CD70 expression decreased over time as the disease progressed. Here, we show that RhoA, BRAF and Mitogen Activating Protein Kinase pathways are involved in the positive transcriptional regulation of CD70 expression in melanomas. Interestingly, the clinical inhibitor of the common BRAF V600E/D variants, Vemurafenib (PLX-4032), which is currently used to treat melanoma patients with BRAF V600E/D-mutated metastatic melanomas, decreased CD70 expression in human CD70+ melanoma cell lines. This decrease was seen in melanoma cells both with and without the BRAFV600E/D mutation, although was less efficient in those lacking the mutation. But interestingly, by silencing CD70 in CD70+ melanoma cell lines we show that PLX-4032-induced melanoma cell killing and its inhibitory effect on MAPK pathway activation are unaffected by CD70 expression. Consequently, our work demonstrates that CD70 ectopic expression in melanomas is not a valuable biomarker to predict tumor cells sensitivity to BRAF V600 inhibitors.

Tarasevich A, Filatov A, Pichugin A, Mazurov D
Monoclonal antibody profiling of cell surface proteins associated with the viral biofilms on HTLV-1 transformed cells.
Acta Virol. 2015; 59(3):247-56 [PubMed] Related Publications
Human T lymphotropic virus 1 (HTLV-1) is a pathogenic retrovirus that spreads predominantly via cell-to-cell contact. Two models of cell-to-cell virus transmission are proposed: virological synapse (VS) and viral biofilms (VB). Both infectious structures can be involved in transmission and synergistically enhance HTLV-1 spread between cells. Although transmission of virus via VB has been reported, the molecular composition of VB remains poorly understood. In this study we generated new anti-VB monoclonal antibodies (MAbs) and screenedthem along with a panel of anti-human cluster of differentiation (CD) MAbs to select antigens associated with VB. Among four MAbs generated against VB, two MAbs were identified as anti-CD25 (IL-2RA). We found that antigens CD4, CD150, CD25, CD70, and CD80 were enriched in VB. We also determined that expression of viral protein Tax, a central molecule in HTLV-1 transmission, upregulates intercellular adhesion molecule 1 (ICAM-1), CD95, CD25, CD70, and CD80. Whether these antigens are essential for VB formation and HTLV-1 infection remains unknown and will be determined in further experiments.

Masamoto I, Yoshimitsu M, Kuroki A, et al.
Clinical significance of CD70 expression on T cells in human T-lymphotropic virus type-1 carriers and adult T cell leukemia/ lymphoma patients.
Leuk Lymphoma. 2016; 57(3):685-91 [PubMed] Related Publications
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL). Miscellaneous host immune surveillance systems control T-cell growth/leukemogenesis during HTLV-1 infection. We characterized CD70 and CD27 expression on lymphocytes of HTLV-1 carriers and patients with ATL (study approved by the local Medical Ethical Committee). High CD70 expression was observed on CD4 + CD25+ T cells from patients with acute-type ATL, while patients with smoldering- or chronic-type ATL and HTLV-1 carriers exhibited lower expression. Furthermore, significantly higher CD27 expression was observed on HTLV-1-specific CTLs. We found an association between CD70 expression on CD4 + T cells and HTLV-1 infection; increased CD70 expression was observed after exposure to Tax. Moreover, addition of anti-CD70 antibodies enhanced the CD107a surface mobilization of HTLV-1 Tax-specific CTLs following Tax-peptide stimulation in the PBMCs of carriers. These data demonstrate the important role of the CD70/CD27 axis in immune responses in HTLV-1 carriers and ATL patients.

Treon SP
How I treat Waldenström macroglobulinemia.
Blood. 2015; 126(6):721-32 [PubMed] Related Publications
Waldenström macroglobulinemia (WM) is a B-cell neoplasm manifested by the accumulation of clonal immunoglobulin (Ig)M-secreting lymphoplasmacytic cells. MYD88 and CXCR4 warts, hypogammaglobulinemia, infections, myelokathexis syndrome-like somatic mutations are present in >90% and 30% to 35% of WM patients, respectively, and impact disease presentation, treatment outcome, and overall survival. Familial predisposition is common in WM. Asymptomatic patients should be observed. Patients with disease-related hemoglobin <10 g/L, platelets <100 × 10(9)/L, bulky adenopathy and/or organomegaly, symptomatic hyperviscosity, peripheral neuropathy, amyloidosis, cryoglobulinemia, cold-agglutinin disease, or transformed disease should be considered for therapy. Plasmapheresis should be used for patients with symptomatic hyperviscosity and before rituximab for those with high serum IgM levels to preempt a symptomatic IgM flare. Treatment choice should take into account specific goals of therapy, necessity for rapid disease control, risk of treatment-related neuropathy, immunosuppression and secondary malignancies, and planning for future autologous stem cell transplantation. Frontline treatments include rituximab alone or rituximab combined with alkylators (bendamustine and cyclophosphamide), proteasome inhibitors (bortezomib and carfilzomib), nucleoside analogs (fludarabine and cladribine), and ibrutinib. In the salvage setting, an alternative frontline regimen, ibrutinib, everolimus, or stem cell transplantation can be considered. Investigational therapies under development for WM include agents that target MYD88, CXCR4, BCL2, and CD27/CD70 signaling, novel proteasome inhibitors, and chimeric antigen receptor-modified T-cell therapy.

Ruf M, Mittmann C, Nowicka AM, et al.
pVHL/HIF-regulated CD70 expression is associated with infiltration of CD27+ lymphocytes and increased serum levels of soluble CD27 in clear cell renal cell carcinoma.
Clin Cancer Res. 2015; 21(4):889-98 [PubMed] Related Publications
PURPOSE: CD70, a member of the TNF ligand superfamily, has been shown frequently overexpressed in clear cell renal cell carcinoma (ccRCC). The mechanisms of CD70's upregulation and its role in ccRCC are unknown.
EXPERIMENTAL DESIGN: CD70 expression was immunohistochemically analyzed in 667 RCCs and RCC metastases. Von Hippel-Lindau gene (VHL) mutations, expression patterns of VHL protein (pVHL), hypoxia-inducible factor (HIF) α, and several HIF targets were studied in tissues and cell lines and correlated with CD70 overexpression. Gene promoter analysis was performed to confirm CD70 as HIF target gene. Consecutive tissue sections were immunostained to reveal the relation between CD70-expressing RCCs and tumor-infiltrating lymphocytes positive for the CD70 receptor (CD27). CD70-mediated release of soluble CD27 in RCC was assessed by coculture experiments and sera analysis of patients with RCC.
RESULTS: Elevated CD70 expression was seen in 80% of primary tumors and metastases of ccRCC and correlated with dysregulation of the pVHL/HIF pathway. In vitro analyses demonstrated that CD70 upregulation is driven by HIF. Furthermore, CD27(+) lymphocytes preferentially infiltrate CD70-expressing ccRCCs. CD70-dependent release of soluble CD27 in cocultures may explain the high CD27 levels observed in sera of patients with CD70-expressing ccRCC. The combination of lymphocyte infiltration and CD70 expression in RCC was associated with worse patient outcome.
CONCLUSION: Our findings demonstrate that in ccRCC, CD70 expression is regulated by HIF as a consequence of pVHL inactivation. Increased serum levels of CD27 suggest the existence of CD70-expressing ccRCC, thus representing a potential serum marker for patients suffering from this disease.

de Miranda NF, Georgiou K, Chen L, et al.
Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients.
Blood. 2014; 124(16):2544-53 [PubMed] Free Access to Full Article Related Publications
Next-generation sequencing studies on diffuse large B-cell lymphomas (DLBCLs) have revealed novel targets of genetic aberrations but also high intercohort heterogeneity. Previous studies have suggested that the prevalence of disease subgroups and cytogenetic profiles differ between Western and Asian patients. To characterize the coding genome of Chinese DLBCL, we performed whole-exome sequencing of DNA derived from 31 tumors and respective peripheral blood samples. The mutation prevalence of B2M, CD70, DTX1, LYN, TMSB4X, and UBE2A was investigated in an additional 105 tumor samples. We discovered 11 novel targets of recurrent mutations in DLBCL that included functionally relevant genes such as LYN and TMSB4X. Additional genes were found mutated at high frequency (≥10%) in the Chinese cohort including DTX1, which was the most prevalent mutation target in the Notch pathway. We furthermore demonstrated that mutations in DTX1 impair its function as a negative regulator of Notch. Novel and previous unappreciated targets of somatic mutations in DLBCL identified in this study support the existence of additional/alternative tumorigenic pathways in these tumors. The observed differences with previous reports might be explained by the genetic heterogeneity of DLBCL, the germline genetic makeup of Chinese individuals, and/or exposure to distinct etiological agents.

Pu X, Wang L, Chang JY, et al.
Inflammation-related genetic variants predict toxicity following definitive radiotherapy for lung cancer.
Clin Pharmacol Ther. 2014; 96(5):609-15 [PubMed] Free Access to Full Article Related Publications
Definitive radiotherapy improves locoregional control and survival in inoperable non-small cell lung cancer patients. However, radiation-induced toxicities (pneumonitis/esophagitis) are common dose-limiting inflammatory conditions. We therefore conducted a pathway-based analysis to identify inflammation-related single-nucleotide polymorphisms associated with radiation-induced pneumonitis or esophagitis. A total of 11,930 single-nucleotide polymorphisms were genotyped in 201 stage I-III non-small cell lung cancer patients treated with definitive radiotherapy. Validation was performed in an additional 220 non-small cell lung cancer cases. After validation, 19 single-nucleotide polymorphisms remained significant. A polygenic risk score was generated to summarize the effect from validated single-nucleotide polymorphisms. Significant improvements in discriminative ability were observed when the polygenic risk score was added into the clinical/epidemiological variable-based model. We then used 277 lymphoblastoid cell lines to assess radiation sensitivity and expression quantitative trait loci (eQTL) relationships of the identified single-nucleotide polymorphisms. Three genes (PRKCE, DDX58, and TNFSF7) were associated with radiation sensitivity. We concluded that inflammation-related genetic variants could contribute to the development of radiation-induced toxicities.

Bundela S, Sharma A, Bisen PS
Potential therapeutic targets for oral cancer: ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF, CD70.
PLoS One. 2014; 9(7):e102610 [PubMed] Free Access to Full Article Related Publications
In India, oral cancer has consistently ranked among top three causes of cancer-related deaths, and it has emerged as a top cause for the cancer-related deaths among men. Lack of effective therapeutic options is one of the main challenges in clinical management of oral cancer patients. We interrogated large pool of samples from oral cancer gene expression studies to identify potential therapeutic targets that are involved in multiple cancer hallmark events. Therapeutic strategies directed towards such targets can be expected to effectively control cancer cells. Datasets from different gene expression studies were integrated by removing batch-effects and was used for downstream analyses, including differential expression analysis. Dependency network analysis was done to identify genes that undergo marked topological changes in oral cancer samples when compared with control samples. Causal reasoning analysis was carried out to identify significant hypotheses, which can explain gene expression profiles observed in oral cancer samples. Text-mining based approach was used to detect cancer hallmarks associated with genes significantly expressed in oral cancer. In all, 2365 genes were detected to be differentially expressed genes, which includes some of the highly differentially expressed genes like matrix metalloproteinases (MMP-1/3/10/13), chemokine (C-X-C motif) ligands (IL8, CXCL-10/-11), PTHLH, SERPINE1, NELL2, S100A7A, MAL, CRNN, TGM3, CLCA4, keratins (KRT-3/4/13/76/78), SERPINB11 and serine peptidase inhibitors (SPINK-5/7). XIST, TCEAL2, NRAS and FGFR2 are some of the important genes detected by dependency and causal network analysis. Literature mining analysis annotated 1014 genes, out of which 841 genes were statistically significantly annotated. The integration of output of various analyses, resulted in the list of potential therapeutic targets for oral cancer, which included targets such as ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF and CD70.

Yang ZZ, Grote DM, Xiu B, et al.
TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin's lymphoma.
Leukemia. 2014; 28(9):1872-84 [PubMed] Free Access to Full Article Related Publications
Transforming growth factor beta (TGF-β) has an important role in mediating T-cell suppression in B-cell non-Hodgkin lymphoma (NHL). However, the underlying mechanism responsible for TGF-β-mediated inhibition of effector memory T (Tm) cells is largely unknown. As reported here, we show that exhaustion is a major mechanism by which TGF-β inhibits Tm cells, and TGF-β mediated exhaustion is associated with upregulation of CD70. We found that TGF-β upregulates CD70 expression on effector Tm cells while it preferentially induces Foxp3 expression in naive T cells. CD70 induction by TGF-β is Smad3-dependent and involves IL-2/Stat5 signaling. CD70+ T cells account for TGF-β-induced exhaustion of effector Tm cells. Both TGF-β-induced and preexisting intratumoral CD70+ effector Tm cells from B-cell NHL have an exhausted phenotype and express higher levels of PD-1 and TIM-3 compared with CD70- T cells. Signaling transduction, proliferation and cytokine production are profoundly decreased in these cells, and they are highly susceptible to apoptosis. Clinically, intratumoral CD70-expressing T cells are prevalent in follicular B-cell lymphoma (FL) biopsy specimens, and increased numbers of intratumoral CD70+ T cells correlate with an inferior patient outcome. These findings confirm TGF-β-mediated effector Tm cell exhaustion as an important mechanism of immune suppression in B-cell NHL.

Bertrand P, Maingonnat C, Penther D, et al.
The costimulatory molecule CD70 is regulated by distinct molecular mechanisms and is associated with overall survival in diffuse large B-cell lymphoma.
Genes Chromosomes Cancer. 2013; 52(8):764-74 [PubMed] Related Publications
In diffuse large B-cell lymphomas (DLBCL), a recurrent deletion of the 19p13 region has recently been described. CD70 and TNFSF9 genes are suspected tumor suppressor genes, but previous studies suggest an oncogenic role for CD70. Therefore, we studied the consequences of variation in CD70 copy number and epigenetic modifications on CD70 expression. Copy-number variation was investigated in 144 de novo DLBCL tissues by comparative genomic hybridization array and quantitative multiplex PCR. Gene expression was assessed by quantitative RT-PCR, and CD70 promoter methylation was determined by pyrosequencing. The 19p13.3.2 region was deleted in 21 (14.6%) cases, which allowed the minimal commonly deleted region of 57 Kb that exclusively includes the CD70 gene to be defined. Homozygous deletions were observed in four (2.7%) cases, and acquired single-nucleotide variations of CD70 were detected in nine (6.3%) cases. CD70 was highly expressed in both germinal centre B-cell-like (GCB) and activated B-cell-like (ABC) DLBCL compared to normal tissue, with distinct molecular mechanisms of mRNA expression regulation. A gene dosage effect was observed in the GCB subtype, whereas promoter methylation was the predominant mechanism of down regulation in the ABC subtype. However, high CD70 expression levels correlated to shorter overall survival in both the GCB (P = 0.0021) and the ABC (P =0.0158) subtypes. In conclusion, CD70 is targeted by recurrent deletions, somatic mutations and promoter hypermethylation, but its high level of expression is related to an unfavorable outcome, indicating that this molecule may constitute a potential therapeutic target in selected DLBCL.

Zhu J, Nie S, Wu J, Lubman DM
Target proteomic profiling of frozen pancreatic CD24+ adenocarcinoma tissues by immuno-laser capture microdissection and nano-LC-MS/MS.
J Proteome Res. 2013; 12(6):2791-804 [PubMed] Free Access to Full Article Related Publications
Cellular heterogeneity of solid tumors represents a common problem in mass spectrometry (MS)-based analysis of tissue specimens. Combining immuno-laser capture microdissection (iLCM) and mass spectrometry (MS) provides a means to study proteins that are specific for pure cell subpopulations in complex tissues. CD24, as a cell surface marker for detecting pancreatic cancer stem cells (CSCs), is directly correlated with the development and metastasis of pancreatic cancer. Herein, we describe an in-depth proteomic profiling of frozen pancreatic CD24(+) adenocarcinoma cells from early stage tumors using iLCM and LC-MS/MS and a comparison with CD24(-) cells dissected from patient-matched adjacent normal tissues. Approximately 40 nL of tissue was procured from each specimen and subjected to tandem MS analysis in triplicate. A total of 2665 proteins were identified, with 375 proteins in common that were significantly differentially expressed in CD24(+) versus CD24(-) cells by at least a 2-fold change. The major groups of the differentially overexpressed proteins are involved in promoting tumor cell migration and invasion, immune escape, and tumor progression. Three selected candidates relevant to mediating immune escape, CD59, CD70, and CD74, and a tumor promoter, TGFBI, were further validated by immunohistochemistry analysis on tissue microarrays. These proteins showed significantly increased expression in a large group of clinical pancreatic adenocarcinomas but were negative in all normal pancreas samples. The significant coexpression of these proteins with CD24 suggests that they may play important roles in the progression of pancreatic cancer and could serve as promising prognosis markers and novel therapeutic targets for this deadly disease.

Zheng W, Liu D, Fan X, et al.
Potential therapeutic biomarkers in plasma cell myeloma: a flow cytometry study.
Cytometry B Clin Cytom. 2013 Jul-Aug; 84(4):222-8 [PubMed] Related Publications
OBJECTIVE: To investigate the expression profile of potential therapeutic biomarkers in plasma cell myeloma (PCM) by multicolor flow cytometry analysis.
METHODS: Bone marrow (BM) specimens were collected consecutively and analyzed using a routine PCM panel (CD38/CD138/CD45/CD19/CD20/CD28/CD56/CD117, cyto-kappa/lambda). The specimens were further assessed for CD30, CD44, CD49d, CD70, CD105, and CD184 expression in cases containing a substantial number of neoplastic plasma cells.
RESULTS: Totally, 101 patient BM samples were assessed, including 58 men and 43 women, with a median age of 64 years (34-89). Twenty-nine patients had newly diagnosed/untreated PCM, 40 had persistent/residual disease undergoing various therapies and 32 had relapsed disease. CD49d was expressed brightly and uniformly in all 45 patients tested. Expression of CD44 and CD184 was more variable with a median percentage of 77% (1-100) and 65% (5-100) respectively. Using an arbitrary 20% cutoff, CD44 was positive in 74 (73%) and CD184 in 92 (91%) cases with a mean fluorescence intensity ratio of 42.8 and 21.4. A higher CD44 expression was observed in patients with recurrent/persistent disease (P = 0.028). Additionally, both CD44 (P = 0.002) and CD184 (P = 0.026) showed higher expressions in CD117-positive cases, but there was no correlation with cytogenetic groups. The CD30, CD70, and CD105 were expressed very infrequently in PCM, with a median expression of 0.2%, 0.2%, and 0.4% respectively.
CONCLUSIONS: CD49d, CD44, and CD184, are highly expressed in PCM. CD49d expression is bright and uniform, whereas CD44 and CD184 are more heterogeneous. In contrast, surface CD30, CD70, and CD105 are infrequent. These data provide useful preclinical information for the design of potential novel targeted therapies in PCM patients.

Fu L, Wang G, Shevchuk MM, et al.
Activation of HIF2α in kidney proximal tubule cells causes abnormal glycogen deposition but not tumorigenesis.
Cancer Res. 2013; 73(9):2916-25 [PubMed] Free Access to Full Article Related Publications
Renal cell carcinoma (RCC) is the most common primary cancer arising from the kidney in adults, with clear cell renal cell carcinoma (ccRCC) representing approximately 75% of all RCCs. Increased expression of the hypoxia-induced factors-1α (HIF1α) and HIF2α has been suggested as a pivotal step in ccRCC carcinogenesis, but this has not been thoroughly tested. Here, we report that expression of a constitutively activated form of HIF2α (P405A, P530A, and N851A, named as HIF2αM3) in the proximal tubules of mice is not sufficient to promote ccRCC by itself, nor does it enhance HIF1αM3 oncogenesis when coexpressed with constitutively active HIF1αM3. Neoplastic transformation in kidneys was not detected at up to 33 months of age, nor was increased expression of Ki67 (MKI67), γH2AX (H2AFX), or CD70 observed. Furthermore, the genome-wide transcriptome of the transgenic kidneys does not resemble human ccRCC. We conclude that a constitutively active HIF2α is not sufficient to cause neoplastic transformation of proximal tubules, arguing against the idea that HIF2α activation is critical for ccRCC tumorigenesis.

Koch M, Krieger ML, Stölting D, et al.
Overcoming chemotherapy resistance of ovarian cancer cells by liposomal cisplatin: molecular mechanisms unveiled by gene expression profiling.
Biochem Pharmacol. 2013; 85(8):1077-90 [PubMed] Related Publications
Previously we reported that liposomal cisplatin (CDDP) overcomes CDDP resistance of ovarian A2780cis cancer cells (Krieger et al., Int. J. Pharm. 389, 2010, 10-17). Here we find that the cytotoxic activity of liposomal CDDP is not associated with detectable DNA platination in resistant ovarian cancer cells. This suggests that the mode of action of liposomal CDDP is different from the free drug. To gain insight into mechanisms of liposomal CDDP activity, we performed a transcriptome analysis of untreated A2780cis cells, and A2780cis cells in response to exposure with IC50 values of free or liposomal CDDP. A process network analysis of upregulated genes showed that liposomal CDDP induced a highly different gene expression profile in comparison to the free drug. p53 was identified as a key player directing transcriptional responses to free or liposomal CDDP. The free drug induced expression of essential genes of the intrinsic (mitochondrial) apoptosis pathway (BAX, BID, CASP9) most likely through p38MAPK activation. In contrast, liposomal CDDP induced expression of genes from DNA damage pathways and several genes of the extrinsic pathway of apoptosis (TNFRSF10B-DR5, CD70-TNFSF7). It thus appears that liposomal CDDP overcomes CDDP resistance by inducing DNA damage and in consequence programmed cell death by the extrinsic pathway. Predictions from gene expression data with respect to apoptosis activation were confirmed at the protein level by an apoptosis antibody array. This sheds new light on liposomal drug carrier approaches in cancer and suggests liposomal CDDP as promising strategy for the treatment of CDDP resistant ovarian carcinomas.

Wei C, Sirikanjanapong S, Lieberman S, et al.
Primary mucosal melanoma arising from the eustachian tube with CTLA-4, IL-17A, IL-17C, and IL-17E upregulation.
Ear Nose Throat J. 2013; 92(1):36-40 [PubMed] Free Access to Full Article Related Publications
Primary malignant melanoma arising from the eustachian tube is extremely rare. We report the case of a 63-year-old white man who presented with a 1-month history of left-sided hearing loss and aural fullness. Flexible fiberoptic laryngoscopy detected a blue-purple mass that appeared to arise from the left lateral nasopharynx. Computed tomography demonstrated an enhancing mass arising from an orifice of the left eustachian tube. The tumor was debulked endoscopically and was confirmed to have originated in the left eustachian tube. Histologically, the tumor was made up of heavily pigmented pleomorphic spindle cells with frequent mitoses. The tumor cells were immunohistochemically positive for S-100 protein, HMB-45, Melan-A, and PNL-2. The final diagnosis was a mucosal malignant melanoma. We also performed a nested polymerase chain reaction assay for several genes of interest, including CTLA-4, IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, IL-17F, PLZF, Foxp3, RORγt, CD27, and CD70. These genes have been studied mainly in cutaneous melanomas, especially for the development of immunotherapy, but only very limited studies have been done on mucosal melanomas. Our investigation found upregulation of CTLA-4, IL-17A, IL-17C, and IL-17E. Based on our finding of CTLA-4 upregulation, it may be suggested that our patient might have had low antitumor immunity and that he might have benefited from CTLA-4 blockade. On the other hand, upregulation of IL-17A and IL-17E might reflect increased antitumor immunity, which could suggest that patients with a mucosal melanoma might benefit from immunomodulators associated with the effect of Th17. These genes also have great potential to help melanoma patients obtain tailored treatment, and they can be used as biomarkers for predicting prognosis.

Yoshino K, Kishibe K, Nagato T, et al.
Expression of CD70 in nasal natural killer/T cell lymphoma cell lines and patients; its role for cell proliferation through binding to soluble CD27.
Br J Haematol. 2013; 160(3):331-42 [PubMed] Related Publications
Nasal natural killer (NK)/T cell lymphoma (NNKTL) is associated with Epstein-Barr virus (EBV). The present study analysed gene expression patterns of the NNKTL cell lines SNK6, SNK1 and SNT8, which are positive for EBV and latent membrane protein (LMP)-1, using a complementary DNA array analysis. We found that CD70 was specifically expressed in SNK6 and SNT8. Reverse transcription polymerase chain reaction and flow cytometric analyses confirmed that CD70 was expressed in all 3 NNKTL cell lines, but not in the other EBV-positive NK-cell lines. In vitro studies showed that NNKTL cell lines proliferated, in a dose-dependent fashion, in response to exogenous soluble CD27, which is the ligand for CD70. In NNKTL patients, we confirmed that the CD70 was expressed on the lymphoma cells in NNKTL tissues and that soluble CD27 was present in sera at higher levels as compared to healthy individuals. Finally, complement-dependent cytotoxicity assay showed that anti-CD70 antibody mediated effective complement-dependent killing of NNKTL cells and the affected target CD70 expression on the cells. These results suggest that CD70 acts as a functional receptor binding to soluble CD27, resulting in lymphoma progression and that immunotherapy using anti-CD70 antibody may be a potential candidate for treatment for NNKTL.

Lin ZY, Chuang WL
Genes responsible for the characteristics of primary cultured invasive phenotype hepatocellular carcinoma cells.
Biomed Pharmacother. 2012; 66(6):454-8 [PubMed] Related Publications
The common genes responsible for the characteristics of primary cultured invasive phenotype hepatocellular carcinoma (HCC) cells were investigated. Primary cultured HCC cells from three patients were separated by Matrigel invasion into parent and invasive cells. Whole human genome oligo microarray was applied to detect the differentially expressed genes in invasive cells. A purchased HCC cell line (HA 22T/VGH) was studied for comparison. Forty genes were consistently up-regulated and 14 genes were consistently down-regulated among primary cultured invasive cells. Among these genes, only three up-regulated genes (CNN1, PLAT, SPARC) and one down-regulated tumor suppressor gene (MDFI) had same expressions in invasive cells originated from purchased cell line. For primary cultured invasive cells, differential expressions of several groups of common genes are known to have capacities to promote proliferation (CAV1, IL6, PLAT, RRAD, SRPX), remodeling of extracellular matrix (COL1A1, COL1A2, NID2, TNC, RELN, SPARC), migration (ACTG2, CAV1, CCL2, CCL26, CDC42EP3, CNN1, PHLDB2, PLAT, RRAD, SRPX), implantation (IL6), immune escape (CD70) and angiogenesis (CCL2, IL6, IL18, PLAT, SLIT3). Two genes related to signal transduction (AXL, RASL10B) and one related to metabolism (PTGS2) also showed consistent expressions. Differential expressions of these genes are capable for tumor invasiveness. In conclusion, the characteristics of invasive phenotype HCC cells are originated from differential expressions of several groups of genes rather than few target genes. This information may give us a new insight to design new stratagems in HCC treatment. Analysis of the results from a purchased cell line may have bias due to long-term repeated in vitro cultures.

Xu F, Li D, Zhang Q, et al.
Association of CD27 and CD70 gene polymorphisms with risk of sporadic breast cancer in Chinese women in Heilongjiang Province.
Breast Cancer Res Treat. 2012; 133(3):1105-13 [PubMed] Related Publications
CD27 and its ligand, CD70, are major costimulatory molecules whose interaction can regulate the expansion and differentiation of effector and memory T-cell populations. Their abnormal expression can disturb the immune response and lead to an increased risk of cancer. This study aims to evaluate the associations between single nucleotide polymorphisms (SNPs) in CD27/CD70 gene and breast cancer susceptibility. Five tagSNPs and one coding polymorphism in CD27, as well as three tagSNPs in CD70, were genotyped in a case-control study of 610 breast cancer patients and 617 healthy controls. In CD27, rs3136550 CT and rs2267966 AT genotypes were associated with a decreased risk of breast cancer (P = 0.03, OR = 0.76; P = 0.02, OR = 0.75, respectively). In CD70, AG and GG genotypes in rs1862511 and CC genotype in rs2059154 also showed significant associations with a decreased risk of breast cancer (P = 2.00 × 10(-3), OR = 0.69; P = 0.03, OR = 0.62; P = 2.00 × 10(-3), OR = 0.53; respectively). Significant associations were also found in the dominant and recessive models for rs2059154 and dominant model for rs1862511. In haplotype analysis, CCGAG haplotype in CD27 and TAA haplotype in CD70 conferred an increased risk of breast cancer (P = 5.60 × 10(-3); P = 7.75 × 10(-5), respectively), but TGC, TAC and TGA haplotypes in CD70 were associated with a decreased risk of breast cancer (P = 0.01; P = 5.2 × 10(-3); P = 2.00 × 10(-3), respectively). The associations of CCGAG, TAA, TAC and TGA haplotypes remained significant after correcting P value for multiple testing. Significant associations were shown between the SNPs of CD27 and lymph node metastasis, and ER and PR statuses. These results indicate that CD27 and CD70 gene polymorphisms may affect the risk of breast cancer and show that some SNPs are associated with breast cancer characteristics in a northern Chinese population.

Lindgren T, Stigbrand T, Riklund K, et al.
Gene expression profiling in MOLT-4 cells during gamma-radiation-induced apoptosis.
Tumour Biol. 2012; 33(3):689-700 [PubMed] Related Publications
This study aims to identify the temporal changes in gene expression in MOLT-4, a leukemia cell line, in response to radiation and to present a comprehensive description of the pathways and processes that most significantly relate to the cellular biological responses. A global gene expression profile of 24,500 genes was performed on MOLT-4 tumor cells following exposure to 5 Gy of ionizing radiation ((60)Co) using a bead chip array (Illumina). Signaling pathways and processes significantly altered following irradiation were explored using MetaCore. Cellular viability [3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], activation of cell cycle checkpoints [fluorescence activated cell sorting (FACS)], and induction of apoptosis (FACS, caspase assays) were evaluated to correlate these biological responses to the gene expression changes. Totally, 698 different genes displayed a significantly altered expression following radiation, and out of these transcripts, all but one showed increased expression. One hour following irradiation, the expression was changed only for a few genes. Striking changes appeared at later time-points. From 3 to 24 h post-irradiation, a significant fraction of the genes with altered expression were found to be involved in cell cycle checkpoints and their regulation (CDKN1A), DNA repair (GADD45A, DDB2, XPC), apoptosis induction (DR5, FasR, Apo-2L, Bax), and T-cell activation/proliferation (CD70, OX40L). Irradiated MOLT-4 cells were arrested at the G2-checkpoint, followed by a decrease in cell viability, most pronounced 48 h after exposure. The cell death was executed by induced apoptosis and was visualized by an increase in subG1 cells and an increased activation of initiator (caspase-8 and caspase-9) and execution (caspase-3) caspases. Activation of cell cycle arrest and apoptosis correlated well in time with the changes in gene expression of those genes important for these biological processes. Activation of the apoptotic signaling pathways in MOLT-4 cells following irradiation includes components from the intrinsic as well as the extrinsic apoptotic pathways. This study indicates that the altered gene expression pattern induced by irradiation is important for the sequential steps observed in MOLT-4 cells during apoptosis induction.

Schürch C, Riether C, Matter MS, et al.
CD27 signaling on chronic myelogenous leukemia stem cells activates Wnt target genes and promotes disease progression.
J Clin Invest. 2012; 122(2):624-38 [PubMed] Free Access to Full Article Related Publications
Chronic myelogenous leukemia (CML) results from a chromosomal translocation in hematopoietic stem or early progenitor cells that gives rise to the oncogenic BCR/ABL fusion protein. Clinically, CML has a chronic phase that eventually evolves into an accelerated stage and blast crisis. A CML-specific immune response is thought to contribute to the control of disease. Whether the immune system can also promote disease progression is not known. In the present study, we investigated the possibility that the TNF receptor family member CD27 is present on leukemia stem cells (LSCs) and mediates effects of the immune system on CML. In a mouse model of CML, BCR/ABL+ LSCs and leukemia progenitor cells were found to express CD27. Binding of CD27 by its ligand, CD70, increased expression of Wnt target genes in LSCs by enhancing nuclear localization of active β-catenin and TRAF2- and NCK-interacting kinase (TNIK). This resulted in increased proliferation and differentiation of LSCs. Blocking CD27 signaling in LSCs delayed disease progression and prolonged survival. Furthermore, CD27 was expressed on CML stem/progenitor cells in the bone marrow of CML patients, and CD27 signaling promoted growth of BCR/ABL+ human leukemia cells by activating the Wnt pathway. Since expression of CD70 is limited to activated lymphocytes and dendritic cells, our results reveal a mechanism by which adaptive immunity contributes to leukemia progression. In addition, targeting CD27 on LSCs may represent an attractive therapeutic approach to blocking the Wnt/β-catenin pathway in CML.

Scholtysik R, Nagel I, Kreuz M, et al.
Recurrent deletions of the TNFSF7 and TNFSF9 genes in 19p13.3 in diffuse large B-cell and Burkitt lymphomas.
Int J Cancer. 2012; 131(5):E830-5 [PubMed] Related Publications
A single nucleotide polymorphism-chip analysis of 98 cases of aggressive B-cell lymphomas revealed a recurrent deletion at 19p13 in nine of the cases. Six further cases with deletions encompassing this region were found in array-comparative genomic hybridization data of 295 aggressive B-cell lymphomas from a previous study. Three cases even showed a homozygous deletion, suggesting a tumor suppressor gene in the deleted region. Two genes encoding members of the tumor necrosis factor superfamily (TNFSF) were located in the minimally deleted region, that is, TNFSF7 and TNFSF9. As no mutations were found within the coding exons of the remaining alleles in the lymphomas with heterozygous deletions, we speculate that the deletions may mostly function through a haploinsufficiency mechanism. The cases with deletions encompassed both diffuse large B-cell lymphomas and Burkitt lymphomas, and a deletion was also found in a Hodgkin lymphoma cell line. Thus, TNFSF7 and TNFSF9 deletions are recurrent genetic lesions in multiple types of human lymphomas.

Tvrdík D, Skálová H, Dundr P, et al.
Apoptosis - associated genes and their role in predicting responses to neoadjuvant breast cancer treatment.
Med Sci Monit. 2012; 18(1):BR60-67 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Neoadjuvant chemotherapy is used in the treatment of breast carcinoma because it substantially reduces the size of the primary tumor and lymph node metastases. The present study investigated biomarkers that can predict a pathologic response to the therapy.
MATERIAL/METHODS: The role of apoptosis in regression of the tumors after neoadjuvant chemotherapy was determined by TUNEL and anti-active caspase 3 assay. The transcriptional profile of 84 key apoptosis genes was evaluated in both pre-therapeutically obtained tumor tissue by core needle biopsy and in specimens removed by final surgery, using a pathway-specific real-time PCR assay. Obtained data were analyzed by hierarchical cluster analysis and correlation analysis. The immunohistochemical profile of each tumor was determined using the standard ABC method.
RESULTS: On the basis of a hierarchical cluster analysis of 13 significantly changed genes, we divided patients into good and poor prognosis groups, which correlate well with progression-free survival. In the good prognosis group, we found a statistically significant down-regulation of the expression of MCL1 and IGF1R genes after neoadjuvant treatment. We also found a statistically significant overexpression of BCL2L10, BCL2AF1, CASP8, CASP10, CASP14, CIDEB, FADD, HRK, TNFRSF25, TNFSF8 and CD70 genes. In contrast, we found up-regulation of IGF1R after the treatment in the group with poor prognosis.
CONCLUSIONS: Gene expression profiling using real-time PCR assay is a valuable research tool for the investigation of molecular markers, which reflect tumor biology and treatment response.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD70, Cancer Genetics Web: http://www.cancer-genetics.org/CD70.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999