Gene Summary

Gene:APAF1; apoptotic peptidase activating factor 1
Aliases: CED4, APAF-1
Summary:This gene encodes a cytoplasmic protein that initiates apoptosis. This protein contains several copies of the WD-40 domain, a caspase recruitment domain (CARD), and an ATPase domain (NB-ARC). Upon binding cytochrome c and dATP, this protein forms an oligomeric apoptosome. The apoptosome binds and cleaves caspase 9 preproprotein, releasing its mature, activated form. Activated caspase 9 stimulates the subsequent caspase cascade that commits the cell to apoptosis. Alternative splicing results in several transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:apoptotic protease-activating factor 1
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (24)
Pathways:What pathways are this gene/protein implicaed in?
Show (10)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: APAF1 (cancer-related)

Zhang Y, Chen H, Zhu H, Sun X
CBX8 promotes tumorigenesis and confers radioresistance in esophageal squamous cell carcinoma cells through targeting APAF1.
Gene. 2019; 711:143949 [PubMed] Related Publications
As a transcriptional repressor, Chromobox 8 (CBX8) overexpression is found to be associated with tumorigenesis in several cancers. However, its role in radiotherapy resistance remains poorly characterized. Our study is the first to explore the correlation between CBX8 and radioresistance. We report here that CBX8 is upregulated in Esophageal Squamous Cell Carcinoma (ESCC) tissues and cells and serves as an indicator of poor prognosis for ESCC patients. CBX8 knockdown inhibits cell proliferation, colony formation capability, DNA repair and promotes cell apoptosis. Moreover, the transcriptome sequencing analysis demonstrates that CBX8 downregulates the expression of Apoptotic protease activating factor 1 (APAF1), which is the core protein that mediates mitochondrial apoptotic pathways. APAF1 depletion could abrogate apoptosis induced by CBX8 knockdown in irradiated ESCC cells. Our results provide novel insight into CBX8 as a therapeutic target to improve the radiosensitivity of ESCC.

Lu CC, Chiang JH, Tsai FJ, et al.
Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling.
Int J Oncol. 2019; 54(4):1271-1281 [PubMed] Free Access to Full Article Related Publications
Metformin is commonly used to treat patients with type 2 diabetes and is associated with a decreased risk of cancer. Previous studies have demonstrated that metformin can act alone or in synergy with certain anticancer agents to achieve anti‑neoplastic effects on various types of tumors via adenosine monophosphate‑activated protein kinase (AMPK) signaling. However, the role of metformin in AMPK‑mediated apoptosis of human gastric cancer cells is poorly understood. In the current study, metformin exhibited a potent anti‑proliferative effect and induced apoptotic characteristics in human AGS gastric adenocarcinoma cells, as demonstrated by MTT assay, morphological observation method, terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase‑3/7 assay kits. Western blot analysis demonstrated that treatment with metformin increased the phosphorylation of AMPK, and decreased the phosphorylation of AKT, mTOR and p70S6k. Compound C (an AMPK inhibitor) suppressed AMPK phosphorylation and significantly abrogated the effects of metformin on AGS cell viability. Metformin also reduced the phosphorylation of mitogen‑activated protein kinases (ERK, JNK and p38). Additionally, metformin significantly increased the cellular ROS level and included loss of mitochondrial membrane potential (ΔΨm). Metformin altered apoptosis‑associated signaling to downregulate the BAD phosphorylation and Bcl‑2, pro‑caspase‑9, pro‑caspase‑3 and pro‑caspase‑7 expression, and to upregulate BAD, cytochrome c, and Apaf‑1 proteins levels in AGS cells. Furthermore, z‑VAD‑fmk (a pan‑caspase inhibitor) was used to assess mitochondria‑mediated caspase‑dependent apoptosis in metformin‑treated AGS cells. The findings demonstrated that metformin induced AMPK‑mediated apoptosis, making it appealing for development as a novel anticancer drug for the treating gastric cancer.

Oh HN, Oh KB, Lee MH, et al.
JAK2 regulation by licochalcone H inhibits the cell growth and induces apoptosis in oral squamous cell carcinoma.
Phytomedicine. 2019; 52:60-69 [PubMed] Related Publications
BACKGROUND: Licochalconce (LC) H is an artificial compound in the course of synthesizing LCC in 2013. So far, few studies on the effects of LCH have been found in the literature. Despite progress in treatment modalities for oral cancer, the cure from cancer has still limitations.
PURPOSE: The effects of LCH were investigated on human oral squamous cell carcinoma (OSCC) cells to elucidate its mechanisms.
STUDY DESIGN: We explored the mechanism of action of LCH by which it could have effects on JAK2/STAT3 signaling pathway.
METHODS: To confirm LCH anti-cancer effect, analyzed were MTT assay, DAPI staining, soft agar, kinase assay, molecular docking simulation, flow cytometry and Western blotting analysis.
RESULTS: According to docking and molecular dynamics simulations, the predicted pose of the complex LCH and JAK2 seems reasonable and LCH is strongly bound to active JAK2 with opened activation loop. The LCH inhibitor is surrounded by specific ATP-binding pocket in which it is stabilized by forming hydrogen bonds and hydrophobic interactions. It is shown that LCH plays as a competitive inhibitor in an active state of JAK2. LCH caused a dose-dependent decrease in phosphorylation of JAK2 and STAT3. More interestingly, LCH suppressed JAK2 kinase activity in vitro by its direct binding to the JAK2. LCH significantly inhibited the JAK2/STAT3 signaling pathway, causing the down-regulation of target genes such as Bcl-2, survivin, cyclin D1, p21 and p27. In addition, LCH inhibited cell proliferation and colony formation of OSCC cells in a dose- and time-dependent manner, as well as induction of cell apoptosis through extrinsic and intrinsic pathway. The induction of apoptosis in OSCC cells by LCH was evident in the increased production of ROS, loss of mitochondrial membrane potential, release of cyto c, variation of apoptotic proteins and activation of caspase cascade.
CONCLUSION: LCH not only induces apoptosis in OSCC cells through the JAK/STAT3 signaling pathway but also inhibits cell growth. It is proposed that LCH has a promising use for the chemotherapeutic agent of oral cancer.

Mei LH, Yang G, Fang F
Hyperbaric Oxygen Combined with 5-Aminolevulinic Acid Photodynamic Therapy Inhibited Human Squamous Cell Proliferation.
Biol Pharm Bull. 2019; 42(3):394-400 [PubMed] Related Publications
The photodynamic therapy (PDT) depends on the presence of molecular oxygen. Thus, the efficiency of PDT is limited in anoxic regions of tumor tissue and vascular shutdown. It is reported the use of hyperbaric oxygen (HBO) may enhance the efficiency of PDT. However, there are rarely studies about utilizing HBO plus PDT for treatment with human squamous cell carcinoma (SCC). Therefore, this study aimed to investigate and compare the therapeutic effect of combined therapy and PDT alone treatment. Multiple cellular and molecular biology techniques were used in the current study such as CCK-8, Western blotting, flow cytometry, monodansylcadaverine (MDC) staining and immunofluorescence assay. The results of combination index indicated that HBO combination with PDT synergistically inhibited A431 cells proliferation in vitro. In addition, we found that HBO significantly enhanced PDT-induced cell apoptosis via increasing the active caspase-3, active caspase-9, Apaf-1 and Bax levels and down-regulating Bcl-2. Meanwhile, the result of MDC and immunofluorescence assay confirmed that HBO increased PDT-induced autophagosome formation in A431 cells. Interestingly, autophagy inhibitor 3-methyladenine (3-MA) further increased combination-induced cell apoptosis by increasing the levels of active-caspase 9 and Apaf-1. Our results showed that HBO combined with PDT markedly induced A431 cells apoptosis and autophagy. Nevertheless, autophagy play a pro-survival role against apoptosis. Thus, HBO combination with PDT may constitute a promising approach to treat human squamous cell carcinoma in the future.

Shi L, Wu Y, Lv DL, Feng L
Scutellarein selectively targets multiple myeloma cells by increasing mitochondrial superoxide production and activating intrinsic apoptosis pathway.
Biomed Pharmacother. 2019; 109:2109-2118 [PubMed] Related Publications
OBJECTIVES: Scutellarein is a flavonoid monomer found in traditional Chinese medicine such as Scutellaria barbata. This study aimed to investigate the cytotoxic effect of scutellarein treatment on multiple myeloma (MM) cells.
METHODS: circulating B lymphocytes (CBL) isolated from healthy donors' peripheral blood served as control for MM.1R and IM-9 MM cells. CLB and MM cells were treated with various concentrations of scutellarein before their cell viability and apoptosis being evaluated. Nude mice burdened with MM xenograft tumor were intravenously injected with different concentrations of scutellarein, and their tumor burden change were monitored. Apoptosis of MM cells or CBL after scutellarein treatment was assayed by measuring caspase-3, -8 and -9 activities. FADD or APAF1 gene knockdown in MM cells was achieved by lentiviral transfection. Amount of Cytochrome C in cytosol or mitochondria as well as that of Bax and Bcl-2 protein were evaluated by Western blot. Mitochondria-induced apoptosis was assayed by measuring mitochondrial membrane potential change. Production of general reactive oxygen species and mitochondrial superoxide in MM or CBL was detected after scutellarein treatment, which was reduced by MitoTEMPO or apocynin treatment, respectively.
RESULTS: Scutellarein treatment showed potent cytotoxicity on MM cells but not on viable CBL, and intravenous injection of scutellarein significantly reduced MM xenograft tumor burden in nude mice. Scutellarein treatment in MM cells activated the mitochondrial-mediated intrinsic apoptosis pathway by increasing the production of mitochondrial superoxide, which was reduced to ROS by NADPH, but this effect was weakened in healthy CBL. Co-treatment with scutellarein synergized with bortezomib in inducing apoptosis in MM cells in vitro and in reducing tumor volume in MM xenografted nude mice.
CONCLUSIONS: Scutellarein induced mitochondrial-mediated intrinsic apoptosis selectively on malignant cells comparing to healthy cells.

Alvarez MC, Maso V, Torello CO, et al.
The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes.
Clin Epigenetics. 2018; 10(1):139 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In the present study, we investigated the molecular mechanisms underlying the pro-apoptotic effects of quercetin (Qu) by evaluating the effect of Qu treatment on DNA methylation and posttranslational histone modifications of genes related to the apoptosis pathway. This study was performed in vivo in two human xenograft acute myeloid leukemia (AML) models and in vitro using HL60 and U937 cell lines.
RESULTS: Qu treatment almost eliminates DNMT1 and DNMT3a expression, and this regulation was in part STAT-3 dependent. The treatment also downregulated class I HDACs. Furthermore, treatment of the cell lines with the proteasome inhibitor, MG132, together with Qu prevented degradation of class I HDACs compared to cells treated with Qu alone, indicating increased proteasome degradation of class I HDACS by Qu. Qu induced demethylation of the pro-apoptotic BCL2L11, DAPK1 genes, in a dose- and time-dependent manner. Moreover, Qu (50 μmol/L) treatment of cell lines for 48 h caused accumulation of acetylated histone 3 and histone 4, resulting in three- to ten fold increases in the promoter region of DAPK1, BCL2L11, BAX, APAF1, BNIP3, and BNIP3L. In addition, Qu treatment significantly increased the mRNA levels of all these genes, when compared to cells treated with vehicle only (control cells) (*p < 0.05).
CONCLUSIONS: In summary, our results showed that enhanced apoptosis, induced by Qu, might be caused in part by its DNA demethylating activity, by HDAC inhibition, and by the enrichment of H3ac and H4ac in the promoter regions of genes involved in the apoptosis pathway, leading to their transcription activation.

Abdelrahman AE, Fathy A, Elsebai EA, et al.
Prognostic impact of Apaf-1, Cyclin D1, and AQP-5 in serous ovarian carcinoma treated with the first-line chemotherapy.
Ann Diagn Pathol. 2018; 35:27-37 [PubMed] Related Publications
Chemoresistance is the major obstacle to effective treatment in patients with serous ovarian carcinoma (SOC), which frequently related to the failure of chemotherapeutic agents to induce apoptosis. In this study, the immunohistochemical expression of Apaf-1, Cyclin D1, and Aquaporin-5 (AQP-5) was studied in 50 paraffin blocks of SOC. Data on overall survival (OS), disease-free survival (DFS) and response to the first-line chemotherapy were collected and then statistically analyzed. Apaf-1 expression was observed in 84% of the SOC cases with a significant down-regulation with higher tumor grade, lymph node metastasis, and advanced FIGO stage. Cyclin D1 expression was found in 70% of the cases with a significant up-regulation with higher tumor grade, lymph node metastasis, and advanced FIGO stage. Positive AQP-5 expression was noted in 84% of the cases with a significant positive association with higher tumor grade, lymph node metastasis, and advanced FIGO stage. During the follow-up period, the Apaf-1 expression had a significant negative association with OS and DFS (p < 0.001 for each), while both Cyclin D1 and AQP-5 expression had a significant positive association with unfavorable OS and DFS. The cases of SOC treated with suboptimal surgery revealed a significant association of low Apaf-1, high Cyclin D1, and strong AQPs with the poor response to the first-line chemotherapy (p = 0.047, p < 0.001, and 0.006 respectively).
CONCLUSIONS: Down-regulation of Apaf-1 protein and the overexpression of Cyclin D1 and AQP-5 proteins possibly contribute to an aggressive SOC with a high risk of recurrence and poor response to the first-line chemotherapy.

Nowak I, Boratyn E, Durbas M, et al.
Exogenous expression of miRNA-3613-3p causes APAF1 downregulation and affects several proteins involved in apoptosis in BE(2)-C human neuroblastoma cells.
Int J Oncol. 2018; 53(4):1787-1799 [PubMed] Related Publications
MicroRNAs (miRNAs) are a class of small non‑coding RNAs involved in post‑transcriptional gene regulation. Furthermore, dysregulation of miRNA expression is an important factor in the pathogenesis of neuroblastoma. Our previous study identified that overexpression of monocyte chemoattractant protein‑induced protein 1 protein led to a significant downregulation of a novel miRNA molecule, miRNA‑3613‑3p. In the present study, the potential involvement of miRNA‑3613‑3p in the cell biology of neuroblastoma was investigated. It was identified that the expression of miRNA‑3613‑3p varies among a range of human neuroblastoma cell lines. As the delineation of the functions of a miRNA requires the identification of its target genes, seven putative mRNAs that may be regulated by miRNA‑3613‑3p were selected. Furthermore, it was identified that overexpression of miRNA‑3613‑3p causes significant downregulation of several genes exhibiting tumor suppressive potential [encoding apoptotic protease‑activating factor 1 (APAF1), Dicer, DNA fragmentation factor subunit β, von Hippel‑Lindau protein and neurofibromin 1] in BE(2)‑C human neuroblastoma cells. APAF1 mRNA was the most significantly decreased transcript in the cells with miRNA‑3613‑3p overexpression. In accordance with the aforementioned results, the downregulation of cleaved caspase-9 and lack of activation of executive caspases in BE(2)‑C cells following miRNA‑3613‑3p overexpression was observed. The results of the present study suggest a potential underlying molecular mechanism of apoptosis inhibition via APAF1 downregulation in human neuroblastoma BE(2)‑C cells with miRNA‑3613‑3p overexpression.

Sindhu R, Manonmani HK
l-asparaginase induces intrinsic mitochondrial-mediated apoptosis in human gastric adenocarcinoma cells and impedes tumor progression.
Biochem Biophys Res Commun. 2018; 503(4):2393-2399 [PubMed] Related Publications
l-asparagine essentially regulates growth and proliferation of cancer cells. l-asparaginase is an anti-cancer enzyme that deprives the cancer cells of l-asparagine. The purpose of this study was to explore the mechanism of a novel l-asparaginase from Pseudomonas fluorescens on l-asparagine deprivation mediated anti-proliferation, apoptosis in human gastric adenocarcinoma cells and to evaluate inhibition of angiogenesis. We observed that, the presence of extracellular l-asparagine was essential for the growth of AGS cells. l-asparagine deprivation by l-asparaginase induced metabolic stress, cytotoxicity and apoptosis by G0 phase cell-cycle arrest, modulated the mitochondrial membrane integrity, accelerated caspase-3 activation and instigated DNA damage. The RT-PCR analysis of pro-apoptosis genes: bak1, bax, bbc3, bik, pmaip1, bnip3l, apaf1, casp3, casp7 and casp9 were significantly higher (P < 0.05), while anti-apoptotic markers xiap, bid, mcl1, and death receptor genes tnf and tradd were significantly down-regulated (P < 0.05). Additionally, higher protein expressions of p53, caspase-3 and TEM analysis showing modulations in mitochondria confirmed intrinsic apoptosis pathway. The enzyme impeded tumor progression through inhibition of cell migration and vascular remodelling of endothelial cells. Our findings suggests that the action of l-asparaginase alters mitochondrial membrane permeability and auxiliary activates intrinsic apoptosis. Therefore, this mechanistic approach might be considered as a targeted enzymotherapy against gastric adenocarcinoma.

Liang W, Liao Y, Li Z, et al.
MicroRNA-644a promotes apoptosis of hepatocellular carcinoma cells by downregulating the expression of heat shock factor 1.
Cell Commun Signal. 2018; 16(1):30 [PubMed] Free Access to Full Article Related Publications
In this study, we investigated the role of microRNA-644a (miR-644a) in the growth and survival of hepatocellular carcinoma (HCC) cells. MiR-644a levels were lower in HCC tissues than in adjacent peri-cancerous tissues (n = 135). MiR-644a expression was inversely correlated with heat shock factor 1 (HSF1) expression, tumour diameter and TNM stage. Moreover, HepG2 and SMMC-7721 cell lines showed lower miR-644a expression than normal L-O2 hepatocytes. MiR-644a overexpression in HepG2 and SMMC-7721 cells increased apoptosis by downregulating HSF1. Dual luciferase reporter assays confirmed the presence of a miR-644a binding site in the 3'-untranslated region (3'-UTR) of HSF1. Xenograft tumours derived from SMMC-7721 cells transfected with a miR-664a mimic showed less growth than tumours derived from untransfected controls. Protein chip analysis revealed that miR-644a-overexpressing SMMC-7721 and HepG2 cells strongly expressed pro-apoptotic BH3-only proteins, such as BID, BAD, BIM, SMAC, Apaf-1 and cleaved caspases-3 and -9. These findings suggest miR-644a promotes apoptosis in HCC cells by inhibiting HSF1.

Chubicka T, Girija D, Deepa K, et al.
A parasporin from Bacillus thuringiensis native to Peninsular India induces apoptosis in cancer cells through intrinsic pathway.
J Biosci. 2018; 43(2):407-416 [PubMed] Related Publications
Parasporins, a class of non-insecticidal crystal proteins of Bacillus thuringiensis (Bt) are being explored as promising anticancer agents due to their specific toxicity to cancer cells. The present study has identified 25 Bt isolates harbouring parasporin genes from Western Ghats region, the hotspot of biodiversity in India. Among these, the isolate, KAU 41 (Kerala Agricultural University isolate 41) contained non-hemolytic homogenous crystals showing specific cytotoxicity towards cancer cells. SDS-PAGE analysis of this crystal, isolated by aqueous biphasic separation, revealed a 31 kDa sized peptide. The N-terminal sequence deciphered in BLAST analysis showed homology to a hypothetical Bt protein. Upon proteolysis, a 29 kDa active peptide was generated which exhibited heterogenic cytotoxic spectrum on various cancer cells. HeLa cells were highly susceptible to this peptide with IC 50 1 lg/mL and showed characteristics of apoptosis. RT-qPCR analysis revealed the overexpression of APAF1, caspase 3 and 9 by 14.9, 8 and 7.4 fold, respectively which indicates the activation of intrinsic pathway of apoptosis. However, at higher concentrations of peptide (greater than 3 lg/mL), necrotic death was prominent. The results suggest that the 31 kDa protein from Bt isolate, KAU 41 is a parasporin that may have high therapeutic potential.

Ji DG, Guan LY, Luo X, et al.
Inhibition of MALAT1 sensitizes liver cancer cells to 5-flurouracil by regulating apoptosis through IKKα/NF-κB pathway.
Biochem Biophys Res Commun. 2018; 501(1):33-40 [PubMed] Related Publications
Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is involved in tumor cell growth process. However, its role and molecular mechanism in liver cancer is still not fully understood. In this study, we found that MALAT1 was significantly expressed in liver cancer cell lines. And knockdown of MALAT1 suppressed proliferation, migration and invasion of HepG2 cells, accompanied with decrease of Rho-associated coiled-coil-forming protein kinase 1 (ROCK1), α-smooth muscle actin (α-SMA), N-cadherin, Vimentin and TWIST. Significantly, MALAT1 deletion sensitized HepG2 cells to 5-FU-induced cell cycle arrest in G1 phase, as evidenced by the significant reduction in Cyclin D1 and CDK4 and increase in p53, p21 and p27 protein levels. In addition, MALAT1 knockdown triggered 5-FU induced apoptosis in HepG2 cells by inducing intrinsic apoptosis-related signals, including Cyto-c, Apaf-1, cleaved Caspase-9/-7/-3 and poly (ADP-ribose) polymerase (PARP). Furthermore, phosphorylated nuclear factor-κB (p-NF-κB) was also down-regulated by MALAT1 silence. Importantly, suppression of IKKα/NF-κB significantly elevated apoptosis and reduced liver cancer cell viability in MALAT1-knockdown cells with 5-FU incubation. The nude mice transplantation model also confirmed the promoted sensitivity of MALAT1-silenced HepG2 cells to 5-FU by blocking tumor cell proliferation and inducing apoptosis. Therefore, our data supplied a potential mechanism by which knockdown of MALAT1 might play an important role in augmenting sensitivity of HepG2 cells to 5-FU in therapeutic approaches, demonstrating suppressing of MALAT1 may serve as a combination with chemotherapeutic agents in liver cancer treatment.

Bowler E, Porazinski S, Uzor S, et al.
Hypoxia leads to significant changes in alternative splicing and elevated expression of CLK splice factor kinases in PC3 prostate cancer cells.
BMC Cancer. 2018; 18(1):355 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mounting evidence suggests that one of the ways that cells adapt to hypoxia is through alternative splicing. The aim of this study was firstly to examine the effect of hypoxia on the alternative splicing of cancer associated genes using the prostate cancer cell line PC3 as a model. Secondly, the effect of hypoxia on the expression of several regulators of splicing was examined.
METHODS: PC3 cells were grown in 1% oxygen in a hypoxic chamber for 48 h, RNA extracted and sent for high throughput PCR analysis at the RNomics platform at the University of Sherbrooke, Canada. Genes whose exon inclusion rate PSI (ψ) changed significantly were identified, and their altered exon inclusion rates verified by RT-PCR in three cell lines. The expression of splice factors and splice factor kinases in response to hypoxia was examined by qPCR and western blotting. The splice factor kinase CLK1 was inhibited with the benzothiazole TG003.
RESULTS: In PC3 cells the exon inclusion rate PSI (ψ) was seen to change by > 25% in 12 cancer-associated genes; MBP, APAF1, PUF60, SYNE2, CDC42BPA, FGFR10P, BTN2A2, UTRN, RAP1GDS1, PTPN13, TTC23 and CASP9 (caspase 9). The expression of the splice factors SRSF1, SRSF2, SRSF3, SAM68, HuR, hnRNPA1, and of the splice factor kinases SRPK1 and CLK1 increased significantly in hypoxia. We also observed that the splice factor kinase CLK3, but not CLK2 and CLK4, was also induced in hypoxic DU145 prostate, HT29 colon and MCF7 breast cancer cell lines. Lastly, we show that the inhibition of CLK1 in PC3 cells with the benzothiazole TG003 increased expression of the anti-apoptotic isoform caspase 9b.
CONCLUSIONS: Significant changes in alternative splicing of cancer associated genes occur in prostate cancer cells in hypoxic conditions. The expression of several splice factors and splice factor kinases increases during hypoxia, in particular the Cdc-like splice factor kinases CLK1 and CLK3. We suggest that in hypoxia the elevated expression of these regulators of splicing helps cells adapt through alternative splicing of key cancer-associated genes. We suggest that the CLK splice factor kinases could be targeted in cancers in which hypoxia contributes to resistance to therapy.

Ru Q, Li WL, Xiong Q, et al.
Voltage-gated potassium channel blocker 4-aminopyridine induces glioma cell apoptosis by reducing expression of microRNA-10b-5p.
Mol Biol Cell. 2018; 29(9):1125-1136 [PubMed] Free Access to Full Article Related Publications
Accumulating evidence has demonstrated that voltage-gated potassium channels (Kv channels) were associated with regulating cell proliferation and apoptosis in tumor cells. Our previous study proved that the Kv channel blocker 4-aminopyridine (4-AP) could inhibit cell proliferation and induce apoptosis in glioma. However, the precise mechanisms were not clear yet. MicroRNAs (miRNAs) are small noncoding RNAs that act as key mediators in the progression of tumor, so the aim of this study was to investigate the role of miRNAs in the apoptosis-promoting effect of 4-AP in glioma cells. Using a microRNA array, we found that 4-AP altered the miRNA expression in glioma cells, and the down-regulation of miR-10b-5p induced by 4-AP was verified by real-time PCR. Transfection of miR-10b-5p mimic significantly inhibited 4-AP-induced caspases activation and apoptosis. Moreover, we verified that apoptosis-related molecule Apaf-1 was the direct target of miR-10b-5p. Furthermore, miR-10b-5p mimic significantly inhibited 4-AP-induced up-regulation of Apaf-1 and its downstream apoptosis-related proteins, such as cleaved caspase-3. In conclusion, Kv channel blocker 4-AP may exert its anti-tumor effect by down-regulating the expression of miR-10b-5p and then raised expression of Apaf-1 and its downstream apoptosis-related proteins. Current data provide evidence that miRNAs play important roles in Kv channels-mediated cell proliferation and apoptosis.

Zhang X, Wu N
Fasudil inhibits proliferation and migration of Hep-2 laryngeal carcinoma cells.
Drug Des Devel Ther. 2018; 12:373-381 [PubMed] Free Access to Full Article Related Publications
Background: Rho-kinase signal pathway is a new target for cancer therapy. Fasudil, a selective Rho-kinase inhibitor, is found to exert antitumor effects on several types of cancer, but whether fasudil has antitumor effects on laryngeal carcinoma is still unknown. The aim of this study was to determine the effects of fasudil on laryngeal carcinoma and explore the underlying molecular mechanisms in this process.
Methods: After treatment with fasudil, changes in biological behaviors, including the growth, proliferation, clone formation, apoptosis, and migration of human laryngeal carcinoma cells (Hep-2 cells) were observed. The influences on apoptotic protease activity factor-1 (APAF-1)-mediated apoptosis pathway and the activities of matrix metalloproteinases (MMP-2 and MMP-9) were measured by Western blotting and gelatin zymography assay.
Results: Half-maximal inhibitory concentration of fasudil to Hep-2 cells was ~3.40×10
Conclusion: Our findings first demonstrate that fasudil not only inhibits the proliferation of laryngeal carcinoma cells through activating APAF-1-mediated apoptosis pathway, but also prevents migration by inhibiting the activities of MMP-2 and MMP-9. Therefore, fasudil is an attractive antitumor drug candidate for the treatment of laryngeal carcinoma.

Eoh KJ, Lee SH, Kim HJ, et al.
MicroRNA-630 inhibitor sensitizes chemoresistant ovarian cancer to chemotherapy by enhancing apoptosis.
Biochem Biophys Res Commun. 2018; 497(2):513-520 [PubMed] Related Publications
MicroRNA-630 (miR-630) has been implicated in the development and progression of multiple cancers. The current study aimed to investigate the role of miR-630 in chemoresistant epithelial ovarian cancer. MiR-630 expression levels were detected in ovarian cancer cell line SKOV3 and paclitaxel-resistant SKOV3 (SKOV3-TR) via microarray and qRT-PCR. MiR-630 inhibitors and negative controls were transfected into SKOV3 and SKOV3-TR cells. Wound healing, invasion, chemosensitivity, and cell apoptosis assays were performed to determine proliferation and migration rates. Chemoresistant patient-derived xenograft (PDX) models were established and utilized to verify the effect of miR-630 on chemoresistant ovarian cancer. Inhibition of miR-630 decreased cell proliferation and enhanced the sensitivity of SKOV3-TR and SKOV3 cells to paclitaxel. In the chemosensitivity assay, we observed that the miR-630 inhibitor exhibited a synergistic effect with paclitaxel on SKOV3-TR cells. Inhibition was correlated with enhanced expression of apoptosis-related proteins. APAF-1 was predicted to be a potential target of miR-630. An in vivo PDX study showed that the miR-630 inhibitor sensitized chemoresistant ovarian cancer to paclitaxel. Thus, miR-630 inhibitor sensitizes chemoresistant epithelial ovarian cancer to chemotherapy by enhancing apoptosis. Our findings suggest that miR-630 might be a potential therapeutic target for chemotherapy-resistant ovarian cancer.

Wever CM, Geoffrion D, Grande BM, et al.
The genomic landscape of two Burkitt lymphoma cases and derived cell lines: comparison between primary and relapse samples.
Leuk Lymphoma. 2018; 59(9):2159-2174 [PubMed] Related Publications
Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.

Tirapelli DPDC, Lustosa IL, Menezes SB, et al.
High expression of XIAP and Bcl-2 may inhibit programmed cell death in glioblastomas.
Arq Neuropsiquiatr. 2017; 75(12):875-880 [PubMed] Related Publications
Glioblastoma (GBM) is the most malignant glioma and represents 29% of all brain tumors. Tumorigenesis is intimately connected with characteristics acquired in the physiologic pathway of cellular death.
OBJECTIVE: In the present study, the expression of anti-apoptotic (XIAP and Bcl-2) and apoptotic (cytochrome C, caspase 9, APAF-1), caspase 3 and the Smac/DIABLO genes related to the apoptosis pathway were evaluated in 30 samples of glioblastoma.
METHODS: The gene expression was evaluated in 30 glioblastomas (WHO grade IV) and compared to 10 white matter control samples with real-time PCR.
RESULTS AND CONCLUSION: There were higher expressions of XIAP (p = 0.0032) and Bcl-2 (p = 0.0351) in the glioblastoma samples compared to the control samples of normal brain. These results raise the question of whether Bcl-2 and XIAP genes can be responsible for the inhibition of programmed cell death in glioblastomas. Moreover, they provide additional information capable of allowing the development of new target therapy strategies.

Heo SK, Noh EK, Kim JY, et al.
Targeting c-KIT (CD117) by dasatinib and radotinib promotes acute myeloid leukemia cell death.
Sci Rep. 2017; 7(1):15278 [PubMed] Free Access to Full Article Related Publications
Dasatinib and radotinib are oral BCR-ABL tyrosine kinase inhibitors that were developed as drugs for the treatment of chronic myeloid leukemia. We report here that the c-KIT (CD117) targeting with dasatinib and radotinib promotes acute myeloid leukemia (AML) cell death, and c-KIT endocytosis is essential for triggering c-KIT-positive AML cell death by dasatinib and radotinib during the early stages. In addition, dasatinib and radotinib reduce heat shock protein 90β (HSP90β) expression and release Apaf-1 in c-KIT-positive AML cells. Finally, this activates a caspase-dependent apoptotic pathway in c-KIT-positive AML cells. Moreover, the inhibition of c-KIT endocytosis by dynamin inhibitor (DY) reversed cell viability and c-KIT expression by dasatinib and radotinib. HSP90β expression was recovered by DY in c-KIT-positive AML cells as well. Furthermore, the effect of radotinib on c-KIT and HSP90β showed the same pattern in a xenograft animal model using HEL92.1.7 cells. Therefore, dasatinib and radotinib promote AML cell death by targeting c-KIT. Taken together, these results indicate that dasatinib and radotinib treatment have a potential role in anti-leukemic therapy on c-KIT-positive AML cells.

Chang PY, Kuo TM, Chen PK, et al.
Arecoline N-Oxide Upregulates Caspase-8 Expression in Oral Hyperplastic Lesions of Mice.
J Agric Food Chem. 2017; 65(47):10197-10205 [PubMed] Related Publications
Areca nut is strongly associated with oral squamous cell carcinoma (OSCC) occurrence. Arecoline N-oxide (ANO), a metabolite of the areca alkaloid arecoline, exhibits an oral fibrotic effect in NOD/SCID mice. Caspase-8, a cysteine protease encoded by the CASP8 gene, is a central mediator in the extrinsic apoptotic pathway via death receptors. Deregulation of caspase-8 in OSCC has been reported. This study investigates the regulation of caspase-8 in ANO-induced oral squamous epithelial hyperplasia that represents the initial highly proliferative stage of oral carcinogenesis. CASP8 somatic mutations were identified from whole-exome sequencing of OSCC samples. Immunohistochemical staining showed upregulation of caspase-8 in ANO-induced hyperplasia of both NOD-SCID and C57BL/6 mice. Levels of expression of CASP8, APAF-1, BAX, and BAD increased in ANO-treated DOK cells. Co-localization of increased caspase-8 and PCNA levels was detected in ANO-induced hyperplastic lesions, whereas no co-localization among γ-H2A.X, caspase-3, and upregulated caspase-8 was observed. The findings indicate that upregulation of caspase-8 is involved in cell proliferation rather than apoptosis during the initial stage of ANO-mediated oral tumorigenesis.

Ma Y, Liu W, Zhang L, Jia G
Effects of Histone Deacetylase Inhibitor Panobinostat (LBH589) on Bone Marrow Mononuclear Cells of Relapsed or Refractory Multiple Myeloma Patients and Its Mechanisms.
Med Sci Monit. 2017; 23:5150-5157 [PubMed] Free Access to Full Article Related Publications
BACKGROUND The aim of this study was to explore the impact of LBH589 alone or in combination with proteasome inhibitor bortezomib on multiple myeloma (MM) cell proliferation and its mechanism. MATERIAL AND METHODS MM cell line U266 and RRMM-BMMNC were treated with different concentrations of LBH589 alone or in combination with bortezomib. Cell proliferation was detected by MTT assay. Cell cycle and apoptosis was analyzed by flow cytometry. The protein and mRNA level of related genes was determined by Western blotting and qRT-PCR respectively. RESULTS U266 cell and RRMM-BMMNC proliferation were inhibited by different concentrations of LBH589 (0, 10, 20, and 50 nmol/L) alone or 50 nmol/L of LBH589 in combination with bortezomib (10 and 20 nmol/L) in a dose- and time-dependent manner. LBH589 significantly induced G0/G1phase arrest and apoptosis in RRMM-BMMNC in a dose-dependent manner. The effects were significantly higher in all combined groups than in single-agent groups (all P<0.05). The mRNA level of Caspase3 and APAF1 were up-regulated gradually, while TOSO gene expression in RRMM-BMMNC was down-regulated gradually in a dose- and time-dependent manner. Moreover, LBH589 significantly induced hyperacetylation of histone H4, the protein level of PARP notably increased, and the level of Bcl-X decreased. CONCLUSIONS LBH589 can inhibit MM cell growth, block the cell cycle, and induce cell apoptosis, which has an anti-resistant effect on multidrug-resistant cells. LBH589 in combination with bortezomib has a synergistic effect on myeloma cells; its mechanism and reversal of drug resistance mechanism is involved in multiple changes in gene expression.

Zhang Y, Guo Y, Wang M, et al.
Quercetrin from Toona sinensis leaves induces cell cycle arrest and apoptosis via enhancement of oxidative stress in human colorectal cancer SW620 cells.
Oncol Rep. 2017; 38(6):3319-3326 [PubMed] Free Access to Full Article Related Publications
Finding effective strategies against colorectal cancer (CRC) is still an emergent health problem. In the present study, we investigated the anticancer activity of quercetrin from Toona sinensis leaves (QTL) and explored the underlying mechanism in human CRC cell line SW620. The cells were treated with various concentrations of QTL and the cytotoxic effects of QTL were determined using the MTT assay. Apoptosis and cell cycle status were detected by flow cytometry. Reactive oxygen species (ROS) levels and mitochondrial membrane potential (∆Ψm) were assessed using DCF-DA and JC-1 fluorescence spectrophotometry, respectively. Western blot analysis was used to quantify the expression of apoptosis‑related proteins. RT-PCR was applied to determine the mRNA levels of glutathione peroxidase (GPx) and catalase (CAT). QTL exhibited growth inhibitory effects and caused cell cycle arrest in the G2/M phase, which was accompanied by increased expression of p53 and p21 proteins. QTL promoted apoptosis which was consistent with the upregulated expression of Bax, cytochrome c, caspase-9, Apaf-1 and caspase-3. In addition, QTL induced the loss of mitochondrial membrane potential and triggered ROS generation, as revealed by the downregulated mRNA expression and enzymatic activity of GPx and CAT. Furthermore, both N‑acetyl cysteine (NAC) and GSH attenuated the QTL-induced growth inhibition observed in SW620 cells along with the increase of ROS levels. These findings revealed that QTL inhibited the growth of CRC cells and facilitated apoptosis by enhancing oxidative stress. QTL may therefore have potential for use in CRC chemotherapy.

Vural K, Kosova F, Kurt FÖ, Tuğlu İ
In vitro investigation of the effect of matrix molecules on the behavior of colon cancer cells under the effect of geldanamycin derivative.
Tumour Biol. 2017; 39(10):1010428317720569 [PubMed] Related Publications
The chaperone-binding drug, 17-allylamino-17-demethoxygeldanamycin, has recently come into clinical use. It is a derivative of geldanamycin, an ansamycin benzoquinone antibiotic with anti-carcinogenic effect. Understanding the effect of this drug on the cancer cells and their niche is important for treatment. We applied 17-allylamino-17-demethoxygeldanamycin to colon cancer cell line (Colo 205) on matrix molecules to investigate the relationship of apoptosis with terminal deoxynucleotidyl transferase dUTP nick end labeling immunocytochemistry and related gene expression. We used laminin and collagen I for matrix molecules and vascular endothelial growth factor for angiogenic structure. We also examined apoptosis-related signaling pathway including mitochondrial proteins, cytochrome c, Bcl-2, caspase-9, Apaf-1 expression using real-time polymerase chain reaction. There was clear effect of 17-allylamino-17-demethoxygeldanamycin that killed more cells on tissue culture plastic compared to matrix molecules. The IC

He J, Feng X, Hua J, et al.
miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells.
Cell Cycle. 2017; 16(20):1943-1953 [PubMed] Free Access to Full Article Related Publications
microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3'-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells.

Sho S, Court CM, Winograd P, et al.
A prognostic mutation panel for predicting cancer recurrence in stages II and III colorectal cancer.
J Surg Oncol. 2017; 116(8):996-1004 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: Approximately 20-40% of stage II/III colorectal cancer (CRC) patients develop relapse. Clinicopathological factors alone are limited in detecting these patients, resulting in potential under/over-treatment. We sought to identify a prognostic tumor mutational profile that could predict CRC recurrence.
METHODS: Whole-exome sequencing data were obtained for 207 patients with stage II/III CRC from The Cancer Genome Atlas. Mutational landscape in relapse-free versus relapsed cohort was compared using Fisher's exact test, followed by multivariate Cox regression to identify genes associated with cancer recurrence. Bootstrap-validation was used to examine internal/external validity.
RESULTS: We identified five prognostic genes (APAF1, DIAPH2, NTNG1, USP7, and VAV2), which were combined to form a prognostic mutation panel. Patients with ≥1 mutation(s) within this five-gene panel had worse prognosis (3-yr relapse-free survival [RFS]: 53.0%), compared to patients with no mutation (3-yr RFS: 84.3%). In multivariate analysis, the five-gene panel remained prognostic for cancer recurrence independent of stage and high-risk features (hazard ratio 3.63, 95%CI [1.93-6.83], P < 0.0001). Furthermore, its prognostic accuracy was superior to the American Joint Commission on Cancer classification (concordance-index: 0.70 vs 0.54).
CONCLUSIONS: Our proposed mutation panel identifies CRC patients at high-risk for recurrence, which may help guide adjuvant therapy and post-operative surveillance protocols.

Park YH, Seo JH, Park JH, et al.
Hsp70 acetylation prevents caspase-dependent/independent apoptosis and autophagic cell death in cancer cells.
Int J Oncol. 2017; 51(2):573-578 [PubMed] Related Publications
Cancer cells are continuously challenged by adverse environmental factors including hypoxia, metabolite restriction, and immune reactions, and must adopt diverse strategies to survive. Heat shock protein (Hsp) 70 plays a central role in protection against stress-induced cell death by maintaining protein homeostasis and interfering with the process of programmed cell death. Recent findings have suggested that Hsp70 acetylation is a key regulatory modification required for its chaperone activity, but its relevance in the process of programmed cell death and the underlying mechanisms involved are not well understood. In this study, we sought to investigate mechanisms mediated by Hsp70 acetylation in relation to apoptotic and autophagic programmed cell death. Upon stress-induced apoptosis, Hsp70 acetylation inhibits apoptotic cell death, mediated by Hsp70 association with apoptotic protease-activating factor (Apaf)-1 and apoptosis-inducing factor (AIF), key modulators of caspase-dependent and -independent apoptotic pathways, respectively. Hsp70 acetylation also attenuated autophagic cell death associated with upregulation of autophagy-related genes and autophagosome induction. Collectively, these results suggest that the acetylation of Hsp70 plays key regulatory roles in cell death pathways as well as in its function as a chaperone, together enabling cellular protection in response to stress.

Kosova F, Kasar Z, Tuglu I, et al.
Apoptosis of colon cancer cells under the effect of geldanamycin derivate.
Bratisl Lek Listy. 2017; 118(5):288-291 [PubMed] Related Publications
AIM: The apoptotic effect of geldanamycin derivative may be important for the colorectal cancer therapy. The mechanisms of apoptosis require understanding of the behavior of colon cancer cell line Colo-205 which mimics colon adenocarcinoma. Therefore, the effect of IC50 dose of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on the colon cancer cells in vitro was studied for its anti-apoptotic activity.
METHOD: Apoptotic ratio of the Colo-205 cells was determined after 17-AAG application with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and apoptosis related genes. Apoptosis signal path related key mitochondrial proteins, cytochrome c, bcl-2, caspase 9 and Apaf-1 expression were examined with RT-PCR method.
RESULTS: 17-AAG caused induction of cell death. Apoptotic related genes such as cytochrome-c, Apaf-1 and caspase-9 protein expressions were increased significantly (p < 0.05) and anti-apoptotic bcl-2 expression was decreased significantly (p < 0.05). Our results indicated that the application of 17-AAG on Colo-205 cells showed anticancer effect by the apoptosis due to alteration of apoptotic genes.
CONCLUSION: The apoptotic effect of 17-AAG as an natural product for alternative medicine would be very important for the success and quality of life during the treatment of colon carcinoma with the combination of anticancer drugs (Tab. 1, Fig. 2, Ref. 32).

Tirapelli DP, Menezes SB, Franco IM, et al.
High expression of anti-apoptotic genes in grade I and II meningiomas.
Arq Neuropsiquiatr. 2017; 75(4):209-215 [PubMed] Related Publications
Objective: To evaluate the expression of c-FLIP, XIAP, Bcl-2, caspase 3, 8 and 9, cytochrome c, APAF 1 and Smac/DIABLO genes related to apoptosis pathways.
Methods: The gene expression was evaluated in 30 meningiomas (WHO grades I and II) and in 10 normal samples (from arachnoid tissue) through PCR-RT.
Results: The results showed higher expression of anti-apoptotic genes in meningiomas when compared to the control group, which had a low expression of pro-apoptotic genes.
Conclusion: There is a possible block in the activation of caspases through the intrinsic apoptosis pathway in meningiomas. c-FLIP modulates caspase 8 and, by inhibiting its activation due to the lack of connection with the receiver, there is a block to the FAS activation of apoptosis by its extrinsic pathway.

Hussein S, Mosaad H, Rashed HE, El-Anwar MW
Up-regulated miR-221 expression as a molecular diagnostic marker in laryngeal squamous cell carcinoma and its correlation with Apaf-1 expression.
Cancer Biomark. 2017; 19(3):279-287 [PubMed] Related Publications
BACKGROUND: Despite the improvement in the diagnosis and the management of laryngeal squamous cell carcinoma (LSCC), many patients with advanced-stage have poor prognosis in the form of recurrence, metastasis or death. So, recognition of new molecular markers would facilitate the development of targeted therapies.
OBJECTIVES: To investigate miR-221 expression in LSCC and its possible correlation to apoptotic protease activating factor-1 (Apaf-1). Also, we aimed to investigate the association between miR-221 and Apaf-1 expressions and the clinicopathological features of LSCC.
METHODS: We investigated the expression of miR-221 (by qRT-PCR) and Apaf-1 (by qRT-PCR and immunohistochemistry) in primary LSCC and adjacent normal tissues.
RESULTS: We found significant up-regulation of miR-221 and significant down-regulation of Apaf-1 expression in LSCC tissues compared to normal nearby laryngeal tissues. In addition, significant associations between up-regulated miR-221 and down-regulated Apaf-1 expressions and clinical stage and lymph node (LN) metastasis (P< 0.001 for each) were found. Furthermore, there was a negative correlation between miR-221 gene expression and Apaf-1 gene expression (r=-0.73, P< 0.001).
CONCLUSION: miR-221 can be considered as a diagnostic marker in LSCC and Apaf-1 may be considered as a possible target of miR-221.

Loginov VI, Pronina IV, Burdennyi AM, et al.
Role of Methylation in the Regulation of Apoptosis Genes APAF1, DAPK1, and BCL2 in Breast Cancer.
Bull Exp Biol Med. 2017; 162(6):797-800 [PubMed] Related Publications
Changes in the levels of expression of proapoptotic genes APAF1 and DAPK1 and antiapoptotic gene BCL2 were studied by real time PCR in specimens of tumors and histologically intact tissue from 28 patients with breast cancer. The expression of APAF1 and DAPK1 was below the normal in the majority of tumor samples (p<0.05), while the level of BCL2 mRNA more often surpassed the normal (p<0.1). Study of the same sample of specimens by methylspecific PCR showed predominance of APAF1 and DAPK1 hypermethylation (p<0.05 and p<0.1, respectively) and more frequent hypomethylation of BCL2. A significant correlation between changes in the levels of expression and methylation (r=0.40-0.49; p<0.05) was detected for all three genes (APAF1, DAPK1, and BCL2). The results suggest that methylation play an important role in the regulation of these apoptosis system genes in breast cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. APAF1, Cancer Genetics Web: http://www.cancer-genetics.org/APAF1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999