RHOA

Gene Summary

Gene:RHOA; ras homolog family member A
Aliases: ARHA, ARH12, RHO12, RHOH12
Location:3p21.31
Summary:This gene encodes a member of the Rho family of small GTPases, which cycle between inactive GDP-bound and active GTP-bound states and function as molecular switches in signal transduction cascades. Rho proteins promote reorganization of the actin cytoskeleton and regulate cell shape, attachment, and motility. Overexpression of this gene is associated with tumor cell proliferation and metastasis. Multiple alternatively spliced variants have been identified. [provided by RefSeq, Sep 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transforming protein RhoA
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (53)
Pathways:What pathways are this gene/protein implicaed in?
Show (24)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Gene Expression Profiling
  • Lung Cancer
  • Protein Binding
  • Chromosome 3
  • MicroRNAs
  • Proto-Oncogene Proteins
  • Ovarian Cancer
  • Carcinogenesis
  • Epithelial-Mesenchymal Transition
  • Reproducibility of Results
  • Liver Cancer
  • Actin Cytoskeleton
  • Cell Movement
  • Down-Regulation
  • Neoplastic Cell Transformation
  • Western Blotting
  • Cell Proliferation
  • RNA Interference
  • RHOA
  • Promoter Regions
  • Neoplasm Invasiveness
  • Circulating Cancer Cells
  • Breast Cancer
  • RNA-Binding Proteins
  • Neoplasm Proteins
  • Antineoplastic Agents
  • Cancer Gene Expression Regulation
  • Cell Adhesion
  • Phosphorylation
  • Gene Silencing
  • HEK293 Cells
  • Biomarkers, Tumor
  • Signal Transducing Adaptor Proteins
  • Heterografts
  • Gene Knockdown Techniques
  • Bladder Cancer
  • Disease Progression
  • Wnt Signaling Pathway
  • Messenger RNA
  • Mutation
  • Hepatocellular Carcinoma
  • Apoptosis
  • Mice, Inbred BALB C
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RHOA (cancer-related)

Zaoui K, Boudhraa Z, Khalifé P, et al.
Ran promotes membrane targeting and stabilization of RhoA to orchestrate ovarian cancer cell invasion.
Nat Commun. 2019; 10(1):2666 [PubMed] Free Access to Full Article Related Publications
Ran is a nucleocytoplasmic shuttle protein that is involved in cell cycle regulation, nuclear-cytoplasmic transport, and cell transformation. Ran plays an important role in cancer cell survival and cancer progression. Here, we show that, in addition to the nucleocytoplasmic localization of Ran, this GTPase is specifically associated with the plasma membrane/ruffles of ovarian cancer cells. Ran depletion has a drastic effect on RhoA stability and inhibits RhoA localization to the plasma membrane/ruffles and RhoA activity. We further demonstrate that the DEDDDL domain of Ran is required for the interaction with serine 188 of RhoA, which prevents RhoA degradation by the proteasome pathway. Moreover, the knockdown of Ran leads to a reduction of ovarian cancer cell invasion by impairing RhoA signalling. Our findings provide advanced insights into the mode of action of the Ran-RhoA signalling axis and may represent a potential therapeutic avenue for drug development to prevent ovarian tumour metastasis.

Baruah MM, Sharma N
In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer.
Med Oncol. 2019; 36(5):43 [PubMed] Related Publications
Accumulating evidence have suggested that some microRNAs are aberrantly expressed in prostate cancer. In our previous work, we had identified a panel of four differentially expressed microRNAs in prostate cancer. In the present study, we have investigated common molecular targets of this panel of miRNAs (DEMs) and key hub genes that can serve as potential candidate biomarkers in the pathogenesis and progression of prostate cancer. A joint bioinformatics approach was employed to identify differentially expressed genes (DEGs) in prostate cancer. Gene enrichment analysis followed by the protein-protein interaction (PPI) network construction and selection of hub genes was further performed using String and Cytoscape, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the identified hub genes was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) tool. In total, 496 genes were identified to be common targets of DEMs in prostate cancer and 13 key hub genes were identified from three modules of the PPI network of the DEGs. Further top five genes viz Rhoa, PI3KCA, CDC42, MAPK3, TP53 were used for Enrichment analysis which revealed their association with vital cellular and functional pathways in prostate cancer indicating their potential as candidate biomarkers in prostate cancer.

Xiang Y, Zhang L, Huang Y, et al.
Microarray-based data mining reveals key genes and potential therapeutic drugs for Cadmium-induced prostate cell malignant transformation.
Environ Toxicol Pharmacol. 2019; 68:141-147 [PubMed] Related Publications
Increasing evidence showed that Cadmium (Cd) can accumulate in the body and damage cells, resulting in cancerigenesis of the prostate with complex mechanisms. In the present study, we aimed to explore the possible key genes, pathways and therapeutic drugs using bioinformatics methods. Microarray-based data were retrieved and analyzed to screen differentially expressed genes (DEGs) between Cd-treated prostate cells and controls. Then, functions of the DEGs were annotated and hub genes were screened. Next, key genes were selected from the hub genes via validation in a prostate cancer cohort from The Cancer Genome Atlas (TCGA). Afterward, potential drugs were further predicted. Consequently, a gene expression profile, GSE9951, was retrieved. Then, 361 up-regulated and 30 down-regulated DEGs were screened out, which were enriched in various pathways. Among the DEGs, seven hub genes (HSPA5, HSP90AB1, RHOA, HSPD1, MAD2L1, SKP2, and CCT2) were dysregulated in prostate cancer compared to normal controls, and two of them (HSPD1 and CCT2) might influence the prostate cancer prognosis. Lastly, ionomycin was predicted to be a potential agent reversing Cd-induced prostate cell malignant transformation. In summary, the present study provided novel evidence regarding the mechanisms of Cd-induced prostate cell malignant transformation, and identified ionomycin as a potential small molecule against Cd toxicity.

Yu G, Wang Z, Zeng S, et al.
Paeoniflorin Inhibits Hepatocyte Growth Factor- (HGF-) Induced Migration and Invasion and Actin Rearrangement via Suppression of c-Met-Mediated RhoA/ROCK Signaling in Glioblastoma.
Biomed Res Int. 2019; 2019:9053295 [PubMed] Free Access to Full Article Related Publications
Paeoniflorin (PF), as one of the important valid natural compounds of the total glucosides of peony, has displayed a potential effect in cancer prevention and treatment. Aggressive migration and invasion, as an important process, can contribute to tumor progression through infiltrating the surround normal tissue. Actin cytoskeleton rearrangement plays a key role in cells migration and invasion, involving multiple signal pathways. HGF/c-Met signal, as an important couple of oncoprotein, has been demonstrated to regulate actin cytoskeleton rearrangement. In our study, we aim to explore whether paeoniflorin can inhibit migration and invasion and actin cytoskeleton rearrangement via regulation of HGF/c-Met/RhoA/ROCK signal. Various approaches were applied to demonstrate the mechanism of paeoniflorin-mediated anticancer effect, including cell wound healing assay, invasion assay, immunofluorescence staining and transfection, and western blotting. We observed that paeoniflorin inhibited HGF-induced migration and invasion and actin cytoskeleton rearrangement in glioblastoma cells. Furthermore, the inhibition of HGF-induced migration and invasion and actin cytoskeleton rearrangement involved c-Met-mediated RhoA/ROCK signaling in glioblastoma. Thus, our study proved that paeoniflorin could inhibit migration and invasion and actin cytoskeleton rearrangement through inhibition of HGF/c-Met/RhoA/ROCK signaling in glioblastoma, suggesting that paeoniflorin might be a candidate compound to treat glioblastoma.

Litschko C, Brühmann S, Csiszár A, et al.
Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins.
Proc Natl Acad Sci U S A. 2019; 116(9):3594-3603 [PubMed] Free Access to Full Article Related Publications
The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the

Chen X, Li X, Wang X, et al.
MUC16 impacts tumor proliferation and migration through cytoplasmic translocation of P120-catenin in epithelial ovarian cancer cells: an original research.
BMC Cancer. 2019; 19(1):171 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial ovarian cancer (EOC) remains one of the most lethal gynecologic cancers, and its pathogenetic mechanism remains unclear. Here we show that MUC16 promotes the translocation of p120-catenin (p120ctn) to the cytoplasm and consequently activates ras homolog (Rho) GTPases RhoA/Cdc42 activation to modulate the proliferation and migration abilities of EOC cells.
METHODS: We collect 94 ovarian cancer (OC) patients' tissue samples to constitute tissue microarray (TMA) and analyze the MUC16 and p120ctn expression levels. Lentivirus transfection is used to overexpress cytoplasmic tail domain (CTD) of MUC16 and CRISPR/Cas9 genome-editing system is firstly used to knock out MUC16 in EOC cells. The proliferation or migration ability of cells is analyzed by MTS or migration assay.
RESULTS: We find that MUC16 and p120ctn are aberrantly overexpressed in 94 clinical OC samples compared with benign ovarian tumors (BOT). MUC16 is a critical inducer of the proliferation and migration of EOC cells and the CTD of MUC16 plays an important role during this process. In addition, we reveal the relationship between MUC16 and p120ctn, which has not previously been studied. We show that MUC16 promotes the translocation of p120ctn to the cytoplasm and consequently activates Rho GTPases to modulate the proliferation and migration abilities of EOC cells. The cell proliferation and migration abilities induced by MUC16 are mediated by p120ctn through RhoA/Cdc42 activation.
CONCLUSIONS: The highly expressed MUC16 promotes the translocation of p120ctn to the cytoplasm, where it activates RhoA/Cdc42 to modulate the proliferation and migration abilities of EOC cells. These findings may provide new targets for the treatment of EOC.

Wudu M, Ren H, Hui L, et al.
DRAM2 acts as an oncogene in non-small cell lung cancer and suppresses the expression of p53.
J Exp Clin Cancer Res. 2019; 38(1):72 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Damage-regulated autophagy modulator 2(DRAM2) is associated with autophagy processes. However, the role of DRAM2 in the progression of human neoplasms is still unknown. Here, we show that DRAM2 may act as an oncogenic regulator in non-small cell lung cancer (NSCLC).
METHODS: Tumor specimens from 259 NSCLC patients were collected and analyzed. Transwell migration, cell cycle analysis, MTT and colony formation assays were performed to determine the effect of DRAM2 overexpression and knockdown on NSCLC-cell migration and proliferation. Western blotting confirmed the expression of DRAM2, p53, and the other involved proteins.
RESULTS: DRAM2 was preferentially upregulated in NSCLC tissues and higher expression of DRAM2 in NSCLC correlated with tumor node metastases stage and lymph node metastasis. Additionally, DRAM2 overexpression promoted cell metastasis and proliferation in vitro, while knockdown of DRAM2 expression yielded opposite result. Furthermore, DRAM2 overexpression increased the expression of proteins RAC1, RHOA, RHOC, ROCK1, and decreased RHOB expression, all of which are cell migration factors. DRAM2 overexpression also increased proteins CDK4, CyclinD3, and decreased p27 expression, all of which are cell cycle-related factors. Consistently knocked down DRAM2 had the opposite effect. We also found that DRAM2 expression was negatively correlated to p53 expression. Knockdown of DRAM2 caused an increase of p53 and p21 expression, and overexpression of p53 caused a decrease of DRAM2 expression. Finally, absence of p53 did not influence the function of DRAM2 in NSCLC, but overexpression of p53 repressed its function.
CONCLUSIONS: DRAM2 plays an oncogenic role in NSCLC via regulating p53 expression. Therefore, DRAM2 may act as an oncogene in NSCLC and could serve as a prognostic factor and potential target for NSCLC treatment.

Quaas A, Heydt C, Waldschmidt D, et al.
Alterations in ERBB2 and BRCA and microsatellite instability as new personalized treatment options in small bowel carcinoma.
BMC Gastroenterol. 2019; 19(1):21 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Carcinomas of the small bowel are rare tumors usually with dismal prognosis. Most recently, some potentially treatable molecular alterations were described. We emphasize the growing evidence of individualized treatment options in small bowel carcinoma.
METHODS: We performed a DNA- based multi-gene panel using ultra-deep sequencing analysis (including 14 genes with up to 452 amplicons in total; KRAS, NRAS, HRAS, BRAF, DDR2, ERBB2, KEAP1, NFE2L2, PIK3CA, PTEN, RHOA, BRCA1, BRCA2 and TP53) as well as an RNA-based gene fusion panel including ALK, BRAF, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET and ROS1 on eleven formalin fixed and paraffin embedded small bowel carcinomas. Additionally, mismatch-repair-deficiency was analyzed by checking the microsatellite status using the five different mononucleotide markers BAT25, BAT26, NR-21, NR-22 and NR-27 and loss of mismatch repair proteins using four different markers (MLH1, MSH6, MSH2, PMS2).
RESULTS: In five out of eleven small bowel carcinomas we found potentially treatable genetic alterations. Three patients demonstrated pathogenic (class 5) BRCA1 or BRCA2 mutations - one germline-related in a mixed neuroendocrine-non neuroendocrine neoplasm (MiNEN). Two additional patients revealed an activating ERBB2 mutation or PIK3CA mutation. Furthermore two tumors were highly microsatellite-instable (MSI-high), in one case associated to Lynch-syndrome. We did not find any gene fusions.
CONCLUSION: Our results underscore, in particular, the relevance of potentially treatable molecular alterations (like ERBB2, BRCA and MSI) in small bowel carcinomas. Further studies are needed to proof the efficacy of these targeted therapies in small bowel carcinomas.

Egiz M, Usui T, Ishibashi M, et al.
La-Related Protein 4 as a Suppressor for Motility of Ovarian Cancer Cells.
Tohoku J Exp Med. 2019; 247(1):59-67 [PubMed] Related Publications
The La-related proteins (LARPs) are a family of RNA binding proteins that control the degradation and stabilization of RNAs. As emerging research reveals the biology of each LARP, it is evident that LARPs are dysregulated in some types of cancer. Upregulation of cell motility potentiates the metastatic potential of ovarian cancer cells; however, the roles of LARPs in cell motility remain unknown. In the present study, we investigated the roles of LARPs in the progression of ovarian cancer using SKOV3 human ovarian cancer cells and a public database that integrates microarray-based gene expression data and clinical data. To explore the involvement of LARPs in the cell motility, we performed RNA interference screening for LARP mRNAs in SKOV3 cells. The screening identified LARP4 as a potential suppressor of the formation of lamellipodia. Conversely, enforced expression of LARP4 suppressed the formation of lamellipodia. Moreover, cell migration was significantly increased in LARP4-depleted SKOV3 cells. Mechanistically, LARP4 depletion was associated with the decrease in RhoA protein expression. These results suggest that LARP4 may limit RhoA-dependent cell motility. In a mouse xenograft model with SKOV3 cells, LARP4 depletion potentiated peritoneal metastasis. Upon analysis of a public database of patients with ovarian cancer, the LARP4 mRNA-high expression group (n = 166) showed longer overall survival compared with the LARP4 mRNA-low expression group (n = 489), implying a positive correlation of LARP4 mRNA levels in ovarian cancer tissues with patient prognosis. Taken together, we propose that LARP4 could suppress motility and metastatic potential of ovarian cancer cells.

Yu X, Wang D, Wang X, et al.
CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p.
J Exp Clin Cancer Res. 2019; 38(1):32 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Activation of CXCL12/CXCR4 axis has been found to be associated with invasion and metastasis in many cancers. However, the underlying mechanism remains elusive. Increasing data highlight that non-coding RNAs are linked to CRC progression.
METHODS: The effects of CXCR4 were investigated using villin-CXCR4 transgenic mice model by flow cytometry assay, immunohistochemistry, and Western blot. The mechanism was explored through bioinformatics, luciferase reporter assay and RNA immunoprecipitation assay.
RESULTS: We found that high CXCR4 expression exacerbated colitis-associated cancer in villin-CXCR4 transgenic mice. CXCR4
CONCLUSIONS: Our findings revealed the critical role of CXCR4 in promoting progression of inflammatory colorectal cancer through recruiting immunocytes and enhancing cytoskeletal remodeling by lncRNA XIST/ miR-133a-3p/ RhoA signaling. These results provide novel potential therapeutic targets for hindering CXCL12/CXCR4-induced CRC progression.

Li CF, Chen JY, Ho YH, et al.
Snail-induced claudin-11 prompts collective migration for tumour progression.
Nat Cell Biol. 2019; 21(2):251-262 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) is a pivotal mechanism for cancer dissemination. However, EMT-regulated individual cancer cell invasion is difficult to detect in clinical samples. Emerging evidence implies that EMT is correlated to collective cell migration and invasion with unknown mechanisms. We show that the EMT transcription factor Snail elicits collective migration in squamous cell carcinoma by inducing the expression of a tight junctional protein, claudin-11. Mechanistically, tyrosine-phosphorylated claudin-11 activates Src, which suppresses RhoA activity at intercellular junctions through p190RhoGAP, maintaining stable cell-cell contacts. In head and neck cancer patients, the Snail-claudin-11 axis prompts the formation of circulating tumour cell clusters, which correlate with tumour progression. Overexpression of snail correlates with increased claudin-11, and both are associated with a worse outcome. This finding extends the current understanding of EMT-mediated cellular migration via a non-individual type of movement to prompt cancer progression.

Yang X, Liang R, Liu C, et al.
SOX9 is a dose-dependent metastatic fate determinant in melanoma.
J Exp Clin Cancer Res. 2019; 38(1):17 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma.
METHODS: Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels. Lung metastasis was determined by tail vein injection assay. Live cell imaging was conducted to monitor dynamics of melanoma migratory behavior. RHOA and RAC1 activation assays measured the activity of Rho GTPases.
RESULTS: High SOX9 expression was predominantly detected in patients with distant melanoma metastases whereas SOX10 was present in the different stages of melanoma. Both SOX9 and SOX10 exhibited distinct but overlapping expression patterns with metastatic marker NEDD9. Accordingly, SOX10 was required for NEDD9 expression, which partly mediated its oncogenic functions in melanoma cells. Compensatory upregulation of SOX9 expression in SOX10-inhibited melanoma cells reduced growth and migratory capacity, partly due to elevated expression of cyclin-dependent kinase inhibitor p21 and lack of NEDD9 induction. Conversely, opposite phenomenon was observed when SOX9 expression was further elevated to a range of high SOX9 expression levels in metastatic melanoma specimens, and that high levels of SOX9 can restore melanoma progression in the absence of SOX10 both in vitro and in vivo. In addition, overexpression of SOX9 can also promote invasiveness of the parental melanoma cells by modulating the expression of various matrix metalloproteinases. SOX10 or high SOX9 expression regulates melanoma mesenchymal migration through the NEDD9-mediated focal adhesion dynamics and Rho GTPase signaling.
CONCLUSIONS: These results unravel NEDD9 as a common target for SOX10 or high SOX9 to partly mediate their oncogenic events, and most importantly, reconcile previous discrepancies that suboptimal level of SOX9 expression is anti-metastatic whereas high level of SOX9 is metastatic in a heterogeneous population of melanoma.

Karvonen H, Perttilä R, Niininen W, et al.
Wnt5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting.
Oncogene. 2019; 38(17):3288-3300 [PubMed] Related Publications
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with TCF3-PBX1 fusion gene expression has constitutively elevated levels of Wnt16b and ROR1 (receptor tyrosine kinase-like orphan receptor), a ligand and a receptor from the Wnt signaling pathway, respectively. Although survival rate is usually high after the initial chemotherapy, many TCF3-PBX1 BCP-ALL patients relapse and subsequently develop treatment resistance, resulting in poor prognosis. Here, we aimed to investigate the molecular signaling associated with Wnt16b and ROR1 overexpression in TCF3-PBX1 cell lines and primary samples, and to identify effective treatment options via ROR1 targeting. We detected higher ROR1 expression on TCF3-PBX1 leukemic cells even at a later stage of patient relapse, providing a strong rationale for the use of ROR1-targeted therapy. We found that Wnt5a-ROR1 signaling enhances proliferation of TCF3-PBX1 cells via RhoA/Rac1 GTPases activation and STAT3 upregulation. Wnt16b also activated the RhoA/Rac1 signaling cascade suggesting the activation of a non-canonical Wnt pathway in TCF3-PBX1 cells. Wnt16 could interact with ROR1 but not in TCF3-PBX1 cells, suggesting that Wnt5a is the ligand signaling via ROR1 in TCF3-PBX1 cells. By high throughput drug-sensitivity testing of TCF3-PBX1 cells before and after ROR1 knockdown we found that targeting ROR1 significantly improves the therapeutic efficacy of Bcl-2 family inhibitors venetoclax and navitoclax, and this synergism was confirmed ex vivo using a drug-resistant primary sample from a relapsed TCF3-PBX1 patient. Our work underlines a new type of targeted combination therapy that could be clinically advantageous for patients with TCF3-PBX1 BCP-ALL.

Gkretsi V, Louca M, Stylianou A, et al.
Inhibition of Breast Cancer Cell Invasion by Ras Suppressor-1 (RSU-1) Silencing Is Reversed by Growth Differentiation Factor-15 (GDF-15).
Int J Mol Sci. 2019; 20(1) [PubMed] Free Access to Full Article Related Publications
Extracellular matrix (ECM)-related adhesion proteins are important in metastasis. Ras suppressor-1 (RSU-1), a suppressor of

Aspenström P
Activated Rho GTPases in Cancer-The Beginning of a New Paradigm.
Int J Mol Sci. 2018; 19(12) [PubMed] Free Access to Full Article Related Publications
Involvement of Rho GTPases in cancer has been a matter of debate since the identification of the first members of this branch of the Ras superfamily of small GTPases. The Rho GTPases were ascribed important roles in the cell, although these were restricted to regulation of cytoskeletal dynamics, cell morphogenesis, and cell locomotion, with initially no clear indications of direct involvement in cancer progression. This paradigm has been challenged by numerous observations that Rho-regulated pathways are often dysregulated in cancers. More recently, identification of point mutants in the Rho GTPases Rac1, RhoA, and Cdc42 in human tumors has finally given rise to a new paradigm, and we can now state with confidence that Rho GTPases serve as oncogenes in several human cancers. This article provides an exposé of current knowledge of the roles of activated Rho GTPases in cancers.

Wang W, Du H, Liu H, et al.
SMAD specific E3 ubiquitin protein ligase 1 promotes ovarian cancer cell migration and invasion via the activation of the RhoA/ROCK signaling pathway.
Oncol Rep. 2019; 41(1):668-676 [PubMed] Related Publications
SMAD specific E3 ubiquitin protein ligase 1 (SMURF1) serves a pivotal role in a variety of pathological processes and in tumor cell migration and invasion; however, its functional mechanism in ovarian cancer (OC) remains unknown. Previously, we observed overexpression of SMURF1 in OC tissues. In the present study, the role of SMURF1 in OC metastasis was investigated. The results revealed that SMURF1 was upregulated in OC cell lines of greater aggression than less aggressive cells. Downregulation of SMURF1 significantly inhibited OC cell invasion and migration, whereas upregulation of SMURF1 promoted OC cell invasion and migration. Investigation of the mechanism underlying the effects of SMURF1 in OC revealed that SMURF1 induced OC cell migration and invasion via activation of the Ras homolog family member A/Rho‑associated protein kinase signaling pathway. Further analysis demonstrated that higher levels of SMURF1 expression were associated with shorter overall survival in patients with OC. The findings of the present study indicated that overexpression of SMURF1 may contribute to the malignancy and metastasis of OC. The inhibition of SMURF1 expression may be a promising strategy for the treatment of patients with OC.

Zhang X, Cho IH, Park JH, et al.
Fascin is involved in cancer cell invasion and is regulated by stromal factors.
Oncol Rep. 2019; 41(1):465-474 [PubMed] Related Publications
The tumor microenvironment plays an important role in cancer growth, invasion and metastasis. The stroma surrounding a tumor is known to contain a variety of factors that can increase angiogenesis, cancer growth and tumor progression. The aim of the present study was to determine the role of fascin in cancer growth and invasion and identify stromal factors involved in cancer progression. A fascin‑depleted cell line (fascindep) was used to observe the role of fascin in cancer invasion. Compared with wild‑type Mock cells, cancer cell invasion in Matrigel‑coated Transwell and three‑dimensional (3D) culture system were reduced by fascin depletion. Tumor cell growth in vivo was also significantly reduced in mice injected with fascindep cells. Notably, fascin expression was increased during Transwell invasion with Matrigel compared to Transwell invasion without Matrigel. TGF‑β1, EGF and IL‑1β significantly stimulated fascin expression. Such increased expression of fascin was also observed in cultured cells using conditioned media (CM) from cancer‑associated fibroblasts (CAFs). However, no significant change in fascin expression was observed using CM from normal fibroblasts (NFs). Stimulated expression of fascin by Matrigel and CAFs was reduced by biological specific inhibitor of TGF‑β1, EGF and IL‑1β. Compared with wild‑type Mock cells, the fascindep cell line showed low RhoA and NF‑κB activity, suggesting that RhoA and NF‑κB signals are involved in fascin expression. In conclusion, stromal factors are involved in cancer invasion and progression by activating intracellular signaling of cancer cells to increase fascin expression.

Kataoka Y, Ohshio Y, Teramoto K, et al.
Hypoxia‑induced galectin‑3 enhances RhoA function to activate the motility of tumor cells in non‑small cell lung cancer.
Oncol Rep. 2019; 41(2):853-862 [PubMed] Free Access to Full Article Related Publications
Galectin‑3 plays crucial roles in tumor progression. However, in non‑small cell lung cancer (NSCLC), it remains unclear whether the hypoxic tumor microenvironment enhances galectin‑3‑induced cell motility. We investigated galectin‑3 expression in NSCLC cells under hypoxia, and the possible molecular mechanisms by which galectin‑3 influences tumor aggressiveness. Galectin‑3 levels in NSCLC cell lines under hypoxia were assessed using reverse transcription PCR and western blotting. To clarify the role of endogenous galectin‑3, the effect of galectin‑3 knockdown in NSCLC cells was investigated using scratch and invasion assays. The expression and clinicopathological significance of galectin‑3 in 57 patients with pN0M0 invasive pulmonary adenocarcinoma were investigated by immunohistochemistry. Both mRNA and protein levels of galectin‑3 in the NSCLC cell lines A549 and LK‑2 were upregulated by hypoxia. As revealed by scratch and invasion assays, the cell migratory and invasive activities were significantly increased under hypoxia, but were reduced by galectin‑3 knockdown. Notably, addition of galectin‑3 to the media did not improve the cell motility impaired by galectin‑3 knockdown. To clarify the role of endogenous galectin‑3 in the enhancement of tumor cell motility under hypoxia, we focused on the function of RhoA. RhoA level in the plasma membrane, but not in the cytoplasm, was increased under hypoxia and decreased by galectin‑3 knockdown. RhoA activity was significantly enhanced under hypoxia and effectively inhibited by galectin‑3 knockdown. In patients with pN0M0 invasive pulmonary adenocarcinoma, higher galectin‑3 expression on tumor cells was significantly associated with tumor cell invasion into microvessels and tumor recurrence after surgery. These data demonstrate that in NSCLC cells under hypoxia, upregulated galectin‑3 levels increase the localization of RhoA to the plasma membrane, thus enhancing RhoA activity, which is associated with aggressive cell motility. In pN0M0 invasive pulmonary adenocarcinoma, galectin‑3 is a potential biomarker for predicting tumor recurrence after radical surgery.

Chen X, Lu B, Ma Q, et al.
EphA3 inhibits migration and invasion of esophageal cancer cells by activating the mesenchymal‑epithelial transition process.
Int J Oncol. 2019; 54(2):722-732 [PubMed] Related Publications
Eph receptor tyrosine kinases are critical for cell‑cell communication during normal and oncogenic development. Eph receptor A3 (EphA3) expression is associated with tumor promotion in certain types of cancer; however, it acts as a tumor suppressor in others. The expression levels of EphA3 and its effects on tumor progression in esophageal squamous cell carcinoma (ESCC) cell lines were determined using reverse transcription‑quantitative polymerase chain reaction analysis and a Transwell invasion assay. The present study demonstrated that EphA3 expression was decreased in ESCC tissues and cell lines. Treatment with the DNA methylation inhibitor 5‑aza‑2'‑deoxycytidine increased the mRNA expression levels of EphA3 in the ESCC cell lines KYSE510 and KYSE30. In addition, overexpression of EphA3 in KYSE450 and KYSE510 cells inhibited cell migration and invasion. EphA3 overexpression also decreased RhoA GTPase. Furthermore, EphA3 overexpression induced mesenchymal‑epithelial transition, as demonstrated by epithelial‑like morphological alterations, increased expression of epithelial proteins (E‑cadherin and the tight junction protein 1 zonula occludens‑1) and decreased expression of mesenchymal proteins (Vimentin, N‑cadherin and Snail). Conversely, silencing EphA3 in KYSE410 cells triggered epithelial‑mesenchymal transition, and promoted cell migration and invasion. These results suggested that EphA3 may serve a tumor‑suppressor role in ESCC.

Grun D, Adhikary G, Eckert RL
NRP-1 interacts with GIPC1 and SYX to activate p38 MAPK signaling and cancer stem cell survival.
Mol Carcinog. 2019; 58(4):488-499 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Epidermal cancer stem cells (ECS cells) comprise a limited population of cells that form aggressive, rapidly growing, and highly vascularized tumors. VEGF-A/NRP-1 signaling is a key driver of the ECS cell phenotype and aggressive tumor formation. However, relatively less is known regarding the downstream events following VEGF-A/NRP-1 interaction. In the present study, we show that VEGF-A/NRP-1, GIPC1, and Syx interact to increase RhoA-dependent p38 MAPK activity to enhance ECS cell spheroid formation, invasion, migration, and angiogenic potential. Inhibition or knockdown of NRP-1, GIPC1 or Syx attenuates RhoA and p38 activity to reduce the ECS cell phenotype, and NRP-1 knockout, or pharmacologic inhibition of VEGF-A/NRP-1 interaction or RhoA activity, reduces p38 MAPK activity and tumor growth. Moreover, expression of wild-type or constitutively-active RhoA, or p38, in NRP1-knockout cells, restores p38 activity and the ECS cell phenotype. These findings suggest that NRP-1 forms a complex with GIPC1 and Syx to activate RhoA/ROCK-dependent p38 activity to enhance the ECS cell phenotype and tumor formation.

Tan P, Ye Y, He L, et al.
TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10.
PLoS Biol. 2018; 16(11):e3000051 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Cancer cells adopt various modes of migration during metastasis. How the ubiquitination machinery contributes to cancer cell motility remains underexplored. Here, we report that tripartite motif (TRIM) 59 is frequently up-regulated in metastatic breast cancer, which is correlated with advanced clinical stages and reduced survival among breast cancer patients. TRIM59 knockdown (KD) promoted apoptosis and inhibited tumor growth, while TRIM59 overexpression led to the opposite effects. Importantly, we uncovered TRIM59 as a key regulator of cell contractility and adhesion to control the plasticity of metastatic tumor cells. At the molecular level, we identified programmed cell death protein 10 (PDCD10) as a target of TRIM59. TRIM59 stabilized PDCD10 by suppressing RING finger and transmembrane domain-containing protein 1 (RNFT1)-induced lysine 63 (K63) ubiquitination and subsequent phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa (p62)-selective autophagic degradation. TRIM59 promoted PDCD10-mediated suppression of Ras homolog family member A (RhoA)-Rho-associated coiled-coil kinase (ROCK) 1 signaling to control the transition between amoeboid and mesenchymal invasiveness. PDCD10 overexpression or administration of a ROCK inhibitor reversed TRIM59 loss-induced contractile phenotypes, thereby accelerating cell migration, invasion, and tumor formation. These findings establish the rationale for targeting deregulated TRIM59/PDCD10 to treat breast cancer.

Xie L, Li LY, Zheng D, et al.
F806 Suppresses the Invasion and Metastasis of Esophageal Squamous Cell Carcinoma via Downregulating F-Actin Assembly-Related Rho Family Proteins.
Biomed Res Int. 2018; 2018:2049313 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Invasion and metastasis are critical pathological and mortal processes in esophageal squamous cell carcinoma (ESCC). Novel drugs, targeting the two cancer migration stages, will augment the treatment options for ESCC therapy and improve overall survival. A novel natural macrolide F806 specifically promotes apoptosis of various ESCC cells. However, whether F806 can inhibit metastasis of ESCC cells needs further evaluation. Here, our data showed that F806 inhibits dynamic F-actin assembly and then suppresses the migration of ESCC cells in vitro and their invasion and metastasis in vivo. The correlation between cancer migration and actin cytoskeleton assembly was consistent with the ability of F806 to prevent the aggregation of Paxillin, an essential protein for focal adhesion formation through binding to the ends of actin filaments. Furthermore, F806 downregulated the expression and activity of the Rho family proteins cell division cycle 42 (CDC42), RAC family small GTPase 1 (RAC1), and RAS homolog family member A (RHOA). Taken together, these results suggest that F806 can suppress cancer invasion and metastasis via interrupting the assembly of migration components involving F-actin.

Wang H, Guo W, Jian Q, et al.
MicroRNA-340 inhibits squamous cell carcinoma cell proliferation, migration and invasion by downregulating RhoA.
J Dermatol Sci. 2018; 92(2):197-206 [PubMed] Related Publications
BACKGROUND: MicroRNAs are reported to play an important role in tumor growth and metastasis, including squamous cell carcinoma (SCC). Accumulative evidence has revealed that dysregulated miR-340 expression contributed to the carcinogenesis and development of various cancers.
OBJECTIVE: The aim of the current study was to investigate the role and the underlying mechanism of miR-340 in SCC cell proliferation, migration and invasion.
METHODS: Quantitative real-time PCR was performed to examine the expression of miR-340 in SCC tissues and cell lines. The function of miR-340 in SCC was investigated through Cell Counting Kit-8, wound healing, transwell migration and invasion assays. Bioinformatics analysis, luciferase reporter assay, western blotting and immunohistochemical analysis were conducted to predict and confirm the target gene of miR-340.
RESULTS: In the present study, we first found that miR-340 was significantly decreased in both SCC tissues and cell lines. Moreover, ectopic expression of miR-340 remarkably attenuated SCC cell proliferation, migration and invasion, whereas inhibition of endogenous miR-340 promoted SCC cell proliferation, migration and invasion in vitro. Our subsequent bioinformatics analysis and luciferase reporter assay showed that RhoA was a novel direct target of miR-340 in SCC cells, and the knockdown of RhoA expression rescued the effects of miR-340 inhibition on SCC cell proliferation, migration and invasion. More importantly, the expression of RhoA and miR-340 was negatively correlated in SCC tissues.
CONCLUSION: Our findings demonstrate the tumor suppressor role of miR-340 in SCC by directly regulating RhoA. Therefore, restoration of miR-340 expression can be a potential therapeutic approach for SCC treatment.

Ding Z, Dhruv H, Kwiatkowska-Piwowarczyk A, et al.
PDZ-RhoGEF Is a Signaling Effector for TROY-Induced Glioblastoma Cell Invasion and Survival.
Neoplasia. 2018; 20(10):1045-1058 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Glioblastoma multiforme (GBM) is the most common type of malignant brain tumors in adults and has a dismal prognosis. The highly aggressive invasion of malignant cells into the normal brain parenchyma renders complete surgical resection of GBM tumors impossible, increases resistance to therapeutic treatment, and leads to near-universal tumor recurrence. We have previously demonstrated that TROY (TNFRSF19) plays an important role in glioblastoma cell invasion and therapeutic resistance. However, the potential downstream effectors of TROY signaling have not been fully characterized. Here, we identified PDZ-RhoGEF as a binding partner for TROY that potentiated TROY-induced nuclear factor kappa B activation which is necessary for both cell invasion and survival. In addition, PDZ-RhoGEF also interacts with Pyk2, indicating that PDZ-RhoGEF is a component of a signalsome that includes TROY and Pyk2. PDZ-RhoGEF is overexpressed in glioblastoma tumors and stimulates glioma cell invasion via Rho activation. Increased PDZ-RhoGEF expression enhanced TROY-induced glioma cell migration. Conversely, silencing PDZ-RhoGEF expression inhibited TROY-induced glioma cell migration, increased sensitivity to temozolomide treatment, and extended survival of orthotopic xenograft mice. Furthermore, depletion of RhoC or RhoA inhibited TROY- and PDZ-RhoGEF-induced cell migration. Mechanistically, increased TROY expression stimulated Rho activation, and depletion of PDZ-RhoGEF expression reduced this activation. Taken together, these data suggest that PDZ-RhoGEF plays an important role in TROY signaling and provides insights into a potential node of vulnerability to limit GBM cell invasion and decrease therapeutic resistance.

Heriady Y, Achmad D, Hernowo BS, et al.
Expression of the RAC1, RHOA and CXCR4 proteins and their interaction as risk factors for infiltration to the nipple areola complex in operable breast carcinoma.
Breast Cancer. 2019; 26(2):172-179 [PubMed] Related Publications
BACKGROUND: Nipple areola complex (NAC) infiltration in operable breast carcinoma (OBC) is associated with local recurrence. NAC infiltration in OBC suggests that RAC1, RHOA and CXCR4 proteins are risk factors for migration and infiltration of OBC to NAC. This study aims to analyze the expression and interactions of these proteins as risk factors for NAC infiltration in OBC.
MATERIALS AND METHODS: This is an analytic observational cross-sectional study coupled with a categorical comparative study in each 40 subjects of OBC with and without NAC infiltration. The immunohistochemistry performed with a cut-off point based on the result of a receiver operating characteristics (ROC).
RESULTS: RAC1, p < 0.001 with POR 5.76, 95% CI: 2.06-16.08; RHOA, p < 0.001 with POR 7.00, 95% CI: 2.28-21.53; and CXCR4, p = 0.001 with POR 6.33, 95% CI 2.06-19.49. There was an interaction between RAC1 and RHOA (p < 0.001 with POR 17.14, 95% CI: 3.07-125.66); between RAC1 and CXCR4 (p < 0.001 with POR 30.93, 95% CI 3.62-686.89); between RHOA and CXCR4 (p < 0.001 with POR 10.21, 95% CI 2.19-54.17); and between the RAC1, RHOA and CXCR4 proteins (p < 0.001 with POR = 23.69, 95% CI 2.51-544.86).
CONCLUSION: We conclude that the expression of the RAC1, RHOA, and CXCR4 proteins and their interactions play a role as risk factors of NAC infiltration.

Guo H, Xiang Z, Zhang Y, Sun D
Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1.
Clin Transl Oncol. 2019; 21(4):404-411 [PubMed] Related Publications
BACKGROUND: The oxidative pentose phosphate pathway (PPP) is essential for cancer metabolism and growth. However, the contribution of 6-phosphogluconate dehydrogenase (6PGD), a key enzyme of PPP, to cervical cancer development remains largely unknown.
METHODS: mRNA and protein levels of 6PGD were analyzed in cervical cancer cells and tissues derived from patients and compared to normal counterparts. Using cell culture system and xenograft mouse model, the functions of 6PGD in cervical cancer are determined and its molecular mechanism is analyzed. 6PGD inhibitor physcion and siRNA knockdown were used.
RESULTS: In this work, we demonstrate that 6PGD is aberrantly upregulated and activated in cervical cancer cells and patient tissues compared to normal counterparts. Using different approaches and preclinical models, we show that 6PGD inhibition decreases growth and migration, and enhances chemosensitivity in cervical cancer. Mechanistically, inhibition of 6PGD activates AMP-activated protein kinase (AMPK) and decreases RhoA and Rac1 activities. AMPK depletion significantly reduces the effects of 6PGD inhibition in decreasing RhoA and Rac1 activities, growth and migration in cervical cancer cells.
CONCLUSIONS: Our work is the first to demonstrate the aberrant expression of 6PGD and its predominant roles in cervical cancer cell growth and migration, via a AMPK-dependent activation. Our findings suggest 6PGD as a potential therapeutic target to enhance chemosensitivity in cervical cancer.

Donner I, Katainen R, Kaasinen E, et al.
Candidate susceptibility variants in angioimmunoblastic T-cell lymphoma.
Fam Cancer. 2019; 18(1):113-119 [PubMed] Related Publications
Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T-cell lymphoma with a poor prognosis: the 5-year survival rate is approximately 30%. Somatic driver mutations have been found in TET2, IDH2, DNMT3A, RHOA, FYN, PLCG1, and CD28, whereas germline susceptibility to AITL has to our knowledge not been studied. The homogenous Finnish population is well suited for studies on genetic predisposition. Here, we performed an exome-wide rare variant analysis in 23 AITL patients. No germline mutations were found in the driver genes, implying that they are not frequently involved in genetic AITL predisposition. Potentially pathogenic variants present in at least two patients and showing significant (p < 0.01) enrichment in our sample set were found in ten genes: POLK, PRKCB, ZNF676, PRRC2B, PCDHGB6, GNL3L, TTC36, OTOG, OSGEPL1, and RASSF9. The most significantly enriched variants, causing p.Lys469Ter in a splice variant of POLK and p.Pro588His in PRKCB, are intriguing candidates as Polk deficient mice display a spontaneous mutator phenotype, whereas PRKCB was recently shown to be somatically mutated in 33% of another peripheral T-cell lymphoma, adult T-cell lymphoma. If validated, our findings would provide new insight into the pathogenesis of AITL, as well as tools for early detection in susceptible individuals.

Yang XM, Cao XY, He P, et al.
Overexpression of Rac GTPase Activating Protein 1 Contributes to Proliferation of Cancer Cells by Reducing Hippo Signaling to Promote Cytokinesis.
Gastroenterology. 2018; 155(4):1233-1249.e22 [PubMed] Related Publications
BACKGROUND & AIMS: Agents designed to block or alter cytokinesis can kill or stop proliferation of cancer cells. We aimed to identify cytokinesis-related proteins that are overexpressed in hepatocellular carcinoma (HCC) cells and might be targeted to slow liver tumor growth.
METHODS: Using the Oncomine database, we compared the gene expression patterns in 16 cancer microarray datasets and assessed gene enrichment sets using gene ontology. We performed immunohistochemical analysis of an HCC tissue microarray and identified changes in protein levels that are associated with patient survival times. Candidate genes were overexpressed or knocked down with small hairpin RNAs in SMMC7721, MHCC97H, or HCCLM3 cell lines; we analyzed their proliferation, viability, and clone-formation ability and their growth as subcutaneous or orthotopic xenograft tumors in mice. We performed microarray analyses to identify alterations in signaling pathways and immunoblot and immunofluorescence assays to detect and localize proteins in tissues. Yeast 2-hybrid screens and mass spectrometry combined with co-immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation and proximity ligation assays. Chromatin immunoprecipitation, promoter luciferase activity, and quantitative real-time polymerase chain reaction analyses were used to identify factors that regulate transcription of specific genes.
RESULTS: The genes that were most frequently overexpressed in different types of cancer cells were involved in cell division processes. We identified 3 cytokinesis-regulatory proteins among the 10 genes most frequently overexpressed by all cancer cell types. Rac GTPase activating protein 1 (RACGAP1) was the cytokinesis-regulatory protein that was most highly overexpressed in multiple cancers. Increased expression of RACGAP1 in tumor tissues was associated with shorter survival times of patients with cancer. Knockdown of RACGAP1 in HCC cells induced cytokinesis failure and cell apoptosis. In microarray analyses, we found knockdown of RACGAP1 in SMMC7721 cells to reduce expression of genes regulated by yes-associated protein (YAP) and WW domain containing transcription regulator 1 (WWTR1 or TAZ). RACGAP1 reduced activation of the Hippo pathway in HCC cells by increasing activity of RhoA and polymerization of filamentous actin. Knockdown of YAP reduced phosphorylation of RACGAP1 and redistribution at the anaphase central spindle. We found transcription of the translocated promoter region, nuclear basket protein (TPR) to be regulated by YAP and coordinately expressed with RACGAP1 to promote proliferation of HCC cells. TPR redistributed upon nuclear envelope breakdown and formed complexes with RACGAP1 during mitosis. Knockdown of TPR in HCC cells reduced phosphorylation of RACGAP1 by aurora kinase B and impaired their redistribution at the central spindle during cytokinesis. STAT3 activated transcription of RACGAP in HCC cells.
CONCLUSIONS: In an analysis of gene expression patterns of multiple tumor types, we found RACGAP1 to be frequently overexpressed, which is associated with shorter survival times of patients. RACGAP1 promotes proliferation of HCC cells by reducing activation of the Hippo and YAP pathways and promoting cytokinesis in coordination with TPR.

Chen X, Zhang S, Wang Z, et al.
Supervillin promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway.
J Exp Clin Cancer Res. 2018; 37(1):128 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world and metastasis is the leading cause of death associated with HCC. Hypoxia triggers the epithelial-mesenchymal transition (EMT) of cancer cells, which enhances their malignant character and elevates metastatic risk. Supervillin associates tightly with the membrane and cytoskeleton, promoting cell motility, invasiveness, and cell survival. However, the roles of supervillin in HCC metastasis remain unclear.
METHODS: Tissue microarray technology was used to immunohistochemically stain for supervillin antibody in 173 HCC tissue specimens and expression levels correlated with the clinicopathological variables. Tumor cell motility and invasiveness, as well as changes in the mRNA expression levels of genes associated with cancer cell EMT, were investigated. The relationship between supervillin and Rho GTPases was examined using Co-IP and GST pull-down.
RESULTS: Hypoxia-induced upregulation of supervillin promoted cancer cell migration and invasion via the activation of the ERK/p38 pathway downstream of RhoA/ROCK signaling. Furthermore, supervillin regulated the expression of EMT genes during hypoxia and accelerated the metastasis of HCC in vivo.
CONCLUSIONS: Hypoxia-induced increase in supervillin expression is a significant and independent predictor of cancer metastasis, which leads to poor survival in HCC patients. Our results suggest that supervillin may be a candidate prognostic factor for HCC and a valuable target for therapy.

Zhang YL, Xing X, Cai LB, et al.
Integrin
J Immunol Res. 2018; 2018:4602570 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Integrin subunit alpha 9 (ITGA9) mediates cell-cell and cell-matrix adhesion, cell migration, and invasion through binding different kinds of extracellular matrix (ECM) components. However, its potential role and underlying molecular mechanisms remain unclear in hepatocellular carcinoma (HCC). Here, we found that ITGA9 expression was obviously decreased in patients with HCC, which was negatively correlated with HCC growth and metastasis. ITGA9 overexpression significantly inhibited cell proliferation and migration

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RHOA, Cancer Genetics Web: http://www.cancer-genetics.org/ARHA.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999