ADCYAP1

Gene Summary

Gene:ADCYAP1; adenylate cyclase activating polypeptide 1
Aliases: PACAP
Location:18p11.32
Summary:This gene encodes a secreted proprotein that is further processed into multiple mature peptides. These peptides stimulate adenylate cyclase and increase cyclic adenosine monophosphate (cAMP) levels, resulting in the transcriptional activation of target genes. The products of this gene are key mediators of neuroendocrine stress responses. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2013]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:pituitary adenylate cyclase-activating polypeptide
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (15)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Endometrial Cancer
  • Vagina
  • DNA Sequence Analysis
  • Papillomavirus Infections
  • Tissue Distribution
  • Base Sequence
  • VIPR1
  • Lung Cancer
  • ROC Curve
  • Paired Box Transcription Factors
  • Neuropeptides
  • Alternative Splicing
  • Biomarkers, Tumor
  • Cell Adhesion Molecule-1
  • Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
  • Case-Control Studies
  • Prostate Cancer
  • Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
  • Cancer Gene Expression Regulation
  • Receptors, Vasoactive Intestinal Peptide, Type II
  • Vaginal Smears
  • Dose-Response Relationship, Drug
  • Human papillomavirus 16
  • DNA Methylation
  • Young Adult
  • Adenylyl Cyclases
  • Messenger RNA
  • ADCYAP1
  • Immunoglobulins
  • Chromosome 18
  • CpG Islands
  • Pituitary Adenylate Cyclase-Activating Polypeptide
  • Immunohistochemistry
  • Pituitary Hormone Receptors
  • Vascular Endothelial Growth Factors
  • RTPCR
  • Cyclic AMP
  • VIP
  • Oncogenes
  • Vasoactive Intestinal Peptide Receptors
  • Pituitary Tumors
  • Cervical Cancer
Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ADCYAP1 (cancer-related)

Lugo JM, Tafalla C, Oliva A, et al.
Evidence for antimicrobial and anticancer activity of pituitary adenylate cyclase-activating polypeptide (PACAP) from North African catfish (Clarias gariepinus): Its potential use as novel therapeutic agent in fish and humans.
Fish Shellfish Immunol. 2019; 86:559-570 [PubMed] Related Publications
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide that belongs to the secretin/glucagon superfamily, of which some members have shown antimicrobial activities. Contrasting to mammals, published studies on the action of PACAP in non-mammalian vertebrate immune system remain scarce. Some of our recent studies added this peptide to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in teleost fish. Regulation of PACAP and expression of its receptor genes has been demonstrated during an immune response mounted against acute bacterial infection in fish, though the direct effect of PACAP against fish pathogenic bacteria has never been addressed. Current work provides evidence of antimicrobial activity of Clarias gariepinus PACAP against a wide spectrum of Gram-negative and Gram-positive bacteria and fungi of interest for human medicine and aquaculture, in which computational prediction studies supported the putative PACAP therapeutic activity. Results also indicated that catfish PACAP not only exhibits inhibitory effects on pathogen growth, but also affects the proliferation of human non-small cell lung cancer cell line H460 in a dose-dependent manner. The observed cytotoxic activity of catfish PACAP against human tumor cells and pathogenic microorganisms, but not healthy fish and mammalian erythrocytes support a potential physiological role of this neuropeptide in selective microbial and cancer cell killing. All together, our findings extend the mechanisms by which PACAP could contribute to immune responses, and open up new avenues for future therapeutic application of this bioactive neuropeptide.

Deng W, Chen W, Clement S, et al.
Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation.
Nat Commun. 2018; 9(1):2713 [PubMed] Free Access to Full Article Related Publications
Liposomes have been well established as an effective drug delivery system, due to simplicity of their preparation and unique characteristics. However conventional liposomes are unsuitable for the on-demand content release, which limits their therapeutic utility. Here we report X-ray-triggerable liposomes incorporating gold nanoparticles and photosensitizer verteporfin. The 6 MeV X-ray radiation induces verteporfin to produce singlet oxygen, which destabilises the liposomal membrane and causes the release of cargos from the liposomal cavity. This triggering strategy is demonstrated by the efficiency of gene silencing in vitro and increased effectiveness of chemotherapy in vivo. Our work indicates the feasibility of a combinatorial treatment and possible synergistic effects in the course of standard radiotherapy combined with chemotherapy delivered via X-ray-triggered liposomes. Importantly, our X-ray-mediated liposome release strategy offers prospects for deep tissue photodynamic therapy, by removing its depth limitation.

Jóźwiak-Bębenista M, Jasińska-Stroschein M, Kowalczyk E
The differential effects of neuroleptic drugs and PACAP on the expression of BDNF mRNA and protein in a human glioblastoma cell line.
Acta Neurobiol Exp (Wars). 2017; 77(3):205-213 [PubMed] Related Publications
Despite numerous studies, the molecular mechanisms underpinning the action of antipsychotic drugs remain not fully understood. It has been suggested that, in addition to the modulation of monoaminergic neurotransmission, antipsychotic drugs can also affect the expression of neurotrophic factors in the brain. The present study examines the effects of a first-generation neuroleptic drug (FGA; haloperidol) and two second-generation neuroleptic drugs (SGAs; olanzapine and amisulpride) on the expression and levels of brain-derived neurotrophic factor (BDNF) in an astrocyte-like T98G glioblastoma cell line. The effects of these drugs were compared to the action of PACAP38, a neuropeptide with well-known BDNF-mediated neuroprotective effects. The tested neuroleptics differentially regulated the mRNA expression and protein level of BDNF depending on concentration and incubation time. Real-time PCR analysis demonstrates that, of the three tested neuroleptics, both haloperidol and olanzapine at a concentration of 5 µM (but not at 20 µM) increased BDNF mRNA expression with similar efficacy after 72-hour incubation. In order to confirm the observed changes in the mRNA expression of BDNF, a protein expression assay was performed. The exposure of cells to 5 μM olanzapine alone for 72 hours increased BDNF concentration in the culture medium by 29%. Additionally, PACAP significantly up-regulated BDNF mRNA expression in T98G cells and the obtained results correlated positively with the increased production of BDNF protein, 22% above control values. Our findings show that olanzapine, similarly to exogenous PACAP38, increased BDNF mRNA expression and protein release, which can contribute to its neuroprotective mechanism of action in the cells of non-neuronal origin. The results of the paper show that olanzapine, similarly to exogenous PACAP38, increased BDNF mRNA expression and protein release, which can contribute to its neuroprotective mechanism of action in the cells of nonneuronal origin. The results of the present paper confirm the findings that BDNF may represent the key target for olanzapine and PACAP.

Clarke MA, Luhn P, Gage JC, et al.
Discovery and validation of candidate host DNA methylation markers for detection of cervical precancer and cancer.
Int J Cancer. 2017; 141(4):701-710 [PubMed] Related Publications
Human papillomavirus (HPV) testing has been recently introduced as an alternative to cytology for cervical cancer screening. However, since most HPV infections clear without causing clinically relevant lesions, additional triage tests are required to identify women who are at high risk of developing cancer. We performed DNA methylation profiling on formalin-fixed, paraffin-embedded tissue specimens from women with benign HPV16 infection and histologically confirmed cervical intraepithelial neoplasia grade 3, and cancer using a bead-based microarray covering 1,500 CpG sites in over 800 genes. Methylation levels in individual CpG sites were compared using a t-test, and results were summarized by computing p-values. A total of 12 candidate genes (ADCYAP1, ASCL1, ATP10, CADM1, DCC, DBC1, HS3ST2, MOS, MYOD1, SOX1, SOX17 and TMEFF2) identified by DNA methylation profiling, plus an additional three genes identified from the literature (EPB41L3, MAL and miR-124) were chosen for validation in an independent set of 167 liquid-based cytology specimens using pyrosequencing and targeted, next-generation bisulfite sequencing. Of the 15 candidate gene markers, 10 had an area under the curve (AUC) of ≥ 0.75 for discrimination of high grade squamous intraepithelial lesions or worse (HSIL+) from

Gruppetta M, Formosa R, Falzon S, et al.
Expression of cell cycle regulators and biomarkers of proliferation and regrowth in human pituitary adenomas.
Pituitary. 2017; 20(3):358-371 [PubMed] Related Publications
PURPOSE: The pathogenesis of pituitary adenomas (PA) is complex. Ki-67, pituitary tumour transforming gene (PTTG), vascular endothelial growth factor (VEGF), cyclin D1, c-MYC and pituitary adenylate cyclase-activating peptide (PACAP) protein expression were analysed and correlated with tumour and patient characteristics.
METHODS: 74 pituitary tumour samples (48 non-functional PA, 26 functional PAs); Immunohistochemical analysis of protein expression, retrospective analysis of MR images and in vitro analysis of octreotide treatment was carried out on GH3 cells.
RESULTS: PTTG expression was negatively associated with age and positively with PA size, regrowth and Ki-67 index. Cyclin D1 correlated with Ki-67 and tumour size. c-MYC negatively correlated with size of tumour and age; and correlated with PTTG expression. Somatostatin analogue treatment was associated with lower Ki-67, PTTG and Cyclin D1 expression while T2 hypointense PAs were associated with lower PTTG, cyclin D1, c-MYC and Ki-67. In vitro analyses confirmed the effect of somatostatin analogue treatment on Pttg and Cyclin D1 expression.
CONCLUSIONS: Interesting and novel observations on the differences in expression of tumour markers studied are reported. Correlation between Ki-67 expression, PTTG nuclear expression and recurrence/regrowth of PAs, emphasizes the role that Ki-67 and PTTG expression have as markers of increased proliferation. c-MYC and PTTG nuclear expression levels were correlated providing evidence that PTTG induces c-MYC expression in PAs and we propose that c-MYC might principally have a role in early pituitary tumorigenesis. Evidence is shown that the anti-proliferative effect of somatostatin analogue treatment in vivo occurs through regulation of the cell cycle.

Georg B, Falktoft B, Fahrenkrug J
PKA, novel PKC isoforms, and ERK is mediating PACAP auto-regulation via PAC
Neuropeptides. 2016; 60:83-89 [PubMed] Related Publications
The neuropeptide PACAP is expressed throughout the central and peripheral nervous system where it modulates diverse physiological functions including neuropeptide gene expression. We here report that in human neuroblastoma NB-1 cells PACAP transiently induces its own expression. Maximal PACAP mRNA expression was found after stimulation with PACAP for 3h. PACAP auto-regulation was found to be mediated by activation of PACAP specific PAC

Kim MK, Lee IH, Lee KH, et al.
DNA methylation in human papillomavirus-infected cervical cells is elevated in high-grade squamous intraepithelial lesions and cancer.
J Gynecol Oncol. 2016; 27(2):e14 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: DNA methylation has been shown to be a potential biomarker for early cancer detection. The aim of this study was to evaluate DNA methylation profiles according to liquid-based Pap (LBP) test results and to assess their diagnostic value in a Korean population.
METHODS: A total of 205 patients with various Papanicolaou test results were enrolled to this study (negative, 26; atypical squamous cells of undetermined significance, 39; low grade squamous intraepithelial lesion, 44; high grade squamous intraepithelial lesion (HSIL), 48; and cancer, 48). DNA methylation analysis of four genes, ADCYAP1, PAX1, MAL, and CADM1, was performed on residual cervical cells from LBP samples using a quantitative bisulfite pyrosequencing method. To evaluate the diagnostic performance of the four methylated genes for cancer detection, receiver operating characteristic (ROC) curves were drawn. Sensitivities and specificities were also tested at cutoffs determined from the ROC curves.
RESULTS: Cervical cancer cells showed dramatically increased methylation levels for the four genes analyzed. ADCYAP1 and PAX1 also trended toward elevated methylation levels in HSIL samples, although the levels were much lower than those in cancer cells. The sensitivities of methylated ADCYAP1, PAX1, MAL, and CADM1 for the detection of cancer were 79.2%, 75.0%, 70.8%, and 52.1%, and the specificities were 92.0%, 94.0%, 94.7%, and 94.0%, respectively. Methylated ADCYAP1 and PAX1 demonstrated relatively better discriminatory ability than did methylated MAL and CADM1 (area under the curves 0.911 and 0.916 vs. 0.854 and 0.756, respectively).
CONCLUSION: DNA methylation status, especially in the ADCYAP1 and PAX1 genes, showed relatively good specificity, ranging from 90% to 94%. The possible additive and complementary roles of DNA methylation testing with respect to conventional cervical cancer screening programs will need to be validated in prospective population-based studies.

Ki EY, Lee KH, Hur SY, et al.
Methylation of Cervical Neoplastic Cells Infected With Human Papillomavirus 16.
Int J Gynecol Cancer. 2016; 26(1):176-83 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: This study was conducted to evaluate the role of methylation of adenylate cyclase activating peptide 1 (ADCYAP1), paired box gene 1 (PAX1), cell adhesion molecule 1 (CADM1), and T-lymphocyte maturation-associated protein (MAL) during carcinogenesis.
METHODS: We evaluated the methylation of 4 genes by using the cervical carcinoma cell lines (CaSki, SiHa, HeLa, and C33A) and cervical neoplastic cells from 56 subjects with human papillomavirus 16 (HPV16)-infected low-grade squamous intraepithelial lesions (LSILs), 50 subjects with HPV16-infected high-grade squamous intraepithelial lesions (HSILs), and 24 subjects with HPV16-infected invasive cervical cancer who attended Seoul St. Mary's Hospital. Methylation of the 4 genes was evaluated using quantitative bisulfate pyrosequencing.
RESULTS: The ADCYAP1 promoter was hypermethylated in the 4 cell lines (CaSki, 97.40 ± 1.39; SiHa, 82.04 ± 17.02; HeLa, 96.14 ± 2.08; and C33A, 78 ± 10.18). PAX1 and CADM1 were hypermethylated in the HPV16/18-infected cell lines CaSki (PAX1, 91.18 ± 9.91; CADM1, 93.5 ± 7.33), SiHa (PAX1, 96.14 ± 2.08; CADM1, 93.15 ± 8.81), and HeLa (PAX1, 82.04 ± 17.02; CADM1, 92.43 ± 9.95). MAL was hypermethylated in the CaSki cell line (96.04 ± 4.74). Among human cervical neoplastic cells, the methylation indices of ADCYAP1 were 7.8 (95% confidence interval [95% CI], 7.0-8.6) in subjects with LSILs and 39.8 (95% CI, 29.0-54.7) in those with cervical cancer (P < 0.001); for PAX1, 7.2 (95% CI, 6.1-8.5) and 37.8 (95% CI, 27.1-52.7), respectively; for CADM1, 3.5 (95% CI, 3.0-4.0) and 17.7 (95% CI, 10.8-29.1), respectively; for MAL, 2.7 (95% CI, 2.5-3.0) and 13.0 (95% CI, 7.6-22.0), respectively (P < 0.001 for each). Immunohistochemical staining results were positive in the cytoplasm of subjects with low methylation of the 4 gene promoters; however, they were negative in the cytoplasm of those with hypermethylation of the 4 gene promoters.
CONCLUSIONS: The results of this study suggest that the methylation of ADCYAP1, PAX1, CADM1, and MAL may be highly associated with the development of cervical cancer, and that gene expression can be suppressed by gene promoter hypermethylation.

Bakkum-Gamez JN, Wentzensen N, Maurer MJ, et al.
Detection of endometrial cancer via molecular analysis of DNA collected with vaginal tampons.
Gynecol Oncol. 2015; 137(1):14-22 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: We demonstrate the feasibility of detecting EC by combining minimally-invasive specimen collection techniques with sensitive molecular testing.
METHODS: Prior to hysterectomy for EC or benign indications, women collected vaginal pool samples with intravaginal tampons and underwent endometrial brushing. Specimens underwent pyrosequencing for DNA methylation of genes reported to be hypermethylated in gynecologic cancers and recently identified markers discovered by profiling over 200 ECs. Methylation was evaluated individually across CpGs and averaged across genes. Differences between EC and benign endometrium (BE) were assessed using two-sample t-tests and area under the curve (AUC).
RESULTS: Thirty-eight ECs and 28 BEs were included. We evaluated 97 CpGs within 12 genes, including previously reported markers (RASSF1, HSP2A, HOXA9, CDH13, HAAO, and GTF2A1) and those identified in discovery work (ASCL2, HTR1B, NPY, HS3ST2, MME, ADCYAP1, and additional CDH13 CpG sites). Mean methylation was higher in tampon specimens from EC v. BE for 9 of 12 genes (ADCYAP1, ASCL2, CDH13, HS3ST2, HTR1B, MME, HAAO, HOXA9, and RASSF1) (all p<0.05). Among these genes, relative hypermethylation was observed in EC v. BE across CpGs. Endometrial brush and tampon results were similar. Within tampon specimens, AUC was highest for HTR1B (0.82), RASSF1 (0.75), and HOXA9 (0.74). This is the first report of HOXA9 hypermethylation in EC.
CONCLUSION: DNA hypermethylation in EC tissues can also be identified in vaginal pool DNA collected via intravaginal tampon. Identification of additional EC biomarkers and refined collection methods are needed to develop an early detection tool for EC.

Li YF, Hsiao YH, Lai YH, et al.
DNA methylation profiles and biomarkers of oral squamous cell carcinoma.
Epigenetics. 2015; 10(3):229-36 [PubMed] Free Access to Full Article Related Publications
Oral squamous cell carcinoma (OSCC) constitutes >90% of oral cancers and is the sixth most common malignancy among males worldwide and the fourth leading cause of death due to cancer among males in Taiwan. However, most patients do not receive a diagnosis of OSCC until the late stages, which have a lower survival rate. The use of molecular marker analysis to identify early-stage OSCC would permit optimal timing for treatments and consequently prolong survival. The aim of this study was to identify biomarkers of OSCC using the Illumina GoldenGate Methylation Cancer Panel, which comprised a total of 1,505 CpG sites covering 807 genes. Samples of buccal mucosa resected from 40 OSCC patients and normal tissue samples obtained from 15 patients (normal mucosa from OSCC patients or from patients undergoing surgery unrelated to OSCC) were analyzed. Fms-related tyrosine kinase 4 (FLT4) methylation exhibited a perfect specificity for detecting OSCC, with an area under the receiver operating characteristic curve of 0.91 for both all-stage and early-stage OSCC. Methylation of 7 genes (ASCL1, FGF3, FLT4, GAS7, KDR, TERT, and TFPI2) constitutes the top-20 panels for detecting OSCC. The top-20 panels for detecting early-stage OSCC contain 8 genes: ADCYAP1, EPHA7, FLT4, GSTM2, KDR, MT1A, NPY, and TFPI2. FLT4 RNA expression and methylation level were validated using RT-PCR and a pyrosequencing methylation assay. The median level of FLT4 expression was 2.14-fold for normal relative to OSCC tissue samples (P < 0.0001). Among the 8 pyrosequenced FLT4 CpG sites, methylation level was much higher in the OSCC samples. In conclusion, methylation statuses of selected genes, and especially FLT4, KDR, and TFPI2, might be of great potential as biomarkers for early detection of buccal OSCC.

Lee JH, Lee JY, Rho SB, et al.
PACAP inhibits tumor growth and interferes with clusterin in cervical carcinomas.
FEBS Lett. 2014; 588(24):4730-9 [PubMed] Related Publications
Secretory clusterin (sCLU), an anti-apoptotic protein, is overexpressed in many tumors and enhances tumorigenesis and chemo-resistance. However, the regulation mechanism controlling the sCLU maturation process or activity remains undetermined. In this study, we found PACAP as a negative regulator of CLU. Overexpression of the PACAP gene in cervical cancer cell lines lacking PACAP expression significantly inhibited cell growth and induced apoptosis. We further demonstrated that interaction of PACAP with CLU significantly downregulated CLU expression and secretion, inhibited the Akt-Raf-ERK pathway, and suppressed the growth of human tumor xenografts in nude mice. This novel inhibitory function of PACAP may be applicable for developing novel molecular therapies for tumors with increased sCLU expression.

Wojtkiewicz J, Jana B, Kozłowska A, et al.
Innervation pattern of polycystic ovaries in the women.
J Chem Neuroanat. 2014; 61-62:147-52 [PubMed] Related Publications
The aim of the present study was to determine the changes in both the distribution pattern and density of nerve fibers containing dopamine β-hydroxylase (DβH), vesicular acetylcholine transporter (VAChT), neuronal nitric oxide synthase (nNOS), substance P (SP), calcitonin gene related peptide (CGRP), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), somatostatin (SOM), galanin (GAL) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the human polycystic ovaries. In the polycystic ovaries, when compared to the immunoreactions pattern observed in the control gonads, following changes were revealed: (1) an increase in the number of DβH-, VAChT-, VIP- or GAL-immunoreactive (IR) nerve fibers within the stroma as well as in the number of DβH-IR fibers near primordial follicles and medullar veins and venules; (2) a reduction in the number of nerve fibers containing nNOS, CGRP, SOM, PACAP within the stroma and in the numbers of CGRP-IR fibers around arteries; (3) an appearance of SP- and GAL-IR fibers around medullar and cortical arteries, arterioles, veins and venules, with except of GAL-IR fibers supplying medullar veins; and (4) the lack of nNOS-IR nerve fibers near primordial follicles and VIP-IR nerves around medullar arteries and arterioles. In conclusion, our results suggest that the changes in the innervation pattern of the polycystic ovaries in human may play an important role in the pathogenesis and/or course of this disorder.

Liu S, Zeng Y, Li Y, et al.
VPAC1 overexpression is associated with poor differentiation in colon cancer.
Tumour Biol. 2014; 35(7):6397-404 [PubMed] Related Publications
Vasoactive intestinal peptide (VIP) is a neurotransmitter that primarily functions as a vasodilator. VIP plays its role through binding to its receptors known as VIP/pituitary adenylate cyclase-activating peptide receptors (VPACs). In this study, we examined the expression of VPAC1 in human colon cancer tissues, analyzed the relationship between VPAC1 expression and cancer malignancy, and explored the possible mechanisms using immunohistochemistry and immunofluorescence double staining. The results showed that (1) poorly differentiated colon cancers have significantly higher VPAC1 expression than well-differentiated colon cancers do (p < 0.01); (2) phospho-epithelial growth factor receptor (EGFR) overexpression/activation in the cytoplasm of cancer cells is related to VPAC1 overexpression; (3) blood vessels surrounding colon cancer have significantly more VPAC1-positive than normal colon mucosa does; (4) tumor-associated macrophages (TAMs) of colon cancer have a higher level of VPAC1 expression than macrophages in normal colon mucosa do. These data suggest that VPAC1 overexpression is associated with poorer differentiation of colon cancer, which is likely caused by subsequent EGFR activation in cancer cells. In addition, VPAC1 overexpression in both blood vessels and macrophages in tumors may also play an important role in the development of aggressive cancer.

Wentzensen N, Bakkum-Gamez JN, Killian JK, et al.
Discovery and validation of methylation markers for endometrial cancer.
Int J Cancer. 2014; 135(8):1860-8 [PubMed] Free Access to Full Article Related Publications
The prognosis of endometrial cancer is strongly associated with stage at diagnosis, suggesting that early detection may reduce mortality. Women who are diagnosed with endometrial carcinoma often have a lengthy history of vaginal bleeding, which offers an opportunity for early diagnosis and curative treatment. We performed DNA methylation profiling on population-based endometrial cancers to identify early detection biomarkers and replicated top candidates in two independent studies. We compared DNA methylation values of 1,500 probes representing 807 genes in 148 population-based endometrial carcinoma samples and 23 benign endometrial tissues. Markers were replicated in another set of 69 carcinomas and 40 benign tissues profiled on the same platform. Further replication was conducted in The Cancer Genome Atlas and in prospectively collected endometrial brushings from women with and without endometrial carcinomas. We identified 114 CpG sites showing methylation differences with p values of ≤ 10(-7) between endometrial carcinoma and normal endometrium. Eight genes (ADCYAP1, ASCL2, HS3ST2, HTR1B, MME, NPY and SOX1) were selected for further replication. Age-adjusted odds ratios for endometrial cancer ranged from 3.44 (95%-CI: 1.33-8.91) for ASCL2 to 18.61 (95%-CI: 5.50-62.97) for HTR1B. An area under the curve (AUC) of 0.93 was achieved for discriminating carcinoma from benign endometrium. Replication in The Cancer Genome Atlas and in endometrial brushings from an independent study confirmed the candidate markers. This study demonstrates that methylation markers may be used to evaluate women with abnormal vaginal bleeding to distinguish women with endometrial carcinoma from the majority of women without malignancy.

Xia L, Shen C, Fu Y, et al.
MGC29506 induces cell cycle arrest and is downregulated in gastric cancer.
Cell Immunol. 2013; 281(1):31-6 [PubMed] Related Publications
The proapoptotic caspase adaptor protein (PACAP) is involved in cell-cycle regulation and promotes apoptosis. Both MGC29506 and PACAP are isoforms of the MGC29506 gene and are generated by differential splicing of the alternative splice-acceptor. In studying PACAP, we inadvertently constructed the eukaryotic expression vector MGC29506. At present, the function of the MGC29506 gene is largely unknown with the key exception of information obtained by bioinformatics. We studied the role of MGC29506 in gastric cancer cell proliferation, the cell cycle and apoptosis. In addition, we studied MGC29506 expression in gastric cancer patients and explored its significance. We found that the expression of MGC29506 in gastric cancer samples was lower than in samples from adjacent non-tumor tissues. We found that the MGC29506 protein was localized in the cell nucleus of AGS cells and inhibited their proliferation. Higher percentages of G0/G1 and S phase cells were induced by transfection with the MGC29506 gene than were induced by transfection with the negative control. We showed that cells transfected with MGC29506 were arrested at the G0/G1 and S phases of the cell cycle. However, we found no significant increases in apoptosis of cells transfected with MGC29506 compared with cells transfected with the negative control. Our results suggested that MGC29506 has the potential of functioning as a novel suppressor gene in gastric cancer. Downregulation of MGC29506 may also promote the progression of gastric cancer.

Vacas E, Fernández-Martínez AB, Bajo AM, et al.
Vasoactive intestinal peptide (VIP) inhibits human renal cell carcinoma proliferation.
Biochim Biophys Acta. 2012; 1823(10):1676-85 [PubMed] Related Publications
Clear renal cell carcinoma (cRCC) is an aggressive and fatal neoplasm. The present work was undertaken to investigate the antiproliferative potential of vasoactive intestinal peptide (VIP) exposure on non-tumoral (HK2) and tumoral (A498, cRCC) human proximal tubular epithelial cell lines. Reverse transcription and semiquantitative PCR was used at the VIP mRNA level whereas enzyme immunoanalysis was performed at the protein level. Both renal cell lines expressed VIP as well as VIP/pituitary adenylate cyclase-activating peptide (VPAC) receptors whereas only HK2 cells expressed formyl peptide receptor-like 1 (FPRL-1). Receptors were functional, as shown by VIP stimulation of adenylyl cyclase activity. Treatment with 0.1μM VIP (24h) inhibited proliferation of A498 but not HK2 cells as based on a reduction in the incorporation of [(3)H]-thymidine and BrdU (5'-Br-2'-deoxyuridine), PCNA (proliferating-cell nuclear antigen) expression and STAT3 (signal transducer and activator of transcription 3) expression and activation. VPAC(1)-receptor participation was established using JV-1-53 antagonist and siRNA transfection. Growth-inhibitory response to VIP was related to the cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP (EPAC)/phosphoinositide 3-kinase (PI3-K) signaling systems as shown by studies on adenylate cyclase stimulation, and using the EPAC-specific compound 8CPT-2Me-cAMP and specific kinase inhibitors such as H89, wortmannin and PD98059. The efficacy of VIP on the prevention of tumor progression was confirmed in vivo using xenografted athymic mouse. These actions support a potential role of this peptide and its agonists in new therapies for cRCC.

Kageyama K, Tamasawa N, Suda T
Signal transduction in the hypothalamic corticotropin-releasing factor system and its clinical implications.
Stress. 2011; 14(4):357-67 [PubMed] Related Publications
Corticotropin-releasing factor (CRF) is a major regulatory peptide in the hypothalamic-pituitary-adrenal (HPA) axis under stress conditions. In response to stress, CRF is produced in the hypothalamic paraventricular nucleus. Forskolin- or pituitary adenylate cyclase-activating polypeptide-stimulated CRF gene transcription is mediated by the cyclic AMP (cAMP) response element on the CRF 5'-promoter region. Estrogens enhance activation of the CRF gene in stress, while inducible cAMP-early repressor suppresses the stress response via inhibition of the cAMP-dependent CRF gene. Glucocorticoid-dependent repression of cAMP-stimulated CRF promoter activity is mediated by both the negative glucocorticoid-response element and the serum-response element, while interleukin-6 (IL-6) stimulates the CRF gene. Suppressor of cytokine signaling-3, stimulated by IL-6 and cAMP, is involved in the negative regulation of CRF gene expression. Such complex mechanisms contribute to stress responses and homeostasis in the hypothalamus. Moreover, disruption of the HPA axis may cause a number of diseases related to stress. For example, CRF-induced p21-activated kinase 3 mRNA expression may be related to the proliferation of corticotrophs in Nelson's syndrome. A higher molecular weight form of immunoreactive β-endorphin, putative proopiomelanocortin (POMC), is increased in CRF-knockout mice, suggesting the important role of CRF in the processing of POMC through changes in prohormone convertase type-1 expression levels.

Jung S, Yi L, Jeong D, et al.
The role of ADCYAP1, adenylate cyclase activating polypeptide 1, as a methylation biomarker for the early detection of cervical cancer.
Oncol Rep. 2011; 25(1):245-52 [PubMed] Related Publications
The ADCYAP1 gene encodes an adenylate cyclase activating polypeptide 1. ADCYAP1 has been known to be involved in various biological processes. Multiple cytosine guanine dinucleotides (CpG island) are found in the ADCYAP1 promoter region. Transcriptional silencing by promoter hypermethylation is an important regulatory mechanism in tumorigenesis in many cancers. Therefore, the methylation level of the ADCYAP1 promoter was investigated in eight cervical cancer cell lines and human tissue samples with a distinctive degree of malignant transformation. While multiple CpG sites in the ADCYAP1 promoter were highly methylated in CIN III and invasive carcinoma cells as well as seven cervical cancer cell lines, they were rarely methylated in normal cells. Importantly, methylation in the ADCYAP1 promoter seems to start from CIN I, relatively early stage of multistep carcinogenesis. This fact suggest that ADCYAP1 can be used as an effective and sensitive methylation biomarker for the early diagnosis of cervical cancer. Moreover, our data imply that the level of the ADCYAP1 promoter hypermethylation is correlated with cervical cancer development. We also show that ADCYAP1 gene expression was reactivated by the treatment of a DNA methyltransferase inhibitor of 5'-aza-2'deoxycytidine and/or a histone deacetylase inhibitor of trichostain A in cervical cancer cells suggesting that hypermethylation in the ADCYAP1 promoter is responsible for the transcriptional silencing of the ADCYAP1 gene in cervical cancer cells.

Thouennon E, Pierre A, Yon L, Anouar Y
Expression of trophic peptides and their receptors in chromaffin cells and pheochromocytoma.
Cell Mol Neurobiol. 2010; 30(8):1383-9 [PubMed] Related Publications
Pheochromocytomas are catecholamine-producing tumors arising from chromaffin cells of the adrenal medulla or extra-adrenal location. Along with catecholamines, tumoral cells produce and secrete elevated quantities of trophic peptides which are normally released in a regulated manner by the normal adrenal medulla. Among these peptides, the amounts of pituitary adenylate cyclase-activating polypeptide (PACAP), adrenomedullin (AM), and neuropeptide Y (NPY) are particularly high. These peptides can exert endocrine, paracrine or autocrine effects in numerous cell types. In particular, they have been shown to be involved in cell proliferation and survival, catecholamine production and secretion, and angiogenesis. Some of these processes are exacerbated in pheochromocytomas, raising the possibility of the involvement of trophic peptides. Here, we review the expression levels of NPY, PACAP, and AM and theirs receptors in chromaffin cells and pheochromocytomas, and address their possible implication in the adrenal medulla tumorigenesis and malignant development of pheochromocytomas.

Thouënnon E, Pierre A, Tanguy Y, et al.
Expression of trophic amidated peptides and their receptors in benign and malignant pheochromocytomas: high expression of adrenomedullin RDC1 receptor and implication in tumoral cell survival.
Endocr Relat Cancer. 2010; 17(3):637-51 [PubMed] Related Publications
Pheochromocytomas are catecholamine-producing tumors which are generally benign, but which can also present as or develop into malignancy. Molecular pathways of malignant transformation remain poorly understood. Pheochromocytomas express various trophic peptides which may influence tumoral cell behavior. Here, we investigated the expression of trophic amidated peptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY), and adrenomedullin (AM), and their receptors in benign and malignant pheochromocytomas in order to assess their potential role in chromaffin cell tumorigenesis and malignant transformation. PACAP, NPY, and AM are expressed in the majority of pheochromocytomas studied; NPY exhibiting the highest mRNA levels relative to reference genes. Although median gene expression or peptide levels were systematically lower in malignant compared to benign tumors, no statistically significant difference was found. Among all the receptors of these peptides that were analyzed, only the AM receptor RDC1 displayed a differential expression between benign and malignant pheochromocytomas. This receptor exhibited a fourfold higher expression in malignant than in benign tumors. AM and stromal cell-derived factor 1, which has also been described as a ligand for RDC1, increased the number of human pheochromocytoma cells in primary culture and exerted anti-apoptotic activity on rat pheochromocytoma PC12 cells. In addition, RDC1 gene silencing decreased the number of viable PC12 cells. This study shows the expression of several trophic peptides and their receptors in benign and malignant pheochromocytomas, and suggests that AM and its RDC1 receptor could be involved in chromaffin cell tumorigenesis through pro-survival effects. Therefore, AM and RDC1 may represent valuable targets for the treatment of malignant pheochromocytomas.

Thakur ML, Devadhas D, Zhang K, et al.
Imaging spontaneous MMTVneu transgenic murine mammary tumors: targeting metabolic activity versus genetic products.
J Nucl Med. 2010; 51(1):106-11 [PubMed] Related Publications
UNLABELLED: Despite the great strides made in imaging breast cancer (BC) in humans, the current imaging modalities miss up to 30% of BC, do not distinguish malignant lesions from benign ones, and require histologic examinations for which invasive biopsy must be performed. Annually in the United States, approximately 5.6 million biopsies find benign lesions. More than 50% of human BCs overexpress cyclin D1, and all BCs exhibit VPAC1 oncogene products. Together, these gene products may provide an excellent biomarker for the early and accurate detection of BC. We have evaluated 4 biologically active peptide analogs that have high affinity for VPAC1. The transgenic MMTVneu mice spontaneously develop BC and metastatic lesions that overexpress cyclin D1 and VPAC1 biomarkers. The MMTVneu mouse, therefore, provides an excellent animal model that mimics the pathogenesis of human BC. The objective of this investigation was to determine the ability of 1 of the peptide analogs, (64)Cu-TP3805, to detect BC in MMTVneu mice using (18)F-FDG as a gold standard.
METHODS: The transgenic MMTVneu mouse colony was maintained. Offspring were screened for transgenic status by reverse transcriptase polymerase chain reaction (RT-PCR). Nine mice with visible, palpable, or unknown metastatic lesions were entered into the protocol. (18)F-FDG (6,475 +/- 1,628 kBq [175 +/- 44 microCi]) PET served as a control, followed by a CT scan and 24-48 h later by PET with (64)Cu-TP3805 (4,588 +/- 962 kBq [124 +/- 26 microCi]). RT-PCR on excised tumors determined VPAC1 expression, and histology ascertained the pathology.
RESULTS: Ten tumors were detected by PET. Four tumors were detected both by (18)F-FDG and by (64)Cu-TP3805. Additionally, 4 tumors were imaged with (64)Cu-TP3805 only. These 8 tumors overexpressed VPAC1 receptors and were malignant by histology. The 2 remaining tumors were visualized with (18)F-FDG only. These tumors did not express the VPAC1 oncogene product and had benign histology. The standard uptake value ranged from 3.1 to 18.3 for (64)Cu-TP3805 and 0.9 to 1.4 for (18)F-FDG.
CONCLUSION: (64)Cu-TP3805 identified all malignant lesions unequivocally that overexpressed the VPAC1 oncogene surface product. The 2 benign tumors that did not express the VPAC1 receptor were not imaged. (64)Cu-TP3805 promises to have the potential for the early and accurate imaging of primary and metastatic BC.

Falktoft B, Georg B, Fahrenkrug J
Signaling pathways in PACAP regulation of VIP gene expression in human neuroblastoma cells.
Neuropeptides. 2009; 43(5):387-96 [PubMed] Related Publications
Ganglia expressing the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) innervate vasoactive intestinal peptide (VIP) containing neurons suggesting a role of PACAP in regulating VIP expression. Human NB-1 neuroblastoma cells were applied to study PACAP regulated VIP gene expression aiming to identify the receptor and the signaling proteins involved. The PACAP receptor subtype PAC1 induced VIP gene expression as (i) PACAP and the PAC1 receptor agonist maxadilan were equally efficient and approximately 200-fold more potent than VIP, and (ii) PACAP6-38 and PG99-465, antagonists of PAC1 and VPAC2 receptors, respectively, abolished and did not affect the PACAP-induced VIP mRNA expression, respectively. A pivotal role of PKA was implicated in addition to partial involvement of PKC and ERK1/2 in PACAP-induced VIP gene expression as H-89, Bisindolylmaleimide I (BIS), Gö6976 and U0126 attenuated the VIP mRNA expression by 93%, 58%, 58% and 40%, respectively. PACAP modulated the phosphorylation of ERK1/2 (pERK1/2) and CREB/ATF-1 (pCREB/ATF-1) concomitant with a translocation of PKA to the nucleus. Inhibition of conventional PKC isoforms and MEK1/2 completely abolished pERK1/2 without affecting PACAP induced pCREB/ATF-1. In contrast, inhibiting PKA attenuated PACAP induced pCREB/ATF-1. PACAP also enhanced the FOS gene expression and individual presence of H-89, BIS, Gö6976 and U0126 partially attenuated the PACAP induced FOS mRNA expression. Combining the kinase inhibitors completely suppressed the PACAP induced FOS mRNA expression. Immunoblotting confirmed expression of FOS protein upon addition of PACAP, which was diminished by impairment of PKC, ERK1/2 and PKA activities. The resemblance of the signaling pathways involving concomitant activities of PKC, ERK1/2 and PKA in PACAP regulation of the FOS and VIP gene expressions suggest for the first time a role of FOS in PACAP-induced VIP gene expression in human NB-1 neuroblastoma cells.

Siddique ZL, Drozdov I, Floch J, et al.
KRJ-I and BON cell lines: defining an appropriate enterochromaffin cell neuroendocrine tumor model.
Neuroendocrinology. 2009; 89(4):458-70 [PubMed] Related Publications
BACKGROUND: Neuroendocrine tumors (NETs) of the gastrointestinal (GI) system are increasing in incidence with minimal improvement in prognosis. Although the cell of origin has been identified as the enterochromaffin (EC) cell, its secretory and proliferative regulation has not been defined at a mechanistic level. To date, the BON cell line has been the most widely used in vitro EC cell model despite its pancreatic origin. Using whole-genome mathematical analysis as well as secretory and proliferative studies, we compared the BON cell line to the small intestine (SI) EC cell-derived NET cell line, KRJ-I, to assess individual cell line validity and applicability for the investigation of GI-NET disease.
METHODS AND RESULTS: Principal component analysis and ANOVA of KRJ-I and BON transcriptomes (U133 Plus 2) identified substantially different (<10%) overlap in transcripts with minimal (R(2) = 0.24) correlation in gene expression profiles. RT-PCR detected large variability (>12%) in neuroendocrine (NE) marker transcripts in the BON cell line and the absence of Tph-2, DDC, TGFbetaR2, and M3 transcripts in KRJ-I. The KRJ-I cell line secreted serotonin (5-HT) in response to isoproterenol (EC(50) = 100 nM), noradrenaline (EC(50) = 1.7 nM), and pituitary adenylate cyclase (PACAP, EC(50) = 0.03 nM). Cholecystokinin (IC(50) = 430 nM), somatostatin (IC(50) = 400 nM), acetylcholine (IC(50) = 3.7 nM), and gamma-aminobutyric acid A (GABA(A), IC(50) = 2 nM) all inhibited 5-HT release, while gastrin and bombesin had no effect. 5-HT secretion in the BON cell line was stimulated by isoproterenol (EC(50) = 900 nM), noradrenaline (EC(50) = 20 nM), cholecystokinin (EC(50) = 130 nM), PACAP (EC(50) = 0.12 nM), bombesin (EC(50) = 15 nM), and acetylcholine (EC(50) = 0.2 nM). It was inhibited by somatostatin (IC(50) = 300 nM) but not GABA(A). KRJ-I responded with proliferation to connective tissue growth factor (CTGF, EC(50) = 0.002 ng/ml), transforming growth factor-alpha (TGFalpha, EC(50) = 0.63 ng/ml) and transforming growth factor-beta (TGFbeta, EC(50) = 0.63 ng/ml). Epidermal growth factor (EGF) and somatostatin had no significant effect. BON cell proliferation was stimulated only by EGF and TGFalpha (EC(50) = 15.8 and 10 ng/ml). TGFbeta (IC(50) = 0.16 ng/ml), MZ-4-147 (IC(50) = 0.5 nM), and BIM23A761 (IC(50) = 0.06 nM) all inhibited proliferation. CTGF and somatostatin had no effect.
CONCLUSION: KRJ-I and BON cell lines demonstrate substantial differences in gene level transcripts, inconsistent receptor profile expression, wide variability in NE marker transcript levels, and significantly differential proliferative and secretory responses. Given the EC cell origin of KRJ-I, these results provide evidence that the BON cell line does not represent an EC cell system and is not a valid study model of (carcinoid) EC cell-derived NET.

Falktoft B, Georg B, Fahrenkrug J
Calmodulin interacts with PAC1 and VPAC2 receptors and regulates PACAP-induced FOS expression in human neuroblastoma cells.
Neuropeptides. 2009; 43(2):53-61 [PubMed] Related Publications
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) mediates its physiological functions through activation of PAC1, VPAC1 and VPAC2 receptors, and the ubiquitous Ca(2+)-sensor calmodulin has been implicated in PACAP-induced signaling. The immediate early response gene FOS is a well-known marker of neuronal activation, so we used a human neuroblastoma cell line NB-1 to explore the role of calmodulin in PACAP-induced FOS gene expression. We observed both short-term and prolonged altered PACAP-mediated activation of the FOS gene in the presence of the calmodulin-antagonist W-7. NB-1 cells were shown to express PAC1 and VPAC2 receptors, and immunoprecipitation of both receptors displayed a co-association with calmodulin in the absence of Ca(2+). Our findings indicate a novel mechanism of calmodulin in regulating PACAP signaling by possible interaction with the inactive state of PAC1 and VPAC2 receptors.

Nakayama S, Yokote T, Kobayashi K, et al.
VIPoma with expression of both VIP and VPAC1 receptors in a patient with WDHA syndrome.
Endocrine. 2009; 35(2):143-6 [PubMed] Related Publications
We report a case of VIPoma in a 72-year-old female patient who presented with excessive diarrhea, severe hypokalemia, and acidemia. She had been referred to our hospital three times because of severe diarrhea. No primary tumor site was found by conventional techniques, including contrast-enhanced CT and MRI, angiography, endoscopy, and positron emission tomography (PET), but a tumor was subsequently found in the head of the pancreas by octreotide scanning. Her diarrhea diminished dramatically after octreotide treatment, while her diarrhea has ceased without the therapy of octreotide at the first admission in the course of 2 years of her disease. Immunohistochemial analysis of the excised tumor tissue revealed the expression of both vasoactive intestinal peptide (VIP) and VIP and pituitary adenylate cyclase-activating peptide 1 (VPAC1) receptors. This is the first case report of a VIPoma that immunostains for VIP and VPAC1 receptors and indicates that abundant VIP produced by VIPoma might inhibit its growth and reduce VIP secretion via the VPAC1 receptor in vivo.

Ghzili H, Grumolato L, Thouënnon E, et al.
Role of PACAP in the physiology and pathology of the sympathoadrenal system.
Front Neuroendocrinol. 2008; 29(1):128-41 [PubMed] Related Publications
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.

Monaghan TK, Mackenzie CJ, Plevin R, Lutz EM
PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases.
J Neurochem. 2008; 104(1):74-88 [PubMed] Free Access to Full Article Related Publications
The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC(1) and VIP/PACAP receptor type 2 (VPAC(2)) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC(1) receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC(2) receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC(1) receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2',5'-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC(1) receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway.

Nakano I, Masterman-Smith M, Saigusa K, et al.
Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells.
J Neurosci Res. 2008; 86(1):48-60 [PubMed] Related Publications
Emerging evidence suggests that neural stem cells and brain tumors regulate their proliferation via similar pathways. In a previous study, we demonstrated that maternal embryonic leucine zipper kinase (Melk) is highly expressed in murine neural stem cells and regulates their proliferation. Here we describe how MELK expression is correlated with pathologic grade of brain tumors, and its expression levels are significantly correlated with shorter survival, particularly in younger glioblastoma patients. In normal human astrocytes, MELK is only faintly expressed, and MELK knockdown does not significantly influence their growth, whereas Ras and Akt overexpressing astrocytes have up-regulated MELK expression, and the effect of MELK knockdown is more prominent in these transformed astrocytes. In primary cultures from human glioblastoma and medulloblastoma, MELK knockdown by siRNA results in inhibition of the proliferation and survival of these tumors. Furthermore, we show that MELK siRNA dramatically inhibits proliferation and, to some extent, survival of stem cells isolated from glioblastoma in vitro. These results demonstrate a critical role for MELK in the proliferation of brain tumors, including their stem cells, and suggest that MELK may be a compelling molecular target for treatment of high-grade brain tumors.

Moretti C, Mammi C, Frajese GV, et al.
PACAP and type I PACAP receptors in human prostate cancer tissue.
Ann N Y Acad Sci. 2006; 1070:440-9 [PubMed] Related Publications
We characterized the expression and localization of pituitary adenylate cyclase-activating polypeptide (PACAP) and its specific type I receptor variants in prostatic, hyperplastic, and carcinomatous tissue collected from patients undergoing prostate biopsy and surgery for benign prostatic hyperplasia (BPH) and prostate cancer (PCa). The immunohistochemical studies using an indirect immunoperoxidase technique evidenced positive immunostaining for PACAP in the cytoplasm of epithelial cells of hyperplastic and carcinomatous prostate specimens and in some scattered cells of the stroma. Type I PACAP receptors (PAC1 R) in healthy and BPH tissues were localized in all epithelial cells lining the lumen of the acini and in some stromal cells, while in specimens from PCa the anti-PAC1 R antibody stained the apical portion of a large percentage of cells. Furthermore, our molecular studies provide evidence that several PAC1 R isoforms (null, SV1/SV2) are present in normal, hyperplastic, and neoplastic tissue, the null variant being the most intensely expressed in PCa. These observations provide additional evidence for a role of PACAP and PAC1 R in the events determining the outcome of PCa.

Lieu SN, Oh DS, Pisegna JR, Germano PM
Neuroendocrine tumors express PAC1 receptors.
Ann N Y Acad Sci. 2006; 1070:399-404 [PubMed] Related Publications
Neuroendocrine tumors (NETs) of the gastrointestinal tract can be grossly divided into two general types: carcinoid and pancreatic endocrine tumors. The former develop in the luminal intestine whereas the latter occur within the pancreas. To ascertain whether pituitary adenylate cyclase-activating polypeptide (PACAP) has a biological effect on the regulation of secretion or growth, we studied the well-established NET cell line, BON. BON cells have been shown previously to contain chromogranin A, neurotensin, and serotonin. In response to mechanical stimulation, BON cells have been demonstrated to release serotonin. The current article demonstrates that the high-affinity PAC1 receptor is expressed on the NET cell line BON. These results indicate that PACAP may regulate the biological release of peptides and serotonin from BON cells and that, like in solid tumors, PACAP could potentially stimulate the growth of BON cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ADCYAP1, Cancer Genetics Web: http://www.cancer-genetics.org/ADCYAP1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999