Gene Summary

Gene:SHC1; SHC adaptor protein 1
Aliases: SHC, SHCA
Summary:This gene encodes three main isoforms that differ in activities and subcellular location. While all three are adapter proteins in signal transduction pathways, the longest (p66Shc) may be involved in regulating life span and the effects of reactive oxygen species. The other two isoforms, p52Shc and p46Shc, link activated receptor tyrosine kinases to the Ras pathway by recruitment of the GRB2/SOS complex. p66Shc is not involved in Ras activation. Unlike the other two isoforms, p46Shc is targeted to the mitochondrial matrix. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2011]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:SHC-transforming protein 1
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (50)
Pathways:What pathways are this gene/protein implicaed in?
Show (37)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • siRNA
  • AKT1
  • Down-Regulation
  • GRB2 Adaptor Protein
  • Breast Cancer
  • Type C Phospholipases
  • Adaptor Proteins, Vesicular Transport
  • Mutation
  • Multiple Endocrine Neoplasia Type 2a
  • Src Homology 2 Domain-Containing, Transforming Protein 1
  • ErbB Receptors
  • Cell Proliferation
  • Shc Signaling Adaptor Proteins
  • Promoter Regions
  • 3T3 Cells
  • Protein Binding
  • rac1 GTP-Binding Protein
  • Signal Transduction
  • Receptor Protein-Tyrosine Kinases
  • Cancer Gene Expression Regulation
  • Chromosome 1
  • Cell Line
  • Non-Small Cell Lung Cancer
  • Gene Expression Profiling
  • Transfection
  • Molecular Sequence Data
  • Western Blotting
  • Cell Movement
  • Amino Acid Sequence
  • Phosphorylation
  • Neoplasm Metastasis
  • Neoplastic Cell Transformation
  • Proto-Oncogene Proteins
  • Lung Cancer
  • Proteins
  • Drosophila Proteins
  • Proto-Oncogene Proteins c-ret
  • Signal Transducing Adaptor Proteins
  • Neoplasm Proteins
  • Apoptosis
  • beta-Arrestins
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SHC1 (cancer-related)

Huang E, Huang H, Guan T, et al.
Involvement of C/EBPβ-related signaling pathway in methamphetamine-induced neuronal autophagy and apoptosis.
Toxicol Lett. 2019; 312:11-21 [PubMed] Related Publications
Methamphetamine (METH) is a widely abused illicit psychoactive drug. Our previous study has shown that CCAAT-enhancer binding protein β (C/EBPβ) is an important regulator in METH-induced neuronal autophagy and apoptosis. However, the detailed molecular mechanisms underlying this process remain poorly understood. Previous studies have demonstrated that DNA damage-inducible transcript 4 (DDIT4), Trib3 (tribbles pseudo kinase 3), alpha-synuclein (α-syn) are involved in METH-induced dopaminergic neurotoxicity. We hypothesized that C/EBPβ is involved in METH-induced DDIT4-mediated neuronal autophagy and Trib3-mediated neuronal apoptosis. We tested our hypothesis by examining the effects of silencing C/EBPβ, DDIT4, Trib3 or α-syn with small interfering ribonucleic acid (siRNA) on METH-induced autophagy and apoptosis in the human neuroblastoma SH-SY5Y cells. We also measured the levels of phosphorylated tuberous sclerosis complex 2 (TSC2) protein and Parkin protein level in SH-SY5Y cells. Furthermore, we demonstrated the effect of silencing C/EBPβ on METH-caused neurotoxicity in the striatum of rats by injecting LV-shC/EBPβ lentivirus using a stereotaxic positioning system. The results showed that METH exposure increased C/EBPβ, DDIT4 protein expression. Elevated DDIT4 expression raised up p-TSC2/TSC2 protein expression ratio, inhibited mTOR signaling pathway, activating cell autophagy. We also found that METH exposure increased the expression of Trib3, α-syn, decreased the Parkin protein expression. Lowering levels of Parkin raised up α-syn expression, which initiated mitochondrial apoptosis by down-regulating anti-apoptotic Bcl-2, followed by up-regulation of pro-apoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. These findings were supported by data showing METH-induced autophagy and apoptosis was significantly inhibited by silencing C/EBPβ, DDIT4, Trib3 or α-syn, or by Parkin over-expression. Based on the present data, a novel of mechanism on METH-induced cell toxicity is proposed, METH exposure increased C/EBPβ protein expression, triggered DDIT4/TSC2/mTOR signaling pathway, and evoked Trib3/Parkin/α-syn-related mitochondrial apoptotic signaling pathway. Collectively, these results suggest that C/EBPβ plays an important role in METH-triggered autophagy and apoptosis and it may be a potential target for therapeutics in METH-caused neurotoxicity.

Dong YD, Yuan YL, Yu HB, et al.
SHCBP1 is a novel target and exhibits tumor‑promoting effects in gastric cancer.
Oncol Rep. 2019; 41(3):1649-1657 [PubMed] Free Access to Full Article Related Publications
The present study investigated the expression and potential influence of SHC SH2 domain‑binding protein 1 (SHCBP1) in gastric cancer (GC) cells. SHCBP1 is closely related to cell proliferation and cell cycle progression, but its role in GC remains unclear. The TCGA database revealed that SHCBP1 is highly expressed in GC tissues. Furthermore, SHCBP1 was revealed to be highly expressed in GC cell lines MGC‑803 and SGC‑7901 cells, and downregulation of SHCBP1 significantly inhibited GC cell proliferation. Furthermore, SHCBP1 expression promoted cell cycle progression and inhibition of apoptosis. Since the CDK4, cyclin D1 and caspase family proteins play important roles in cell cycle and apoptosis regulation, it was examined whether there was an association between SHCBP1 and these signaling pathways in GC. Our results revealed that SHCBP1 promoted cell cycle progression by regulating the CDK4‑cyclin D1 cascade and suppressed caspase‑3, caspase PARP‑dependent apoptotic pathways. Cell invasion and metastasis experiments also revealed that SHCBP1 promoted tumor growth and invasiveness. These tumor‑promoting functions of SHCBP1 may provide a potential molecular basis for the diagnosis and targeted therapy of GC.

Liu L, Yang Y, Liu S, et al.
EGF-induced nuclear localization of SHCBP1 activates β-catenin signaling and promotes cancer progression.
Oncogene. 2019; 38(5):747-764 [PubMed] Free Access to Full Article Related Publications
Aberrant activation of EGFR represents a common event in non-small cell lung carcinoma (NSCLC) and activates various downstream signaling pathways. While EGFR activation of β-catenin signaling was previously reported, the mediating mechanism remains unclear. Our current study found that EGFR activation in NSCLC cells releases SHC-binging protein 1 (SHCBP1) from SHC adaptor protein 1 (SHC1), which subsequently translocates into the nucleus and directly promotes the transactivating activity of β-catenin, consequently resulting in development of NSCLC cell stemness and malignant progression. Furthermore, SHCBP1 promotes β-catenin activity through enhancing the CBP/β-catenin interaction, and most interestingly, a candidate drug that blocks the CBP/β-catenin binding effectively abrogates the aforementioned biological effects of SHCBP1. Clinically, SHCBP1 level in NSCLC tumors was found to inversely correlate with patient survival. Together, our study establishes a novel convergence between EGFR and β-catenin pathways and highlights a potential significance of SHCBP1 as a prognostic biomarker and a therapeutic target.

Zhou Y, Tan Z, Chen K, et al.
Overexpression of SHCBP1 promotes migration and invasion in gliomas by activating the NF-κB signaling pathway.
Mol Carcinog. 2018; 57(9):1181-1190 [PubMed] Related Publications
Gliomas are common, aggressive central nervous system tumors with poor overall survival rates. Despite improvements in neurosurgery, chemotherapy, and radiotherapy, the outcomes of patients with malignant gliomas remain poor. Therefore, increased knowledge of the molecular mechanisms that regulate glioma progression is crucial to identify novel therapeutic targets. Here, we reported that SHCBP1, a member of Src homolog and collagen homolog (Shc) family, was significantly overexpressed in glioma tissues and glioma cell lines compared to the corresponding normal tissues and cells. Ectopic overexpression of SHCBP1 promoted glioma cell migration and invasion, whereas knockdown of endogenous SHCBP1 had the opposite effects. Importantly, we demonstrated that SHCBP1 promoted aggressiveness in gliomas by activating the NF-κB signaling pathway. Collectively, our study indicates that SHCBP1 plays a pivotal role to promote progression in gliomas and targeting the oncogenic effects of SHCBP1 may provide a clinical strategy to treat gliomas.

Buetti-Dinh A, Friedman R
Computer simulations of the signalling network in FLT3
BMC Bioinformatics. 2018; 19(1):155 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mutations in the FMS-like tyrosine kinase 3 (FLT3) are associated with uncontrolled cellular functions that contribute to the development of acute myeloid leukaemia (AML). We performed computer simulations of the FLT3-dependent signalling network in order to study the pathways that are involved in AML development and resistance to targeted therapies.
RESULTS: Analysis of the simulations revealed the presence of alternative pathways through phosphoinositide 3 kinase (PI3K) and SH2-containing sequence proteins (SHC), that could overcome inhibition of FLT3. Inhibition of cyclin dependent kinase 6 (CDK6), a related molecular target, was also tested in the simulation but was not found to yield sufficient benefits alone.
CONCLUSIONS: The PI3K pathway provided a basis for resistance to treatments. Alternative signalling pathways could not, however, restore cancer growth signals (proliferation and loss of apoptosis) to the same levels as prior to treatment, which may explain why FLT3 resistance mutations are the most common resistance mechanism. Finally, sensitivity analysis suggested the existence of optimal doses of FLT3 and CDK6 inhibitors in terms of efficacy and toxicity.

Jiang H, Dong L, Gong F, et al.
Inflammatory genes are novel prognostic biomarkers for colorectal cancer.
Int J Mol Med. 2018; 42(1):368-380 [PubMed] Free Access to Full Article Related Publications
Inflammatory genes serve a crucial role in the pathogenesis of inflammation‑associated tumors. However, as recent studies have mainly focused on the effects of single inflammatory genes on colorectal cancer (CRC), but not on the global interactions between genes, the underlying mechanisms between inflammatory genes and CRC remain unclear. In the current study, two inflammation‑associated networks were constructed based on inflammatory genes, differentially expressed genes (DEGs) in CRC vs. normal samples, and protein‑protein interactions (PPIs). These networks included an inflammation‑related neighbor network (IRNN) and an inflammation‑related DEG network (IRDN). Notably, the results indicated that the inflammatory genes served as important CRC‑associated genes in the IRNN. Certain inflammatory genes were more likely to be network hubs and exhibited higher betweenness centralities, indicating that these inflammatory hub genes had central roles in the communication between genes in the IRNN. By contrast, in the IRDN, functional enrichment analysis revealed that genes were enriched in numerous cancer‑associated functions and pathways. Subsequently, 14 genes in a module were identified in the IRDN as the potential biomarkers associated with disease‑free survival (DFS) in CRC patients in the GSE24550 dataset, the prognosis of which was further validated using three independent datasets (GSE24549, GSE34551 and GSE103479). All 14 genes (including BCAR1, CRK, FYN, GRB2, LCP2, PIK3R1, PLCG1, PTK2, PTPN11, PTPN6, SHC1, SOS1, SRC and SYK) in this module were inflammatory genes, emphasizing the critical role of inflammation in CRC. In conclusion, these findings based on integrated inflammation‑associated networks provided a novel insight that may help elucidate the inflammation‑mediated mechanisms involved in CRC.

McManus S, Chababi W, Arsenault D, et al.
Dissecting Oncogenic RTK Pathways in Colorectal Cancer Initiation and Progression.
Methods Mol Biol. 2018; 1765:27-42 [PubMed] Related Publications
Colorectal cancer (CRC) is a progressive disorder associated with an accumulation of multiple heterogeneous genetic alterations in intestinal epithelial cells (IEC). However, when these cells undergo neoplastic transformation and become cancerous and metastatic, they invariably acquire hallmarks conferring them the ability to hyperproliferate, escape growth-inhibitory and death-inducing cues, and promote angiogenesis as well as epithelial-to-mesenchymal transformation (EMT), fostering their invasive dissemination from primary tumor into distant tissues. Compelling clinical and experimental evidence suggest that aberrant engagement of cell surface growth factor receptor tyrosine kinase (RTK) signaling, like that of the hepatocyte growth factor (HGF)/MET receptor, underlies CRC metastatic progression by promoting these cancer hallmarks. To date, though, the use of RTK-targeting agents has been viewed as a promising approach for the treatment of metastatic CRC, clinical success has been modest.Our vision is that the prospect of designing RTK-based, improved and innovative CRC therapies and prognostic markers likely rests on a comprehensive understanding of the biological processes and underlying regulatory molecular mechanisms by which deregulation of RTK signaling governs IEC's neoplastic transformation and their transition from noninvasive to metastatic and malignant cells. Herein, we describe our scheme for defining the full scope of oncogenic MET-driven cancer biological processes, in cellulo and in vivo, as well as the individual contribution of MET-binding effectors in a nontransformed IEC model, the IEC-6 cell line.

Byström S, Eklund M, Hong MG, et al.
Affinity proteomic profiling of plasma for proteins associated to area-based mammographic breast density.
Breast Cancer Res. 2018; 20(1):14 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mammographic breast density is one of the strongest risk factors for breast cancer, but molecular understanding of how breast density relates to cancer risk is less complete. Studies of proteins in blood plasma, possibly associated with mammographic density, are well-suited as these allow large-scale analyses and might shed light on the association between breast cancer and breast density.
METHODS: Plasma samples from 1329 women in the Swedish KARMA project, without prior history of breast cancer, were profiled with antibody suspension bead array (SBA) assays. Two sample sets comprising 729 and 600 women were screened by two different SBAs targeting a total number of 357 proteins. Protein targets were selected through searching the literature, for either being related to breast cancer or for being linked to the extracellular matrix. Association between proteins and absolute area-based breast density (AD) was assessed by quantile regression, adjusting for age and body mass index (BMI).
RESULTS: Plasma profiling revealed linear association between 20 proteins and AD, concordant in the two sets of samples (p < 0.05). Plasma levels of seven proteins were positively associated and 13 proteins negatively associated with AD. For eleven of these proteins evidence for gene expression in breast tissue existed. Among these, ABCC11, TNFRSF10D, F11R and ERRF were positively associated with AD, and SHC1, CFLAR, ACOX2, ITGB6, RASSF1, FANCD2 and IRX5 were negatively associated with AD.
CONCLUSIONS: Screening proteins in plasma indicates associations between breast density and processes of tissue homeostasis, DNA repair, cancer development and/or progression in breast cancer. Further validation and follow-up studies of the shortlisted protein candidates in independent cohorts will be needed to infer their role in breast density and its progression in premenopausal and postmenopausal women.

Liu Y, Zhang X, Yang B, et al.
Demethylation-Induced Overexpression of Shc3 Drives c-Raf-Independent Activation of MEK/ERK in HCC.
Cancer Res. 2018; 78(9):2219-2232 [PubMed] Related Publications
Invasion and intrahepatic metastasis are major factors of poor prognosis in patients with hepatocellular carcinoma (HCC). In this study, we show that increased Src homolog and collagen homolog 3 (Shc3) expression in malignant HCC cell lines associate with HCC invasion and metastasis. Shc3 (N-Shc) was significantly upregulated in tumors of 33 HCC patient samples as compared with adjacent normal tissues. Further analysis of 52 HCC patient samples showed that Shc3 expression correlated with microvascular invasion, cancer staging, and poor prognosis. Shc3 interacted with major vault protein, resulting in activation of MEK1/2 and ERK1/2 independently of Shc1 and c-Raf; this interaction consequently induced epithelial-mesenchymal transition and promoted HCC cell proliferation and metastasis. The observed increase in Shc3 levels was due to demethylation of its upstream promoter, which allowed c-Jun binding. In turn, Shc3 expression promoted c-Jun phosphorylation in a positive feedback loop. Analysis of metastasis using a tumor xenograft mouse model further confirmed the role of Shc3

Kim IH, Nam TJ
Fucoidan downregulates insulin-like growth factor-I receptor levels in HT-29 human colon cancer cells.
Oncol Rep. 2018; 39(3):1516-1522 [PubMed] Related Publications
Fucoidan, a sulfated polysaccharide present in brown seaweed, has demonstrated anticancer activity in lung, breast, liver and colon cells. The insulin-like growth factor (IGF) signaling pathway regulates growth in HT-29 cells through the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Ras/Raf/extracellular signal-regulated kinase (ERK) pathways. The aim of the present study was to investigate whether fucoidan downregulates the IGF-IR signaling pathway in HT-29 human colon cancer cells. Fucoidan treatment (0-1,000 µg/ml) was administered for 24 h in HT-29 cells. First, we investigated IRS-1/PI3K/AKT pathway-related protein expression levels following treatment with fucoidan (0-500 µg/ml) using western blot analysis. Fucoidan significantly inhibited the expression of IGF-IR, PTEN, PI3K and AKT as well as their phosphorylated forms (p-IRS-1, p-PI3K and p-AKT). Next, we investigated the effects of fucoidan on Ras/Raf/ERK pathway‑related protein expression levels in HT-29 cells. Fucoidan significantly inhibited the expression of IGF-IR, Shc, Ras, SOS, Raf and MEK. HT-29 cells were then incubated in the presence of fucoidan (0 or 250 µg/ml), and IGF-I (10 nM) was added for 0 to 60 min. Immunoprecipitation (IP) experiments showed that fucoidan inhibited IGF-I-induced phosphorylation of IGF-IR, PI3K, Shc (IP, IGF-IR), and phosphorylated IRS-1 and PI3K (IP, IRS-1) compared to the control group. Western blot analysis showed that fucoidan inhibited the expression of IGF-I-induced p-IGF-IR/IGF-IR and p-AKT/AKT, but not p-ERK/ERK. In conclusion, the inhibition of cell viability by fucoidan in HT-29 cells may be due to the downregulation of IGF-IR signaling through the main IRS-1/PI3K/AKT pathway. Fucoidan also partially impacted Ras/Raf signaling in the Ras/Raf/ERK pathway. Therefore, we suggest that fucoidan may be a suitable candidate chemopreventive agent in HT-29 colon cancer cells.

Tuo Y, An N, Zhang M
Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.
Mol Med Rep. 2018; 17(3):4281-4290 [PubMed] Free Access to Full Article Related Publications
The aim of the present study was to investigate the feature genes in metastatic breast cancer samples. A total of 5 expression profiles of metastatic breast cancer samples were downloaded from the Gene Expression Omnibus database, which were then analyzed using the MetaQC and MetaDE packages in R language. The feature genes between metastasis and non‑metastasis samples were screened under the threshold of P<0.05. Based on the protein‑protein interactions (PPIs) in the Biological General Repository for Interaction Datasets, Human Protein Reference Database and Biomolecular Interaction Network Database, the PPI network of the feature genes was constructed. The feature genes identified by topological characteristics were then used for support vector machine (SVM) classifier training and verification. The accuracy of the SVM classifier was then evaluated using another independent dataset from The Cancer Genome Atlas database. Finally, function and pathway enrichment analyses for genes in the SVM classifier were performed. A total of 541 feature genes were identified between metastatic and non‑metastatic samples. The top 10 genes with the highest betweenness centrality values in the PPI network of feature genes were Nuclear RNA Export Factor 1, cyclin‑dependent kinase 2 (CDK2), myelocytomatosis proto‑oncogene protein (MYC), Cullin 5, SHC Adaptor Protein 1, Clathrin heavy chain, Nucleolin, WD repeat domain 1, proteasome 26S subunit non‑ATPase 2 and telomeric repeat binding factor 2. The cyclin‑dependent kinase inhibitor 1A (CDKN1A), E2F transcription factor 1 (E2F1), and MYC interacted with CDK2. The SVM classifier constructed by the top 30 feature genes was able to distinguish metastatic samples from non‑metastatic samples [correct rate, specificity, positive predictive value and negative predictive value >0.89; sensitivity >0.84; area under the receiver operating characteristic curve (AUROC) >0.96]. The verification of the SVM classifier in an independent dataset (35 metastatic samples and 143 non‑metastatic samples) revealed an accuracy of 94.38% and AUROC of 0.958. Cell cycle associated functions and pathways were the most significant terms of the 30 feature genes. A SVM classifier was constructed to assess the possibility of breast cancer metastasis, which presented high accuracy in several independent datasets. CDK2, CDKN1A, E2F1 and MYC were indicated as the potential feature genes in metastatic breast cancer.

Criscuoli M, Filippi I, Osti D, et al.
The Shc protein RAI promotes an adaptive cell survival program in hypoxic neuroblastoma cells.
J Cell Physiol. 2018; 233(5):4282-4293 [PubMed] Related Publications
Neuroblastoma (NB) is a highly malignant pediatric solid tumor where a hypoxic signature correlates with unfavorable patient outcome. The hypoxia-inducible factor (HIF)-1α plays an important role in NB progression, contributing to cell proliferation and invasiveness. RAI belongs to the Shc family proteins, it is mainly neuron specific and protects against cerebral ischemia. RAI is also expressed in several NB cell lines, where it promotes cell survival. In this work, hypoxia differently affected cell survival and pro-apoptotic program in two NB cell lines, either expressing RAI (SKNBE) or not (SKNMC). RAI expression appeared to promote NB cell survival and to reduce some pro-apoptotic markers under hypoxia. Accordingly, the RAI silencing in SKNBE cells resulted in a reduction of cell survival and HIF-1α expression. Furthermore, using SKNMC cells stably expressing RAI, we defined a role of RAI in NB cell responses to hypoxia. Of interest, in hypoxic SKNMC cells expressing RAI HIF-1α protein levels were higher than in control cells. This was associated with a) an increased cell survival; b) an increased expression of anti-apoptotic markers; c) a pro-autophagic and not pro-apoptotic phenotype; and d) an increased metabolic activity. We may conclude that RAI plays an important role in hypoxic signaling in NB cells and the interplay between RAI and HIF-1α may be relevant in the protection of NB cells against hypoxia. Our results may contribute to a further understanding the physiology of NB cells and the molecular mechanisms involved in their survival, with important implications in NB progression.

Xie YH, Gao QY, Cai GX, et al.
Fecal Clostridium symbiosum for Noninvasive Detection of Early and Advanced Colorectal Cancer: Test and Validation Studies.
EBioMedicine. 2017; 25:32-40 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Current non-invasive early detection of colorectal cancer (CRC) requires improvement. We aimed to identified a fecal Clostridium symbiosum-based biomarker for early and advanced colorectal cancer detection.
DESIGN: In the test stage, the relative abundance of Clostridium symbiosum (C. symbiosum) was measured by qPCR in 781 cases including 242 controls, 212 colorectal adenoma (CRA) patients, 109 early CRC (tumor restricted to the submucosa) patients, 218 advanced CRC patients. The prediction accuracy was compared to Fusobacterium nucleatum (F. nucleatum), fecal immunochemical test (FIT) and CEA (carcinoembryonic antigen) and validated in an independent cohort of 256 subjects. Current status of the trial:ongoing/still enrolling. Primary endpoint:June, 2017 ( Identifier NCT02845973).
RESULTS: Significant stepwise increase of C. symbiosum abundance was found in CRA, early CRC and advanced CRC (P<0.01). C. symbiosum outperformed all the other markers in early CRC prediction performance. The combination of C. symbiosum and FIT achieved better performance (0.803 for test cohort and 0.707 for validation cohort). For overall discrimination of CRCs, the combination of all above markers achieved the performance of 0.876.
CONCLUSIONS: Fecal C. symbiosum is a promising biomarker for early and noninvasive detection of colorectal cancer, being more effective than F. nucleatum, FIT and CEA. Combining C. symbiosum and FIT or CEA may improve the diagnosis power.

Peng C, Zhao H, Song Y, et al.
SHCBP1 promotes synovial sarcoma cell metastasis via targeting TGF-β1/Smad signaling pathway and is associated with poor prognosis.
J Exp Clin Cancer Res. 2017; 36(1):141 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Our previous studies reported that SHC SH2-domain binding protein 1 (SHCBP1) functions as an oncogene via promoting cell proliferations in synovial sarcoma (SS) cells. However, whether SHCBP1 has any effect on tumor metastasis remains unexplored.
METHODS: The expression of SHCBP1 was analyzed in 76 SS tissues and two SS cell lines by immunohistochemistry and real-time RT-PCR. The relationship between SHCBP1 expression and the clinicopathological features of SS was investigated. The role of SHCBP1 in SS cell adhesion, migration, invasion and angiogenesis was explored by adhesion, Wound healing, Transwell, and Matrigel tube formation assays. Western blotting was conducted to detect the protein expressions of TGF-β1/Smad signaling pathway and EMT-related markers. The key molecules associated with migration, invasion and EMT were evaluated by immunohistochemistry in tumor specimens.
RESULTS: In current study, we demonstrated that SHCBP1 overexpression significantly enhanced adhesion, migration, invasion and angiogenesis of SS cells. In contrast, SHCBP1 knockdown elicited the opposite effects on these phenotypes in vitro. SHCBP1 promoted tumor metastasis through inducing epithelial-mesenchymal transition (EMT) in SS cells. SHCBP1 knockdown could block the incidence of metastasis and EMT in SS cells. Furthermore, transforming growth factor-β1 (TGF-β1) induced SHCBP1 expression in a time-dependent pattern and SHCBP1 knockdown inhibited TGF-β1-induced EMT. The activation of the TGF-β1/Smad signaling pathway was involved in the oncogenic functions of SHCBP1 in SS. In addition, high expression of SHCBP1 in SS patients was associated with tumor progression and decreased survival as well as poor prognosis.
CONCLUSIONS: Taken together, our results indicate that SHCBP1 may promote the metastasis of SS by inducing EMT through targeting TGF-β1/Smad signaling pathway and can be a potential molecular target for SS therapy.

Zurli V, Wimmer G, Cattaneo F, et al.
Ectopic ILT3 controls BCR-dependent activation of Akt in B-cell chronic lymphocytic leukemia.
Blood. 2017; 130(18):2006-2017 [PubMed] Related Publications
The high proportion of long-term nonprogressors among chronic lymphocytic leukemia (CLL) patients suggests the existence of a regulatory network that restrains the proliferation of tumor B cells. The identification of molecular determinants composing such network is hence fundamental for our understanding of CLL pathogenesis. Based on our previous finding establishing a deficiency in the signaling adaptor p66Shc in CLL cells, we undertook to identify unique phenotypic traits caused by this defect. Here we show that a lack of p66Shc shapes the transcriptional profile of CLL cells and leads to an upregulation of the surface receptor ILT3, the immunoglobulin-like transcript 3 that is normally found on myeloid cells. The ectopic expression of ILT3 in CLL was a distinctive feature of neoplastic B cells and hematopoietic stem cells, thus identifying ILT3 as a selective marker of malignancy in CLL and the first example of phenotypic continuity between mature CLL cells and their progenitors in the bone marrow. ILT3 expression in CLL was found to be driven by Deltex1, a suppressor of antigen receptor signaling in lymphocytes. Triggering of ILT3 inhibited the activation of Akt kinase upon B-cell receptor (BCR) stimulation. This effect was achieved through the dynamic coalescence of ILT3, BCRs, and phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 into inhibitory clusters at the cell surface. Collectively, our findings identify ILT3 as a signature molecule of p66Shc deficiency in CLL and indicate that ILT3 may functionally contribute to a regulatory network controlling tumor progression by suppressing the Akt pathway.

Arany I, Hall S, Faisal A, Dixit M
Nicotine Exposure Augments Renal Toxicity of 5-aza-cytidine Through p66shc: Prevention by Resveratrol.
Anticancer Res. 2017; 37(8):4075-4079 [PubMed] Related Publications
BACKGROUND/AIM: We have shown that either chronic nicotine (NIC) exposure or 5-aza-cytidine (AZA) augments oxidative stress-dependent injury through stimulating p66shc in renal cells. Hence, NIC could exacerbate adverse effects of AZA while antioxidants such as resveratrol (RES) could prevent it.
MATERIALS AND METHODS: Renal proximal tubule cells (NRK52E) were treated with 20 μM RES prior to 200 μM NIC plus 100 nM AZA and cell injury (LDH release) was determined. Reporter luciferase assays determined p66shc activation and RES-induced antioxidant responses. Genetic manipulations identified the mechanism of RES action.
RESULTS: NIC exacerbated AZA-dependent injury via augmenting p66shc transcription. While RES suppressed NIC+AZA-mediated injury, -surprisingly-it further enhanced activity of the p66shc promoter. RES protected cells via the cytoplasmic p66shc/Nrf2/heme oxygenase-1 (HO-1) axis.
CONCLUSION: RES can protect the kidney from adverse effects of NIC in patients undergoing anticancer therapy.

Kim HR, Kang HN, Shim HS, et al.
Co-clinical trials demonstrate predictive biomarkers for dovitinib, an FGFR inhibitor, in lung squamous cell carcinoma.
Ann Oncol. 2017; 28(6):1250-1259 [PubMed] Related Publications
Background: We conducted co-clinical trials in patient-derived xenograft (PDX) models to identify predictive biomarkers for the multikinase inhibitor dovitinib in lung squamous cell carcinoma (LSCC).
Methods: The PDX01-02 were established from LSCC patients enrolled in the phase II trial of dovitinib (NCT01861197) and PDX03-05 were established from LSCC patients receiving surgery. These five PDX tumors were subjected to in vivo test of dovitinib efficacy, whole exome sequencing and gene expression profiling.
Results: The PDX tumors recapitulate histopathological properties and maintain genomic characteristics of originating tumors. Concordant with clinical outcomes of the trial enrolled-LSCC patients, dovitinib produced substantial tumor regression in PDX-01 and PDX-05, whereas it resulted in tumor progression in PDX-02. PDX-03 and -04 also displayed poor antitumor efficacy to dovitinib. Mutational and genome-wide copy number profiles revealed no correlation between genomic alterations of FGFR1-3 and sensitivity to dovitinib. Of note, gene expression profiles revealed differentially expressed genes including FGF3 and FGF19 between PDX-01 and 05 and PDX-02-04. Pathway analysis identified two FGFR signaling-related gene sets, FGFR ligand binding/activation and SHC-mediated cascade pathway were substantially up-regulated in PDX-01 and 05, compared with PDX-02-04. The comparison of gene expression profiles between dovitinib-sensitive versus -resistant lung cancer cell lines in the Cancer Cell Line Encyclopedia database also found that transcriptional activation of 18 key signaling components in FGFR pathways can predict the sensitivity to dovitinib both in cell lines and PDX tumors. These results highlight FGFR pathway activation as a key molecular determinant for sensitivity to dovitinib.
Conclusions: FGFR gene expression signatures are predictors for the response to dovitinib in LSCC.

McGee SR, Tibiche C, Trifiro M, Wang E
Network Analysis Reveals A Signaling Regulatory Loop in the PIK3CA-mutated Breast Cancer Predicting Survival Outcome.
Genomics Proteomics Bioinformatics. 2017; 15(2):121-129 [PubMed] Free Access to Full Article Related Publications
Mutated genes are rarely common even in the same pathological type between cancer patients and as such, it has been very challenging to interpret genome sequencing data and difficult to predict clinical outcomes. PIK3CA is one of a few genes whose mutations are relatively popular in tumors. For example, more than 46.6% of luminal-A breast cancer samples have PIK3CA mutated, whereas only 35.5% of all breast cancer samples contain PIK3CA mutations. To understand the function of PIK3CA mutations in luminal A breast cancer, we applied our recently-proposed Cancer Hallmark Network Framework to investigate the network motifs in the PIK3CA-mutated luminal A tumors. We found that more than 70% of the PIK3CA-mutated luminal A tumors contain a positive regulatory loop where a master regulator (PDGF-D), a second regulator (FLT1) and an output node (SHC1) work together. Importantly, we found the luminal A breast cancer patients harboring the PIK3CA mutation and this positive regulatory loop in their tumors have significantly longer survival than those harboring PIK3CA mutation only in their tumors. These findings suggest that the underlying molecular mechanism of PIK3CA mutations in luminal A patients can participate in a positive regulatory loop, and furthermore the positive regulatory loop (PDGF-D/FLT1/SHC1) has a predictive power for the survival of the PIK3CA-mutated luminal A patients.

Zhang XF, Ou-Yang L, Yan H
Node-based differential network analysis in genomics.
Comput Biol Chem. 2017; 69:194-201 [PubMed] Related Publications
Gene dependency networks often undergo changes in response to different conditions. Understanding how these networks change across two conditions is an important task in genomics research. Most previous differential network analysis approaches assume that the difference between two condition-specific networks is driven by individual edges. Thus, they may fail in detecting key players which might represent important genes whose mutations drive the change of network. In this work, we develop a node-based differential network analysis (N-DNA) model to directly estimate the differential network that is driven by certain hub nodes. We model each condition-specific gene network as a precision matrix and the differential network as the difference between two precision matrices. Then we formulate a convex optimization problem to infer the differential network by combing a D-trace loss function and a row-column overlap norm penalty function. Simulation studies demonstrate that N-DNA provides more accurate estimate of the differential network than previous competing approaches. We apply N-DNA to ovarian cancer and breast cancer gene expression data. The model rediscovers known cancer-related genes and contains interesting predictions.

Zheng Z, Luan X, Zha J, et al.
TNF-α inhibits the migration of oral squamous cancer cells mediated by miR-765-EMP3-p66Shc axis.
Cell Signal. 2017; 34:102-109 [PubMed] Related Publications
Whereas TNF-α can facilitate the metastasis of oral squamous cancer cells (OSCC), whether it inhibits the metastasis is not clear so far. In this study, we demonstrated that high dose TNF-α at 100ng/mL could in vitro significantly inhibit the migration of two OSCC cell lines, CAL-27 and SCC-25. To explore the related mechanisms, we focused on the involvement of the microRNAs and found that TNF-α increased the expression of miR-765. The upregulation of miR-765 was attributed to the inhibition of the migration. We showed that miR-765 directly targeted EMP3 and suppressed its expression. We also found that the expression of EMP3 was much higher in human oral squamous cancer in compare with the surrounding normal tissue. Interestingly, p66Shc, a downstream molecule in the EMP3-related signaling pathway, was increased by TNF-α. We found that the overexpression of p66Shc could suppress the migration through the enhanced E-cadherin and ZO-1 signals. Either silencing the expression of EMP3 or enhancing the expression of miR-765 could upregulate the expression of p66Shc. Together, our results demonstrated that TNF-α inhibited the metastasis of oral squamous cancer cell through the miR-765-EMP3-p66Shc axis, which may provide new insights for the therapy of oral squamous cancer.

Ahn R, Sabourin V, Bolt AM, et al.
The Shc1 adaptor simultaneously balances Stat1 and Stat3 activity to promote breast cancer immune suppression.
Nat Commun. 2017; 8:14638 [PubMed] Free Access to Full Article Related Publications
Tyrosine kinase signalling within cancer cells is central to the establishment of an immunosuppressive microenvironment. Although tyrosine kinase inhibitors act, in part, to augment adaptive immunity, the increased heterogeneity and functional redundancy of the tyrosine kinome is a hurdle to achieving durable responses to immunotherapies. We previously identified the Shc1 (ShcA) scaffold, a central regulator of tyrosine kinase signalling, as essential for promoting breast cancer immune suppression. Herein we show that the ShcA pathway simultaneously activates STAT3 immunosuppressive signals and impairs STAT1-driven immune surveillance in breast cancer cells. Impaired Y239/Y240-ShcA phosphorylation selectively reduces STAT3 activation in breast tumours, profoundly sensitizing them to immune checkpoint inhibitors and tumour vaccines. Finally, the ability of diminished tyrosine kinase signalling to initiate STAT1-driven immune surveillance can be overcome by compensatory STAT3 hyperactivation in breast tumours. Our data indicate that inhibition of pY239/240-ShcA-dependent STAT3 signalling may represent an attractive therapeutic strategy to sensitize breast tumours to multiple immunotherapies.

Huang C, Qin Y, Liu H, et al.
Downregulation of a novel long noncoding RNA TRPM2-AS promotes apoptosis in non-small cell lung cancer.
Tumour Biol. 2017; 39(2):1010428317691191 [PubMed] Related Publications
Non-small cell lung cancer is one of the most common types of cancer, and the prognosis of non-small cell lung cancer is still poor. Recent evidence has proved that long noncoding RNA is involved in tumorigenesis. For non-small cell lung cancer, the expression profile of long noncoding RNA has been studied. Here, we identified a novel long noncoding RNA TRPM2-AS from published dataset and found TRPM2-AS is widely upregulated in non-small cell lung cancer tissues compared with adjacent non-tumor tissues. Higher expression level of TRPM2-AS was correlated with higher TNM stages and larger tumor size. Patients with high TRPM2-AS expression level had poor survival than those with low TRPM2-AS level. We silenced TRPM2-AS by small interfering RNA and found that cell proliferation was significantly inhibited after knockdown of TRPM2-AS. Annexin V/propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay confirmed that cell apoptosis increased after TRPM2-AS knockdown. Further experiments showed that silence of TRPM2-AS upregulated SHC1 and silence of SHC1 partially reversed cell apoptosis after TRPM2-AS knockdown. In summary, the novel long noncoding RNA TRPM2-AS upregulated in non-small cell lung cancer, and downregulation of TRPM2-AS promotes apoptosis in vitro.

Denis D, Rouleau C, Schaffhausen BS
A Transformation-Defective Polyomavirus Middle T Antigen with a Novel Defect in PI3 Kinase Signaling.
J Virol. 2017; 91(2) [PubMed] Free Access to Full Article Related Publications
Middle T antigen (MT), the principal oncoprotein of murine polyomavirus, transforms by association with cellular proteins. Protein phosphatase 2A (PP2A), YAP, Src family tyrosine kinases, Shc, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLCγ1) have all been implicated in MT transformation. Mutant dl1015, with deletion of residues 338 to 347 in the C-terminal region, has been an enigma, because the basis for its transformation defect has not been apparent. This work probes the dl1015 region of MT. Because the region is proline rich, the hypothesis that it targets Src homology domain 3 (SH3) domains was tested, but mutation of the putative SH3 binding motif did not affect transformation. During this work, two point mutants, W348R and E349K, were identified as transformation defective. Extensive analysis of the E349K mutant is described here. Similar to wild-type MT, the E349K mutant associates with PP2A, YAP, tyrosine kinases, Shc, PI3 kinase, and PLCγ1. The E349K mutant was examined to determine the mechanism for its transformation defect. Assays of cell localization and membrane targeting showed no obvious difference in localization. Src association was normal as assayed by in vitro kinase and MT phosphopeptide mapping. Shc activation was confirmed by its tyrosine phosphorylation. Association of type 1 PI3K with MT was demonstrated by coimmunoprecipitation, showing both PI3K subunits and in vitro activity. Nonetheless, expression of the mutants failed to lead to the activation of two known downstream targets of PI3K, Akt and Rac-1. Strikingly, despite normal association of the E349K mutant with PI3K, cells expressing the mutant failed to elevate phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in mutant-expressing cells. These results indicate a novel unsuspected aspect to PI3K control.
IMPORTANCE: The gene coding for middle T antigen (MT) is the murine polyomavirus oncogene most responsible for tumor formation. Its study has a history of uncovering novel aspects of mammalian cell regulation. The importance of PI3K activity and tyrosine phosphorylation are two examples of insights coming from MT. This study describes new mutants unable to transform like the wild type that point to novel regulation of PI3K signaling. Previous mutants were defective in PI3K because they failed to bind the enzyme and bring the activity to the membrane. These mutants recruit PI3K activity like the wild type, but fail to elevate the cellular level of PIP3, the product used to signal downstream of PI3K. As a result, they fail to activate either Akt or Rac1, explaining the transformation defect.

Ding C, Fan X, Wu G
Peroxiredoxin 1 - an antioxidant enzyme in cancer.
J Cell Mol Med. 2017; 21(1):193-202 [PubMed] Free Access to Full Article Related Publications
Peroxiredoxins (PRDXs), a ubiquitous family of redox-regulating proteins, are reported of potential to eliminate various reactive oxygen species (ROS). As a major member of the antioxidant enzymes, PRDX1 can become easily over-oxidized on its catalytically active cysteine induced by a variety of stimuli in vitro and in vivo. In nucleus, oligomeric PRDX1 directly associates with p53 or transcription factors such as c-Myc, NF-κB and AR, and thus affects their bioactivities upon gene regulation, which in turn induces or suppresses cell death. Additionally, PRDX1 in cytoplasm has anti-apoptotic potential through direct or indirect interactions with several ROS-dependent (redox regulation) effectors, including ASK1, p66

Peng C, Zhao H, Chen W, et al.
Identification of SHCBP1 as a novel downstream target gene of SS18-SSX1 and its functional analysis in progression of synovial sarcoma.
Oncotarget. 2016; 7(41):66822-66834 [PubMed] Free Access to Full Article Related Publications
The SS18-SSX1 fusion gene has been shown to play important roles in the development of synovial sarcoma (SS), but the underlying molecular mechanisms and its downstream target genes are still not clear. Here SHC SH2-domain binding protein 1 (SHCBP1) was identified and validated to be a novel downstream target gene of SS18-SSX1 by using microarray assay, quantitative real-time (qPCR) and western blot. Expression of SHCBP1 was firstly confirmed in SS cell line and SS tissues. The effects of SHCBP1 overexpression or knockdown on SS cell proliferation and tumorigenicity were then studied by cell proliferation, DNA replication, colony formation, flow cytometric assays, and its in vivo tumorigenesis was determined in the nude mice. Meanwhile, the related signaling pathways of SHCBP1 were also examined in SS cells. The results indicated that SHCBP1 was significantly increased in SS cells and SS tissues compared with adjacent noncancerous tissues. The expression of SHCBP1 was demonstrated to be positively correlated with the SS18-SSX1 level. Overexpression and ablation of SHCBP1 promoted and inhibited, respectively, the proliferation and tumorigenicity of SS cells in vitro. SHCBP1 knockdown also significantly inhibited SS cell growth in nude mice, and lowered the MAPK/ERK and PI3K/AKT/mTOR signaling pathways and cyclin D1 expression. Our findings disclose that SHCBP1 is a novel downstream target gene of SS18-SSX1, and demonstrate that the oncogene SS18-SSX1 promotes tumorigenesis by increasing the expression of SHCBP1, which normally acts as a tumor promoting factor.

Cattaneo F, Patrussi L, Capitani N, et al.
Expression of the p66Shc protein adaptor is regulated by the activator of transcription STAT4 in normal and chronic lymphocytic leukemia B cells.
Oncotarget. 2016; 7(35):57086-57098 [PubMed] Free Access to Full Article Related Publications
p66Shc attenuates mitogenic, prosurvival and chemotactic signaling and promotes apoptosis in lymphocytes. Consistently, p66Shc deficiency contributes to the survival and trafficking abnormalities of chronic lymphocytic leukemia (CLL) B cells. The mechanism of p66shc silencing in CLL B cells is methylation-independent, at variance with other cancer cell types. Here we identify STAT4 as a novel transcriptional regulator of p66Shc in B cells. Chromatin immunoprecipitation and reporter gene assays showed that STAT4 binds to and activates the p66shc promoter. Silencing or overexpression of STAT4 resulted in a co-modulation of p66Shc. IL-12-dependent STAT4 activation caused a coordinate increase in STAT4 and p66Shc expression, which correlated with enhanced B cell apoptosis. Treatment with the STAT4 inhibitor lisofylline reverted partly this effect, suggesting that STAT4 phosphorylation is not essential for but enhances p66shc transcription. Additionally, we demonstrate that CLL B lymphocytes have a STAT4 expression defect which partly accounts for their p66Shc deficiency, as supported by reconstitution experiments. Finally, we show that p66Shc participates in a positive feedback loop to promote STAT4 expression. These results provide new insights into the mechanism of p66Shc expression in B cells and its defect in CLL, identifying the STAT4/IL-12 pathway as a potential therapeutic target in this neoplasia.

An HJ, Kwak SY, Yoo JO, et al.
Novel miR-5582-5p functions as a tumor suppressor by inducing apoptosis and cell cycle arrest in cancer cells through direct targeting of GAB1, SHC1, and CDK2.
Biochim Biophys Acta. 2016; 1862(10):1926-37 [PubMed] Related Publications
MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. In the present study, we discovered and demonstrated the tumor suppressive function of a novel miRNA miR-5582-5p. miR-5582-5p induced apoptosis and cell cycle arrest in cancer cells, but not in normal cells. GAB1, SHC1, and CDK2 were identified as direct targets of miR-5582-5p. Knockdown of GAB1/SHC1 or CDK2 phenocopied the apoptotic or cell cycle arrest-inducing function of miR-5582-5p, respectively. The expression of miR-5582-5p was lower in tumor tissues than in adjacent normal tissues of colorectal cancer patients, while the expression of the target proteins exhibited patterns opposite to that of miR-5582-5p. Intratumoral injection of a miR-5582-5p mimic or induced expression of miR-5582-5p in tumor cells suppressed tumor growth in HCT116 xenografts. Collectively, our results suggest a novel tumor suppressive function for miR-5582-5p and its potential applicability for tumor control.

Feng W, Li HC, Xu K, et al.
SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line.
Gene. 2016; 587(1):91-7 [PubMed] Related Publications
BACKGROUND: SHC SH2-binding protein 1, a member of Src homolog and collagen homolog (Shc) family, has been recently identified in different contexts in unbiased screening assays. It has been reported to be over-expressed in several malignant cancers.
METHODS: Immunohistochemistry of SHCBP1 on 128 breast cancer tissues and adjacent normal tissues were used to evaluate the prognostic significance of SHCBP1. Survival analyses were performed by Kaplan-Meier method. CRISPR/CAS9 method was used to knockout SHCBP1 expression. CRISPR/CAS9 technology was used to knockout SHCBP1 in 2 breast cancer cell lines. MTT assay, BrdU assay, colony formation assay, cell cycle assay and apoptosis analysis in MCF-7 and MDA-MB-231 cell lines were carried out to evaluate the effects of SHCBP1 on breast cancer in vitro.
RESULTS: Immunohistochemical analysis revealed SHCBP1 was significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (82 of 128, 64%). Over-expressed SHCBP1 was correlated with advanced clinical stage and poorer survival. Ablation of SHCBP1 inhibited the proliferation in vitro. SHCBP1 knockout increased cyclin-dependent kinase inhibitor p21, and decreased the Cyclin B1 and CDK1.
CONCLUSION: Our study suggests SHCBP1 is dysregulated expressed in breast cancer and plays a critical role in cancer progression, which can be a potential prognosis predictor of breast cancer.

Cyr-Depauw C, Northey JJ, Tabariès S, et al.
Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion.
Mol Cell Biol. 2016; 36(10):1509-25 [PubMed] Free Access to Full Article Related Publications
ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling.

Chougule RA, Cordero E, Moharram SA, et al.
Expression of GADS enhances FLT3-induced mitogenic signaling.
Oncotarget. 2016; 7(12):14112-24 [PubMed] Free Access to Full Article Related Publications
GADS is a member of a family of SH2 and SH3 domain-containing adaptors that functions in tyrosine kinase-mediated signaling cascades. Its expression is largely restricted to hematopoietic tissues and cell lines. Therefore, GADS is mainly involved in leukocyte-specific protein tyrosine kinase signaling. GADS is known to interact with tyrosine-phosphorylated SHC, BCR-ABL and KIT. The SH2 domain of GADS has a similar binding specificity to that of GRB2 but its SH3 domain displays a different binding specificity, and thus it is involved in other downstream signaling pathways than GRB2. In the present study, we examined the role of GADS in FLT3 signaling. FLT3 is a type III receptor tyrosine kinase, which is mutated in more than 30% of acute myeloid leukemia (AML) and the most common mutations is the internal tandem duplication (ITD) mutations. We observed that expression of GADS enhanced oncogenic FLT3-ITD-induced cell proliferation and colony formation in vitro. In a mouse xenograft model, GADS accelerated FLT3-ITD-dependent tumor formation. Furthermore, expression of GADS induced a transcriptional program leading to upregulation of MYC and mTORC1 target genes. GADS localizes to the cell membrane and strongly binds to ligand-stimulated wild-type FLT3 or is constitutively associated with the oncogenic mutant FLT3-ITD. We mapped the binding sites in FLT3 to pY955 and pY969 which overlaps with the GRB2 binding sites. Expression of GADS enhanced FLT3-mediated phosphorylation of AKT, ERK1/2, p38 and STAT5. Taken together, our data suggests that GADS is an important downstream component of FLT3 signaling and expression of GADS potentiates FLT3-mediated mitogenic signaling.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SHC1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999