RAD51

Gene Summary

Gene:RAD51; RAD51 recombinase
Aliases: RECA, BRCC5, FANCR, MRMV2, HRAD51, RAD51A, HsRad51, HsT16930
Location:15q15.1
Summary:The protein encoded by this gene is a member of the RAD51 protein family. RAD51 family members are highly similar to bacterial RecA and Saccharomyces cerevisiae Rad51, and are known to be involved in the homologous recombination and repair of DNA. This protein can interact with the ssDNA-binding protein RPA and RAD52, and it is thought to play roles in homologous pairing and strand transfer of DNA. This protein is also found to interact with BRCA1 and BRCA2, which may be important for the cellular response to DNA damage. BRCA2 is shown to regulate both the intracellular localization and DNA-binding ability of this protein. Loss of these controls following BRCA2 inactivation may be a key event leading to genomic instability and tumorigenesis. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:DNA repair protein RAD51 homolog 1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (31)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RAD51 (cancer-related)

Kuo IY, Huang YL, Lin CY, et al.
SOX17 overexpression sensitizes chemoradiation response in esophageal cancer by transcriptional down-regulation of DNA repair and damage response genes.
J Biomed Sci. 2019; 26(1):20 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prognosis of esophageal squamous cell carcinoma (ESCC) patients is poor and the concurrent chemoradiation therapy (CCRT) provided to ESCC patients often failed due to resistance. Therefore, development of biomarkers for predicting CCRT response is immensely important. In this study, we evaluated the predicting value of SRY (sex determining region Y)-box 17 (SOX17) protein during CCRT and its dysregulation of transcriptional targets in CCRT resistance in ESCC.
METHODS: Pyrosequencing methylation, RT-qPCR and immunohistochemistry assays were performed to examine the DNA methylation, mRNA expression and protein expression levels of SOX17 in endoscopic biopsy from a total of 70 ESCC patients received CCRT. Cell proliferation, clonogenic survival and xenograft growth were used to confirm the sensitization of ESCC cell line KYSE510 in response to cisplatin, radiation or CCRT treatment by SOX17 overexpression in vitro and in vivo. Luciferase activity, RT-qPCR and ChIP-qPCR assays were conducted to examine transcription regulation of SOX17 in KYSE510 parental, KYSE510 radio-resistant cells and their derived xenografts.
RESULTS: High DNA methylation coincided with low mRNA and protein expression levels of SOX17 in pre-treatment endoscopic biopsy from ESCC patients with poor CCRT response. SOX17 protein expression exhibited a good prediction performance in discriminating poor CCRT responders from good responder. Overexpression of SOX17 sensitized KYSE510 radio-resistant cells to cisplatin, radiation or CCRT treatment in cell and xenograft models. Importantly, SOX17 transcriptionally down-regulated DNA repair and damage response-related genes including BRCA1, BRCA2, RAD51, KU80 DNAPK, p21, SIRT1, NFAT5 and REV3L in KYSE510 radio-resistant cells to achieve the sensitization effect to anti-cancer treatment. Low expression of BRCA1, DNAPK, p21, RAD51 and SIRT1 was confirmed in SOX17 sensitized xenograft tissues derived from radio-resistant ESCC cells.
CONCLUSIONS: Our study reveals a novel mechanism by which SOX17 transcriptionally inactivates DNA repair and damage response-related genes to sensitize ESCC cell or xenograft to CCRT treatment. In addition, we establish a proof-of-concept CCRT prediction biomarker using SOX17 immunohistochemical staining in pre-treatment endoscopic biopsies to identify ESCC patients who are at high risk of CCRT failure and need intensive care.

Wang Z, Zuo W, Zeng Q, et al.
Loss of NFBD1/MDC1 disrupts homologous recombination repair and sensitizes nasopharyngeal carcinoma cells to PARP inhibitors.
J Biomed Sci. 2019; 26(1):14 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Nasopharyngeal carcinoma (NPC), a highly invasive tumor, exhibits a distinctive racial and geographic distribution. As options of agents for effective combination chemoradiotherapy for advanced NPC are limited, novel therapeutic approaches are desperately needed. Here the potential of silencing NFBD1 in combination with PARP inhibition as a novel therapeutic strategy for NPC was investigated.
METHODS: To investigate the function of NFBD1, we created NFBD1-depleted NPC cell lines via lentivirus mediated shRNA, and the colony formation, MTS assay, comet assay and apoptosis analysis were used to evaluate the sensitivity of NFBD1 knockdown on PARP inhibition. The signaling change was assessed by western blot, Immunofluorescence and flow cytometry. Furthermore, Xenografts model was used to evaluate the role of silencing NFBD1 in combination with PARP inhibition.
RESULTS: We find that silencing NFBD1 in combination with PARP inhibition significantly inhibits the cell proliferation and cell cycle checkpoint activity, and increases the apoptosis and DNA damage. Mechanistic studies reveal that NFBD1 loss blocks olaparib-induced homologous recombination repair by decreasing the formation of BRCA1, BRCA2 and RAD51 foci. Furthermore, the xenograft tumor model demonstrated significantly increases sensitivity towards PARP inhibition under NFBD1 deficiency.
CONCLUSIONS: We show that NFBD1 depletion may possess sensitizing effects of PARP inhibitor, and consequently offers novel therapeutic options for a significant subset of patients.

Hurley RM, Wahner Hendrickson AE, Visscher DW, et al.
53BP1 as a potential predictor of response in PARP inhibitor-treated homologous recombination-deficient ovarian cancer.
Gynecol Oncol. 2019; 153(1):127-134 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
OBJECTIVE: Poly(ADP-ribose) polymerase (PARP) inhibitors have shown substantial activity in homologous recombination- (HR-) deficient ovarian cancer and are undergoing testing in other HR-deficient tumors. For reasons that are incompletely understood, not all patients with HR-deficient cancers respond to these agents. Preclinical studies have demonstrated that changes in alternative DNA repair pathways affect PARP inhibitor (PARPi) sensitivity in ovarian cancer models. This has not previously been assessed in the clinical setting.
METHODS: Clonogenic and plasmid-based HR repair assays were performed to compare BRCA1-mutant COV362 ovarian cancer cells with or without 53BP1 gene deletion. Archival biopsies from ovarian cancer patients in the phase I, open-label clinical trial of PARPi ABT-767 were stained for PARP1, RAD51, 53BP1 and multiple components of the nonhomologous end-joining (NHEJ) DNA repair pathway. Modified histochemistry- (H-) scores were determined for each repair protein in each sample. HRD score was determined from tumor DNA.
RESULTS: 53BP1 deletion increased HR in BRCA1-mutant COV362 cells and decreased PARPi sensitivity in vitro. In 36 women with relapsed ovarian cancer, responses to the PARPi ABT-767 were observed exclusively in cancers with HR deficiency. In this subset, 7 of 18 patients (39%) had objective responses. The actual HRD score did not further correlate with change from baseline tumor volume (r = 0.050; p = 0.87). However, in the HR-deficient subset, decreased 53BP1 H-score was associated with decreased antitumor efficacy of ABT-767 (r = -0.69, p = 0.004).
CONCLUSION: Differences in complementary repair pathways, particularly 53BP1, correlate with PARPi response of HR-deficient ovarian cancers.

Hong S, Xu J, Li Y, et al.
Topoisomerase IIβ-binding protein 1 activates expression of E2F1 and p73 in HPV-positive cells for genome amplification upon epithelial differentiation.
Oncogene. 2019; 38(17):3274-3287 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
High-risk human papillomaviruses (HPVs) constitutively activate ataxia telangiectasia mutated (ATM) and ataxia telangiectasia- and Rad3-related (ATR) DNA damage repair pathways for viral genome amplification. HPVs activate these pathways through the immune regulator STAT-5. For the ATR pathway, STAT-5 increases expression of the topoisomerase IIβ-binding protein 1 (TopBP1), a scaffold protein that binds ATR and recruits it to sites of DNA damage. TopBP1 also acts as a transcriptional regulator, and we investigated how this activity influenced the HPV life cycle. We determined that TopBP1 levels are increased in cervical intraepithelial neoplasias as well as cervical carcinomas, consistent with studies in HPV-positive cell lines. Suppression of TopBP1 by shRNAs impairs HPV genome amplification and activation of the ATR pathway but does not affect the total levels of ATR and CHK1. In contrast, knockdown reduces the expression of other DNA damage factors such as RAD51 and Mre11 but not BRCA2 or NBS1. Interestingly, TopBP1 positively regulates the expression of E2F1, a TopBP1-binding partner, and p73 in HPV-positive cells in contrast to its effects in other cell types. TopBP1 transcriptional activity is regulated by AKT, and treatment with AKT inhibitors suppresses expression of E2F1 and p73 without interfering with ATR signaling. Importantly, the levels of p73 are elevated in HPV-positive cells and its knockdown impairs HPV genome amplification. This demonstrates that p73, like p63 and p53, is an important regulator of the HPV life cycle that is controlled by the transcriptional activating properties of the multifunctional TopBP1 protein.

Tarokhian H, Rahimi H, Mosavat A, et al.
HTLV-1-host interactions on the development of adult T cell leukemia/lymphoma: virus and host gene expressions.
BMC Cancer. 2018; 18(1):1287 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
BACKGROUND: Adult T-cell leukemia/lymphoma (ATLL) is a lymphoproliferative disorder of HTLV-1-host interactions in infected TCD4+ cells. In this study, the HTLV-1 proviral load (PVL) and HBZ as viral elements and AKT1, BAD, FOXP3, RORγt and IFNλ3 as the host factors were investigated.
METHODS: The study was conducted in ATLLs, HTLV-1-associated myelopathy/tropical spastic paraparesis patients (HAM/TSPs) and HTLV-1-asympthomatic carriers (ACs). The DNA and mRNA from peripheral blood mononuclear cells were extracted for gene expression assessments via qRT-PCR, TaqMan assay, and then confirmed by western blotting.
RESULTS: As it was expected, the HTLV-1-PVL were higher in ATLLs than ACs (P = 0.002) and HAM/TSP (P = 0.041). The HBZ expression in ATLL (101.76 ± 61.3) was radically higher than in ACs (0.12 ± 0.05) and HAM/TSP (0.01 ± 0.1) (P = 0.001). Furthermore, the AKT1 expression in ATLLs (13.52 ± 4.78) was higher than ACs (1.17 ± 0.27) (P = 0.05) and HAM/TSPs (0.72 ± 0.49) (P = 0.008). However, BAD expression in ATLL was slightly higher than ACs and HAM/TSPs and not significant. The FOXP3 in ATLLs (41.02 ± 24.2) was more than ACs (1.44 ± 1) (P = 0.007) and HAM/TSP (0.45 ± 0.15) (P = 0.01). However, RORγt in ATLLs (27.43 ± 14.8) was higher than ACs (1.05 ± 0.32) (P = 0.02) but not HAM/TSPs. Finally, the IFNλ3 expression between ATLLs (31.92 ± 26.02) and ACs (1.46 ± 0.63) (P = 0.01) and ACs and HAM/TSPs (680.62 ± 674.6) (P = 0.02) were statistically different, but not between ATLLs and HAM/TSPs.
CONCLUSIONS: The present and our previous study demonstrated that HTLV-1-PVL and HBZ and host AKT1 and Rad 51 are novel candidates for molecular targeting therapy of ATLL. However, high level of RORγt may inhibit Th1 response and complicated in ATLL progressions.

Marzio A, Puccini J, Kwon Y, et al.
The F-Box Domain-Dependent Activity of EMI1 Regulates PARPi Sensitivity in Triple-Negative Breast Cancers.
Mol Cell. 2019; 73(2):224-237.e6 [PubMed] Related Publications
The BRCA1-BRCA2-RAD51 axis is essential for homologous recombination repair (HRR) and is frequently disrupted in breast cancers. PARP inhibitors (PARPis) are used clinically to treat BRCA-mutated breast tumors. Using a genetic screen, we identified EMI1 as a modulator of PARPi sensitivity in triple-negative breast cancer (TNBC) cells. This function requires the F-box domain of EMI1, through which EMI1 assembles a canonical SCF ubiquitin ligase complex that constitutively targets RAD51 for degradation. In response to genotoxic stress, CHK1-mediated phosphorylation of RAD51 counteracts EMI1-dependent degradation by enhancing RAD51's affinity for BRCA2, leading to RAD51 accumulation. Inhibition of RAD51 degradation restores HRR in BRCA1-depleted cells. Human breast cancer samples display an inverse correlation between EMI1 and RAD51 protein levels. A subset of BRCA1-deficient TNBC cells develop resistance to PARPi by downregulating EMI1 and restoring RAD51-dependent HRR. Notably, reconstitution of EMI1 expression reestablishes PARPi sensitivity both in cellular systems and in an orthotopic mouse model.

Duran-Lozano L, Montalban G, Bonache S, et al.
Alternative transcript imbalance underlying breast cancer susceptibility in a family carrying PALB2 c.3201+5G>T.
Breast Cancer Res Treat. 2019; 174(2):543-550 [PubMed] Related Publications
PURPOSE: Disruption of splicing motifs by genetic variants can affect the correct generation of mature mRNA molecules leading to aberrant transcripts. In some cases, variants may alter the physiological transcription profile composed of several transcripts, and an accurate in vitro evaluation is crucial to establish their pathogenicity. In this study, we have characterized a novel PALB2 variant c.3201+5G>T identified in a breast cancer family.
METHODS: Peripheral blood RNA was analyzed in two carriers and ten controls by RT-PCR and Sanger sequencing. The splicing profile was also characterized by semi-quantitative capillary electrophoresis and quantitative PCR. RAD51 foci formation and PALB2 LOH status were evaluated in primary breast tumor samples from the carriers.
RESULTS: PALB2 c.3201+5G>T disrupts intron 11 donor splice site and modifies the abundance of several alternative transcripts (∆11, ∆12, and ∆11,12), also present in control samples. All transcripts are predicted to encode for non-functional proteins. Semi-quantitative and quantitative analysis of PALB2 full-length transcript indicated haploinsufficiency in carriers. One tumor exhibited PALB2 LOH and RAD51 assay indicated homologous recombination deficiency in both tumors.
CONCLUSIONS: Our results support a pathogenic classification for PALB2 c.3201+5G>T, highlighting the impact of variants causing an imbalanced expression of natural RNA isoforms in cancer susceptibility.

Zhang Z, Sun C, Zhang L, et al.
Triptolide interferes with XRCC1/PARP1-mediated DNA repair and confers sensitization of triple-negative breast cancer cells to cisplatin.
Biomed Pharmacother. 2019; 109:1541-1546 [PubMed] Related Publications
Triptolide is a natural compound isolated from the Tripterygium wilfordii, which possesses anti-inflammatory and anti-tumor activities. Triptolide reportedly inhibits RNA polymerase II-mediated transcription and ATM activities to interfere with DNA repair. However, the roles of triptolide in DNA repair are still largely unknown. Triple negative breast cancer cells (TNBC) are insensitive to targeted anti-tumoral drugs, thus DNA damage chemotherapeutic drugs are the available treatments used in clinic, while the drug resistance of TNBC causes the challenge for successful cure. In this study, we investigated the efficiency of cisplatin in combination with triptolide in treatment of TNBC. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay shows triptolide suppresses the growth of two triple-negative breast cancer cells, BT549 and MDA-MB-231. Triptolide induces DNA breaks and arrests TNBC in the cell cycle S phase, and sensitizes TNBC to cisplatin. Western blot analysis shows triptolide down-regulated the levels of PARP1 and XRCC1, and slightly decreases the levels of RAD51. The results demonstrate triptolide interferes with single strand-break and base excision repair. The over-expressed PARP1/XRCC1 help the TNBC to resist triptolide. Based on these results, we conclude triptolide confers sensitization of TNBC to cisplatin via interference with XRCC1/PARP1-mediated base excision repair.

Lee MG, Lee KS, Nam KS
The association of changes in RAD51 and survivin expression levels with the proton beam sensitivity of Capan‑1 and Panc‑1 human pancreatic cancer cells.
Int J Oncol. 2019; 54(2):744-752 [PubMed] Related Publications
Fewer than 20% of patients diagnosed with pancreatic cancer can be treated with surgical resection. The effects of proton beam irradiation were evaluated on the cell viabilities in Panc‑1 and Capan‑1 pancreatic cancer cells. The cells were irradiated with proton beams at the center of Bragg peaks with a 6‑cm width using a proton accelerator. Cell proliferation was assessed with the MTT assay, gene expression was analyzed with semi‑quantitative or quantitative reverse transcription‑polymerase chain reaction analyses and protein expression was evaluated by western blotting. The results demonstrated that Capan‑1 cells had lower cell viability than Panc‑1 cells at 72 h after proton beam irradiation. Furthermore, the cleaved poly (ADP‑ribose) polymerase protein level was increased by irradiation in Capan‑1 cells, but not in Panc‑1 cells. Additionally, it was determined that histone H2AX phosphorylation in the two cell lines was increased by irradiation. Although a 16 Gy proton beam was only slightly up‑regulated cyclin‑dependent kinase inhibitor 1 (p21) protein expression in Capan‑1 cells, p21 expression levels in Capan‑1 and Panc‑1 cells were significantly increased at 72 h after irradiation. Furthermore, it was observed that the expression of DNA repair protein RAD51 homolog 1 (RAD51), a homogenous repair enzyme, was decreased in what appeared to be a dose‑dependent manner by irradiation in Capan‑1 cells. Contrastingly, the transcription of survivin in Panc‑1 was significantly enhanced. The results suggest that RAD51 and survivin are potent markers that determine the therapeutic efficacy of proton beam therapy in patients with pancreatic cancer.

Cavic M, Spasic J, Krivokuca A, et al.
J Clin Pathol. 2019; 72(1):75-80 [PubMed] Related Publications

Li D, Li X, Li G, et al.
Alpinumisoflavone causes DNA damage in Colorectal Cancer Cells via blocking DNA repair mediated by RAD51.
Life Sci. 2019; 216:259-270 [PubMed] Related Publications
AIMS: Colorectal Cancer (CRC) accounts for 6.1% incidence and 9.2% mortality worldwide. The current study aimed to investigate the effect of alpinumisoflavone (AIF) on CRC and its possible molecular mechanism.
METHODS: HCT-116 and SW480 cells were chosen as cell model to study the anti-cancer activity of AIF in vitro experiments. Cells proliferative capacity and clonogenicity were examined by CCK-8 assay and colony formation assay, while cell apoptosis was detected by Hoechst 33258 staining and Flow cytometer. The protein expression levels of related gene were examined by western blotting. Transcriptome analyses were conducted to identify the differentially expressed genes in CRC cells, following AIF treatment. DNA damage was examined by γH2AX foci assay. The anti-cancer effect of AIF in vivo was validated in CRC xenograft model.
KEY FINDINGS: We found that AIF inhibited CRC cell proliferation and promoted apoptosis in a dose-dependent manner, as well as increased the number of γ-H2AX foci. In addition, microarray analysis showed that the DNA-double strand break (DSB) repair gene RAD51 was aberrantly overexpressed in CRC tissues, and was positively correlated with lymph node metastasis, TNM stage and poor outcomes. Both in vitro and in vivo experiments confirm that AIF treatment significantly decreased RAD51 levels. Knockdown RAD51 could enhance the anti-cancer activity of AIF against CRC, while abrogated by RAD51 overexpression.
SIGNIFICANCE: These findings suggest that AIF can be regarded as a potential anti-cancer drug and provide new insights into CRC treatment.

Zhong Q, Hu Z, Li Q, et al.
Cyclin D1 silencing impairs DNA double strand break repair, sensitizes BRCA1 wildtype ovarian cancer cells to olaparib.
Gynecol Oncol. 2019; 152(1):157-165 [PubMed] Related Publications
OBJECTIVE: Poly(ADP-ribose) polymerase inhibitors (PARPi) are active in cancer cells that have impaired repair of DNA by the homologous recombination (HR) pathway. Strategies that disrupt HR may sensitize HR-proficient tumors to PARP inhibition. As a component of the core cell cycle machinery, cyclin D1 has unexpected function in DNA repair, suggesting that targeting cyclin D1 may represent a plausible strategy for expanding the utility of PARPi in ovarian cancer.
METHODS: BRCA1 wildtype ovarian cancer cells (A2780 and SKOV3) were treated with a combination of CCND1 siRNA and olaparib in vitro. Cell viability was assessed by MTT. The effects of the combined treatment on DNA damage repair and cell cycle progression were examined to dissect molecular mechanisms. In vivo studies were performed in an orthotopic ovarian cancer mouse model. Animals were treated with a combination of lentivirus-mediated CCND1 shRNA and olaparib or olaparib plus scrambled shRNA. Molecular downstream effects were examined by immunohistochemistry.
RESULTS: Silencing of cyclin D1 sensitized ovarian cancer cells to olaparib through interfering with RAD51 accumulation and inducing cell cycle G0/G1 arrest. Treatment of lentivirus-mediated CCND1-shRNA in nude mice statistically significantly augmented the olaparib response (mean tumor weight ± SD, CCND1-shRNA plus olaparib vs scrambled shRNA plus olaparib: 0.172 ± 0.070 g vs 0.324 ± 0.044 g, P< 0.05).
CONCLUSIONS: Silencing of cyclin D1 combined with olaparib may lead to substantial benefit for ovarian cancer management by mimicking a BRCAness phenotype, and induction of G0/G1 cell cycle arrest.

Piotto C, Biscontin A, Millino C, Mognato M
Functional validation of miRNAs targeting genes of DNA double-strand break repair to radiosensitize non-small lung cancer cells.
Biochim Biophys Acta Gene Regul Mech. 2018; 1861(12):1102-1118 [PubMed] Related Publications
DNA-Double strand breaks (DSBs) generated by radiation therapy represent the most efficient lesions to kill tumor cells, however, the inherent DSB repair efficiency of tumor cells can cause cellular radioresistance and impact on therapeutic outcome. Genes of DSB repair represent a target for cancer therapy since their down-regulation can impair the repair process making the cells more sensitive to radiation. In this study, we analyzed the combination of ionizing radiation (IR) along with microRNA-mediated targeting of genes involved in DSB repair to sensitize human non-small cell lung cancer (NSCLC) cells. MicroRNAs are natural occurring modulators of gene expression and therefore represent an attractive strategy to affect the expression of DSB repair genes. As possible IR-sensitizing targets genes we selected genes of homologous recombination (HR) and non-homologous end joining (NHEJ) pathway (i.e. RAD51, BRCA2, PRKDC, XRCC5, LIG1). We examined these genes to determine whether they may be real targets of selected miRNAs by functional and biological validation. The in vivo effectiveness of miRNA treatments has been examined in cells over-expressing miRNAs and treated with IR. Taken together, our results show that hsa-miR-96-5p and hsa-miR-874-3p can directly regulate the expression of target genes. When these miRNAs are combined with IR can decrease the survival of NSCLC cells to a higher extent than that exerted by radiation alone, and similarly to radiation combined with specific chemical inhibitors of HR and NHEJ repair pathway.

Kumar S, Talluri S, Pal J, et al.
Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance.
Blood Cancer J. 2018; 8(10):92 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
We have previously reported that homologous recombination (HR) is dysregulated in multiple myeloma (MM) and contributes to genomic instability and development of drug resistance. We now demonstrate that base excision repair (BER) associated apurinic/apyrimidinic (AP) nucleases (APEX1 and APEX2) contribute to regulation of HR in MM cells. Transgenic as well as chemical inhibition of APEX1 and/or APEX2 inhibits HR activity in MM cells, whereas the overexpression of either nuclease in normal human cells, increases HR activity. Regulation of HR by AP nucleases could be attributed, at least in part, to their ability to regulate recombinase (RAD51) expression. We also show that both nucleases interact with major HR regulators and that APEX1 is involved in P73-mediated regulation of RAD51 expression in MM cells. Consistent with the role in HR, we also show that AP-knockdown or treatment with inhibitor of AP nuclease activity increases sensitivity of MM cells to melphalan and PARP inhibitor. Importantly, although inhibition of AP nuclease activity increases cytotoxicity, it reduces genomic instability caused by melphalan. In summary, we show that APEX1 and APEX2, major BER proteins, also contribute to regulation of HR in MM. These data provide basis for potential use of AP nuclease inhibitors in combination with chemotherapeutics such as melphalan for synergistic cytotoxicity in MM.

Gasinska A, Biesaga B, Widla AJ, Darasz Z
Positive effect of single nucleotide RAD51 135G>C polymorphism and low Ku70 protein expression on female rectal cancer patients survival after preoperative radiotherapy.
Turk J Gastroenterol. 2019; 30(1):3-14 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
BACKGROUND/AIMS: This is a retrospective analysis of 103 patients having locally advanced rectal cancer who received short-course radiotherapy (SCRT). The objective of the study was to check whether a polymorphism in the RAD51 gene (135 G>C), Ku70 protein expression, and tumor microenvironment: proliferation rate measured by BrdUrdLI and Ki-67LI, hypoxia (glucose transporter-1 expression), P53 protein expression, and DNA ploidy can influence DNA repair capacity, the factors contributing to patient overall survival (OS) and the incidence of recurrences and metastases.
MATERIALS AND METHODS: RAD51 (135 G>C) polymorphism was evaluated using restriction fragment length polymorphism polymerase chain reaction, and proteins were identified using immunohistochemistry.
RESULTS: There were 3 (2.9%) tumors with RAD51 CC, 75 (72.8%) with GG, and 25 (24.3%) with GC genotypes. The median follow-up time was 63.1 months (range 2-120). Patients with CC genotype survived significantly longer than those with GG and GC genotypes and did not develop any recurrences or distant metastases. Female patients with Ku70 expression (<75.1) or RAD51CC genotype (impaired DNA damage repair and radiosensitive) had significantly longer OS (p=0.013) than those with Ku70>75.1 % or RAD51GG,GC (radioresistant phenotype) and male patients in the log-rank test. In multivariate analysis, positive prognostic factors for OS in the male patients were grade=1 and <17 days break in the treatment, whereas in the female subgroup, only radiosensitive phenotype (Ku70 <75.1% or RAD51CC genotype).
CONCLUSION: To the best of our knowledge, this is the first study to provide evidence for the positive effect of CC genotype of RAD51 or low Ku70 expression on OS in females with rectal cancer after SCRT.

Tachon G, Cortes U, Guichet PO, et al.
Cell Cycle Changes after Glioblastoma Stem Cell Irradiation: The Major Role of RAD51.
Int J Mol Sci. 2018; 19(10) [PubMed] Article available free on PMC after 01/04/2020 Related Publications
"Glioma Stem Cells" (GSCs) are known to play a role in glioblastoma (GBM) recurrence. Homologous recombination (HR) defects and cell cycle checkpoint abnormalities can contribute concurrently to the radioresistance of GSCs. DNA repair protein RAD51 homolog 1 (RAD51) is a crucial protein for HR and its inhibition has been shown to sensitize GSCs to irradiation. The aim of this study was to examine the consequences of ionizing radiation (IR) for cell cycle progression in GSCs. In addition, we intended to assess the potential effect of RAD51 inhibition on cell cycle progression. Five radiosensitive GSC lines and five GSC lines that were previously characterized as radioresistant were exposed to 4Gy IR, and cell cycle analysis was done by fluorescence-activated cell sorting (FACS) at 24, 48, 72, and 96 h with or without RAD51 inhibitor. Following 4Gy IR, all GSC lines presented a significant increase in G2 phase at 24 h, which was maintained over 72 h. In the presence of RAD51 inhibitor, radioresistant GSCs showed delayed G2 arrest post-irradiation for up to 48 h. This study demonstrates that all GSCs can promote G2 arrest in response to radiation-induced DNA damage. However, following RAD51 inhibition, the cell cycle checkpoint response differed. This study contributes to the characterization of the radioresistance mechanisms of GSCs, thereby supporting the rationale of targeting RAD51-dependent repair pathways in view of radiosensitizing GSCs.

Yu W, Li L, Wang G, et al.
KU70 Inhibition Impairs Both Non-Homologous End Joining and Homologous Recombination DNA Damage Repair Through SHP-1 Induced Dephosphorylation of SIRT1 in T-Cell Acute Lymphoblastic Leukemia (T-ALL) [corrected].
Cell Physiol Biochem. 2018; 49(6):2111-2123 [PubMed] Related Publications
BACKGROUND/AIMS: T-Cell Acute Lymphoblastic Leukemia (T-ALL) [corrected] is an aggressive disease which is highly resistant to chemotherapy. Studies show that enhanced ability of DNA damage repair (DDR) in cancer cells plays a key role in chemotherapy resistance. Here, we suggest that defect in DDR related genes might be a promising target to destroy the genome stability of tumor cells.
METHODS: Since KU70 is highly expressed in Jurkat cells, one of the most representative cell lines of ATL, we knocked down KU70 by shRNA and analyzed the impact of KU70 deficiency in Jurkat cells as well as in NOD-SCID animal models by western blot, immunofluorescence, flow cytometry and measuring DNA repair efficiency.
RESULTS: It is observed that silencing of KU70 resulted in accumulated DNA damage and impaired DDR in Jurkat cells, resulting in more apoptosis, decreased cell proliferation and cell cycle arrest. DNA damage leads to DNA double-strand breaks (DSBs), which are processed by either non-homologous end joining(NHEJ) or homologous recombination(HR). In our study, both NHEJ and HR are impaired because of KU70 defect, accompanied with increased protein level of SHP-1, a dephosphorylation enzyme. In turn, SHP-1 led to dephosphorylation of SIRT1, which further impaired HR repair efficiency. Moreover, KU70 deficiency prolonged survival of Jurkat-xenografted mice.
CONCLUSION: These findings suggest that targeting KU70 is a promising target for ATL and might overcome the existing difficulties in chemotherapy.

Mio C, Gerratana L, Bolis M, et al.
BET proteins regulate homologous recombination-mediated DNA repair: BRCAness and implications for cancer therapy.
Int J Cancer. 2019; 144(4):755-766 [PubMed] Related Publications
Bromodomain and Extra-Terminal (BET) proteins are historically involved in regulating gene expression and BRD4 was recently found to be involved in DNA damage regulation. Aims of our study were to assess BRD4 regulation in homologous recombination-mediated DNA repair and to explore novel clinical strategies through the combinations of the pharmacological induction of epigenetic BRCAness in BRCA1 wild-type triple negative breast cancer (TNBC) cells by means of BET inhibitors and compounds already available in clinic. Performing a dual approach (chromatin immunoprecipitation and RNA interference), the direct relationship between BRD4 and BRCA1/RAD51 expression was confirmed in TNBC cells. Moreover, BRD4 pharmacological inhibition using two BET inhibitors (JQ1 and GSK525762A) induced a dose-dependent reduction in BRCA1 and RAD51 levels and is able to hinder homologous recombination-mediated DNA damage repair, generating a BRCAness phenotype in TNBC cells. Furthermore, BET inhibition impaired the ability of TNBC cells to overcome the increase in DNA damage after platinum salts (i.e., CDDP) exposure, leading to massive cell death, and triggered synthetic lethality when combined with PARP inhibitors (i.e., AZD2281). Altogether, the present study confirms that BET proteins directly regulate the homologous recombination pathway and their inhibition induced a BRCAness phenotype in BRCA1 wild-type TNBC cells. Noteworthy, being this strategy based on drugs already available for human use, it is rapidly transferable and could potentially enable clinicians to exploit platinum salts and PARP inhibitors-based treatments in a wider population of TNBC patients and not just in a specific subgroup, after validating clinical trials.

Guney Eskiler G, Cecener G, Egeli U, Tunca B
Synthetically Lethal BMN 673 (Talazoparib) Loaded Solid Lipid Nanoparticles for BRCA1 Mutant Triple Negative Breast Cancer.
Pharm Res. 2018; 35(11):218 [PubMed] Related Publications
PURPOSE: The purpose of the study was to produce BMN 673 loaded solid lipid nanoparticles (SLNs) to improve its therapeutic index, to minimize toxicity and to overcome homologous recombination (HR)-mediated resistance.
METHODS: Firstly, BMN 673-SLNs were characterized using Nano Zeta Sizer. After treatment with different concentrations of BMN 673 and BMN 673-SLNs, cell viability of HCC1937
RESULTS: When compared with BMN 673, BMN 673-SLNs showed remarkably a decrease in HCC1937 and HCC1937-R cells with less damage to MCF-10A cells. BMN 673-SLNs significantly induced toxicity through double-stranded DNA breaks, G2/M cell cycle arrest and PARP cleavage in TNBC cells. Additionally, BMN 673-resistance was mediated by miR-107, miR-193b and miR-1255b targeting BRCA1 and RAD51 in HCC1937 and HCC1937-R cells. However, BMN 673-SLNs treatment could overcome HR-mediated resistance in TNBC cells.
CONCLUSIONS: As a result, our findings suggest that SLNs formulation strongly provides a synthetic lethal therapeutic potential in BRCA1 mutated sensitive and resistant TNBC cells.

Marshall CH, Fu W, Wang H, et al.
Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: association of Gleason score and tumor stage.
Prostate Cancer Prostatic Dis. 2019; 22(1):59-65 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
BACKGROUND: DNA repair gene mutations are present in 8-10% of localized prostate cancers. It is unknown whether this is influenced by clinicopathologic factors.
METHODS: We interrogated localized prostate adenocarcinomas with tumor DNA sequencing information from the TCGA validated (n = 333) and Nature Genetics (n = 377) datasets. Homologous recombination repair genes included in our analysis were: ATM, BRCA1/2, CDK12, CHEK1/2, FANCA, FANCD2, FANCL, GEN1, NBN, PALB2, RAD51, and RAD51C. Proportions of cases with pathogenic DNA repair mutations (and in ATM/BRCA1/2 specifically) were reported by Gleason grade group, clinical T, pathologic T, and pathologic N stage. Odds ratios and Fisher's exact tests were used to compare proportions between categories.
RESULTS: Patients with Gleason grade groups 3 and higher were 2.2 times more likely to harbor any DNA repair mutation (95% CI: 1.2-4.2; 10.3% versus 5.0%) and were 2.7 times more likely to have BRCA1/2 or ATM mutations (95% CI: 1.3-6.6; 7.0% versus 2.7%) compared to those in Gleason grade groups 1-2. Patients with pathologic T3 and T4 stage (pT3/pT4) were 2.6 times more likely to have any DNA repair mutation (95% CI: 1.3-6.6; 13.0% versus 5.5%) and were 3.2 times more likely to have BRCA1/2 or ATM mutations (95% CI: 1.2-11.3; 9.5% versus 3.1%) compared to those with pT2 disease. There was no difference by clinical tumor or nodal stage. Among men with Gleason grade group ≥ 3 and clinical stage ≥ cT3, 21.3% (1 in 5) had a DNA repair mutation in any gene and 11.7% (1 in 9) had a mutation in ATM/BRCA1/2.
CONCLUSIONS: The prevalence of pathogenic DNA repair gene alterations is enriched in men with advanced tumor stages and higher Gleason grade groups, with maximal enrichment observed in those with Gleason grade group ≥ 3 and clinical stage ≥ cT3 disease. This information can be used to guide eligibility criteria for genomically targeted clinical trials in the neoadjuvant/adjuvant settings.

Hjorth-Jensen K, Maya-Mendoza A, Dalgaard N, et al.
SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability.
Nucleic Acids Res. 2018; 46(18):9484-9495 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Mutations in SPOP, the gene most frequently point-mutated in primary prostate cancer, are associated with a high degree of genomic instability and deficiency in homologous recombination repair of DNA but the underlying mechanisms behind this defect are currently unknown. Here we demonstrate that SPOP knockdown leads to spontaneous replication stress and impaired recovery from replication fork stalling. We show that this is associated with reduced expression of several key DNA repair and replication factors including BRCA2, ATR, CHK1 and RAD51. Consequently, SPOP knockdown impairs RAD51 foci formation and activation of CHK1 in response to replication stress and compromises recovery from replication fork stalling. An SPOP interactome analysis shows that wild type (WT) SPOP but not mutant SPOP associates with multiple proteins involved in transcription, mRNA splicing and export. Consistent with the association of SPOP with transcription, splicing and RNA export complexes, the decreased expression of BRCA2, ATR, CHK1 and RAD51 occurs at the level of transcription.

Olson HC, Davis L, Kiianitsa K, et al.
Increased levels of RECQ5 shift DNA repair from canonical to alternative pathways.
Nucleic Acids Res. 2018; 46(18):9496-9509 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
RECQ5 (RECQL5) is one of several human helicases that dissociates RAD51-DNA filaments. The gene that encodes RECQ5 is frequently amplified in human tumors, but it is not known whether amplification correlates with increased gene expression, or how increased RECQ5 levels affect DNA repair at nicks and double-strand breaks. Here, we address these questions. We show that RECQ5 gene amplification correlates with increased gene expression in human tumors, by in silico analysis of over 9000 individual tumors representing 32 tumor types in the TCGA dataset. We demonstrate that, at double-strand breaks, increased RECQ5 levels inhibited canonical homology-directed repair (HDR) by double-stranded DNA donors, phenocopying the effect of BRCA deficiency. Conversely, at nicks, increased RECQ5 levels stimulated 'alternative' HDR by single-stranded DNA donors, which is normally suppressed by RAD51; this was accompanied by stimulation of mutagenic end-joining. Even modest changes (2-fold) in RECQ5 levels caused significant dysregulation of repair, especially HDR. These results suggest that in some tumors, RECQ5 gene amplification may have profound consequences for genomic instability.

Xing Y, Liu Y, Liu T, et al.
TNFAIP8 promotes the proliferation and cisplatin chemoresistance of non-small cell lung cancer through MDM2/p53 pathway.
Cell Commun Signal. 2018; 16(1):43 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
BACKGROUND: The highly refractory nature of non-small cell lung cancer (NSCLC) to chemotherapeutic drugs is an important factor resulting in its poor prognosis. Recent studies have revealed that tumour necrosis factor alpha-induced protein 8 (TNFAIP8) is involved in various biological and pathological processes of cells, but their underlying mechanisms in processes ranging from cancer development to drug resistance have not been fully elucidated.
METHODS: TNFAIP8 expression in clinical NSCLC samples was examined through immunohistochemistry (IHC). After adjusting for patients' characteristics with propensity score matching, Kaplan-Meier analysis and Cox regression analysis were performed for comparison of patients' survival according to the TNFAIP8 level. Lentiviral transfection with TNFAIP8-specific shRNAs was used to establish stable TNFAIP8 knockdown (TNFAIP8 KD) NCI-H460, A549 and cis-diamminedichloroplatinum II resistant A549 (A549/cDDP) cell lines. Cell proliferation and viability were assessed by CCK-8 assay. Cell cycle was examined by flow cytometry. Multiple pathways regulated by TNFAIP8 KD were revealed by microarray analysis.
RESULTS: We found that high TNFAIP8 expression was associated with advanced pT stage, advanced pTNM stage, lymph node metastasis and unfavourable survival in NSCLC patients. TNFAIP8 shRNAs reduced in vitro cancer cell proliferation and in vivo tumor growth. Additionally, TNFAIP8 KD increased the sensitivity of NSCLC cells to cisplatin in vitro and in vivo. Conversely, up-regulation of TNFAIP8 promoted the proliferation and drug resistance to cisplatin of NSCLC cells. TNFAIP8 influences cancer progression pathways involving the MDM2/p53 pathway. Indeed, we observed that TNFAIP8 KD mediated the MDM2 downregulation and the p53 ubiquitination, thereby decreasing the degradation of p53 protein. shRNA p53 reversed TNFAIP8 shRNA-mediated regulation of cell proliferation, cell cycle, cisplatin sensitivity, and expression levels of RAD51, a DNA repair gene.
CONCLUSION: Our work uncovers a hitherto unappreciated role of TNFAIP8 in NSCLC proliferation and cisplatin chemoresistance that is mediated through the MDM2/p53 pathway. These findings might offer potential therapeutic targets for reversing cisplatin resistance in NSCLC patients with high TNFAIP8 expression.

Mazzio EA, Lewis CA, Elhag R, Soliman KF
Effects of Sepantronium Bromide (YM-155) on the Whole Transcriptome of MDA-MB-231 Cells: Highlight on Impaired ATR/ATM Fanconi Anemia DNA Damage Response.
Cancer Genomics Proteomics. 2018 Jul-Aug; 15(4):249-264 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Sepantronium bromide (YM-155) is believed to elicit apoptosis and mitotic arrest in tumor cells by reducing (BIRC5, survivin) mRNA. In this study, we monitored changes in survivin mRNA and protein after treating MDA-MB-231 cells with YM-155 concurrent with evaluation of whole transcriptomic (WT) mRNA and long intergenic non-coding RNA at 2 time points: 8 h sub-lethal (83 ng/mL) and 20 h at the LC

Sarkar P
Response of DNA damage genes in acrolein-treated lung adenocarcinoma cells.
Mol Cell Biochem. 2019; 450(1-2):187-198 [PubMed] Related Publications
Acrolein is a α-β-unsaturated aldehyde and is toxic to human upon its exposure from the environment. Sources of exposure to acrolein can be from heating cooking oil, automobile exhaust, tobacco smoke, and plastic waste. Acrolein exposure to lung is a major concern because of its volatile nature and due to its presence in the urban atmospheric air. Acrolein being highly reactive forms DNA and protein adducts, thereby making the cells vulnerable to long-term damage. Such long-term effect can lead to high susceptibility towards malignant transformation as has been reported in cigarette smokers. The response of DNA damaging genes by acrolein can perhaps give an insight to the cause of damage in the DNA by acrolein. The aim of this study was to examine the response of the DNA damage responsive genes by acrolein in A549 lung adenocarcinoma cells. Acrolein treatment at IC50 concentration showed a robust response of the DNA repair genes but eventually failed to rescue the cells from undergoing apoptosis. The cells pretreated with acrolein and followed by growing the same cells in fresh medium in the absence of acrolein did not help the cells to proliferate. These results conclude that exposure to acrolein marks long-lasting damage to DNA, irrespective of the DNA repair response.

Zeng X, Zhang Y, Yang L, et al.
Association between RAD51 135 G/C polymorphism and risk of 3 common gynecological cancers: A meta-analysis.
Medicine (Baltimore). 2018; 97(26):e11251 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
AIM: Available data concerning the association between RAD51 135G/C (rs1801320) polymorphism and the risk of 3 common gynecological cancers still could not reach a consensus. Thus, we conducted a meta-analysis to explore the relationship.
METHODS: Several electronic databases and bibliographies of relevant articles were screened to identify the studies up to July 2017. Then a meta-analysis was performed to evaluate the connection between 3 common gynecological tumors' susceptibility and RAD51 135G/C polymorphism in different inheritance models. Simultaneously, we did subgroup analysis and sensitivity analysis if necessary.
RESULTS: A total of 11 articles including 14 studies involving 4097 cases and 5890 controls were included in this meta-analysis. Overall, RAD51 135G/C polymorphism increased the risk of 3 common gynecological tumors. The subgroup analysis stratified by cancer types- endometrial carcinoma (EC) and ovarian cancer (OC)-showed that RAD51 135G/C polymorphism increased the risk of EC: allele model (C vs G: odds ratio [OR] = 4.32, 95% confidence interval [CI] = 2.63-7.10, P < .00001), dominant model (CC + GC vs GG: OR = 2.28, 95% CI = 1.44-3.60, P = .004), recessive model (CC vs GC + GG: OR = 10.27, 95% CI = 14.71-22.38, P < .00001), and homozygous model (CC vs GG: OR = 7.26, 95% CI = 3.59-14.68, P < .00001), but there was no significant association between RAD51 135G/C polymorphism and OC. In the subgroup analysis stratified by source of controls, a significantly increased risk was observed in hospital-based studies. Nevertheless, the data showed RAD51 135G/C polymorphism had no link in population-based studies.
CONCLUSIONS: This meta-analysis suggested that RAD51 135G/C polymorphism was a risk factor for the three common gynecological tumors, especially for EC among hospital-based populations.

Yazdanpanahi N, Salehi R, Kamali S
J Cancer Res Ther. 2018 Apr-Jun; 14(3):614-618 [PubMed] Related Publications
Background and Aim of Study: Colorectal cancer (CRC) is among the most common cancers and accounts as the second leading cause of death from cancers in the world. RAD51 plays a crucial role in double-strand breaks repair of DNA. Single nucleotide polymorphisms within this gene could influence on the potential of DNA repair and in consequence on the susceptibility to various tumors such as CRC. This is the first report about the role of RAD51 polymorphisms in Iranian CRC susceptibility. The study was conducted to evaluate the association of 135G>C polymorphism of RAD51 gene with sporadic CRC in a subset of Iranian population.
Materials and Methods: The current case-control study was performed from 2013 to 2015. One hundred patients with sporadic CRC and one hundred controls were enrolled from two referral centers in Isfahan. All samples were genotyped for the RAD51 gene using polymerase chain reaction-restriction fragment length polymorphism assay.
Results: The results revealed no significant association between the RAD51 135G>C and sporadic CRC (odds ratio = 0.86, 95% confidence interval = 0.464-1.595). The frequency of genotypes and also alleles of the mentioned polymorphism were not significantly different between case and control groups (P = 0.2 and 0.4, respectively).
Conclusion: The results suggest that RAD51 135G>C probably has not a crucial role in Iranian CRC risk and is not an important potential risk factor in molecular diagnostics of mentioned disease among Iranian population.

Leon-Galicia I, Diaz-Chavez J, Albino-Sanchez ME, et al.
Resveratrol decreases Rad51 expression and sensitizes cisplatin‑resistant MCF‑7 breast cancer cells.
Oncol Rep. 2018; 39(6):3025-3033 [PubMed] Related Publications
Resveratrol (RES), a polyphenol compound with anti‑proliferative properties, has been previously evaluated for its beneficial effects against a variety of tumour cells. The current study elucidated the means by which RES enhances the anti‑proliferative effects of cisplatin (CIS) on MCF‑7 cells, focusing on the inhibitory effects on DNA repair of double‑strand breaks (DSBs). Chemoresistant MCF‑7 cells (MCF‑7R) were generated by continuous exposure to low concentrations of CIS (10 µM CIS‑IC40) during 5 passages, with the IC50 value increasing ~3‑fold. Using an MTT assay, we estimated the changes in IC50 for CIS in MCF‑7, T47‑D, MDA‑MB‑231 and MCF‑7R cells in the presence of RES. The relative transcript level of Nbs‑1, Mre‑11 and Rad‑50 genes was assessed using RT‑qPCR analysis. Rad51 and H2AX [pSer139] protein expression was determined by western blot analysis. RES at 50 and 100 µM significantly enhanced the anti‑proliferative effects of CIS in both MCF‑7 and MCF‑7R cells, decreasing the IC50 values for CIS to one‑tenth and one‑sixth, respectively. A total of 100 µM RES decreased the relative transcript levels of homologous recombination (HR) initiation complex components and the Rad51 protein level in MCF‑7 and MCF‑7R cells. After 48 h of CIS DNA damage, the levels of Rad51 protein increased, but this effect was inhibited by 100 µM RES. RES also maintained serine 139 phosphorylation of histone H2AX, suggesting that RES prevents the repair of DSBs. It was observed that RES exerts an antagonistic effect over CIS on the activation of Rad51 and sustained phosphorylation of H2AX. The results suggest that RES in combination with DNA damage‑based therapy has potential as a strategy to overcome resistance and provide much safer and more effective treatment for breast cancer.

Li J, Ji X, Wang H
Targeting Long Noncoding RNA HMMR-AS1 Suppresses and Radiosensitizes Glioblastoma.
Neoplasia. 2018; 20(5):456-466 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Emergent evidences revealed that long noncoding RNAs (lncRNAs) participate in neoplastic progression. HMMR is an oncogene that is highly expressed in glioblastoma (GBM) and supports GBM growth. Whether lncRNAs regulate HMMR in GBM remains unknown. Herein, we identify that an HMMR antisense lncRNA, HMMR-AS1, is hyperexpressed in GBM cell lines and stabilizes HMMR mRNA. Knockdown of HMMR-AS1 reduces HMMR expression; inhibits cell migration, invasion, and mesenchymal phenotypes; and suppresses GBM cell growth both in vitro and in vivo. Moreover, knockdown of HMMR-AS1 radiosensitizes GBM by reducing DNA repair proteins ATM, RAD51, and BMI1. Our data demonstrate a mechanism of sense-antisense interference between HMMR and HMMR-AS1 in GBM and suggest that targeting HMMR-AS1 is a potential strategy for GBM treatment.

Wilson AJ, Stubbs M, Liu P, et al.
The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer.
Gynecol Oncol. 2018; 149(3):575-584 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
OBJECTIVE: Homologous recombination (HR)-proficient ovarian tumors have poorer clinical outcomes and show resistance to poly ADP ribose polymerase inhibitors (PARPi). A subset of HR-proficient ovarian tumors show amplification in bromodomain and extra-terminal (BET) genes such as BRD4. We aimed to test the hypothesis that BRD4 inhibition sensitizes ovarian cancer cells to PARPi by reducing HR efficiency and increasing DNA damage.
METHODS: HR-proficient ovarian cancer cell lines (OVCAR-3, OVCAR-4, SKOV-3, UWB1.289+BRCA1) were treated with BRD4-targeting siRNA, novel (INB054329, INCB057643) and established (JQ1) BET inhibitors (BETi) and PARPi (olaparib, rucaparib). Cell growth and viability were assessed by sulforhodamine B assays in vitro, and in SKOV-3 and ovarian cancer patient-derived xenografts in vivo. DNA damage and repair (pH2AX, RAD51 and BRCA1 foci formation, and DRGFP HR reporter activity), apoptosis markers (cleaved PARP, cleaved caspase-3, Bax) and proliferation markers (PCNA, Ki67) were assessed by immunofluorescence and western blot.
RESULTS: In cultured cells, inhibition of BRD4 by siRNA or INCB054329 reduced expression and function of BRCA1 and RAD51, reduced HR reporter activity, and sensitized the cells to olaparib-induced growth inhibition, DNA damage induction and apoptosis. Synergy was observed between all BETi tested and PARPi. INCB054329 and olaparib also co-operatively inhibited xenograft tumor growth, accompanied by reduced BRCA1 expression and proliferation, and increased apoptosis and DNA damage.
CONCLUSIONS: These results provide strong rationale for using BETi to extend therapeutic efficacy of PARPi to HR-proficient ovarian tumors and could benefit a substantial number of women diagnosed with this devastating disease.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAD51, Cancer Genetics Web: http://www.cancer-genetics.org/RAD51.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999