LYN

Gene Summary

Gene:LYN; LYN proto-oncogene, Src family tyrosine kinase
Aliases: JTK8, p53Lyn, p56Lyn
Location:8q12.1
Summary:This gene encodes a tyrosine protein kinase, which maybe involved in the regulation of mast cell degranulation, and erythroid differentiation. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2011]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tyrosine-protein kinase Lyn
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (104)
Pathways:What pathways are this gene/protein implicaed in?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: LYN (cancer-related)

Nguyen PH, Niesen E, Hallek M
New roles for B cell receptor associated kinases: when the B cell is not the target.
Leukemia. 2019; 33(3):576-587 [PubMed] Related Publications
Targeting of B cell receptor associated kinases (BAKs), such as Bruton's tyrosine kinase (BTK) or phosphoinositol-3-kinase (PI3K) delta, by specific inhibitors has revolutionized the therapy of B lymphoid malignancies. BAKs are critical signaling transducers of BCR signaling and seem relevant in B cell lymphoma pathogenesis. The functional relevance of BTK for lymphoid malignancies is strongly supported by the observation that resistance to therapy in CLL patients treated with BTK inhibitors such as ibrutinib is often associated with mutations in genes coding for BTK or Phospholipase-C gamma (PLCɣ). In some contrast, next generation sequencing data show that BAKs are mutated at very low frequency in treatment-naïve B cell lymphomas. Therefore, it remains debatable whether BAKs are essential drivers for lymphoma development. In addition, results obtained by targeted deletion of BAKs such as Lyn and Btk in murine CLL models suggest that BAKs may be essential to shape the dialogue between malignant B cells and the tumor microenvironment (TME). Since BAKs are expressed in multiple cell types, BAK inhibitors may disrupt the lymphoma supportive microenvironment. This concept also explains the typical response to BAK inhibitor treatment, characterized by a long-lasting increase of peripheral blood lymphoid cells, due to a redistribution from the lymphoid homing compartments. In addition, BAK inhibitors have shown some efficacy in solid tumors, probably through mediator cells in the TME. This review summarizes and validates the evidence for BAK inhibitors being part of a class of agents that modulate the (hematopoietic) microenvironment of cancers.

Xavier S, Gopi Mohan C, Nair S, et al.
Generation of humanized single-chain fragment variable immunotherapeutic against EGFR variant III using baculovirus expression system and in vitro validation.
Int J Biol Macromol. 2019; 124:17-24 [PubMed] Related Publications
Epidermal growth factor receptor variant III (EGFRvIII) is known to be specifically expressed in cancer cells and associated with tumor virulence. The receptor provides an opportunity for both specifically targeting the tumor cells as well as for potentially controlling and inhibiting tumor progression. In this study, humanized anti-EGFRvIII single-chain fragment variable (hscFv) was expressed in insect cell culture system to accommodate post-translational glycosylations crucial for the fragment stability and efficacy. Target specific binding of the developed fragment to EGFRvIII expressing cell lines and EGFRvIII positive glioblastoma patient samples was evaluated by immunocytochemistry and immunohistochemistry respectively. Downstream intracellular signaling mechanisms related to the action of the developed antibody fragment on growth/metabolism of the cell was evaluated in U87-EGFRvIII human glioblastoma cell lines. It was observed that the hscFv bound specifically to EGFRvIII in mutant expressing cells. Functionally, hscFv was found to confer anti-proliferative properties in EGFRvIII expressing cell lines by downregulating phosphorylation of EGFR/EGFRvIII, Lyn, PI3K and GLUT3 involved in proliferation and metabolism. This study demonstrated the significance of hscFv as a potential immunotherapeutic agent as well as a targeting agent for specific delivery of drugs to EGFRvIII expressing cancer cells.

Pagano MA, Tibaldi E, Molino P, et al.
Mitochondrial apoptosis is induced by Alkoxy phenyl-1-propanone derivatives through PP2A-mediated dephosphorylation of Bad and Foxo3A in CLL.
Leukemia. 2019; 33(5):1148-1160 [PubMed] Related Publications
Protein phosphatase 2 A (PP2A) is a tumour suppressor whose strong inhibition underlies the phosphorylation-dependent, anti-apoptotic mechanisms in Chronic Lymphocytic Leukemia (CLL). Inactivation of PP2A is due to the cooperative action of the phosphorylation of Y307 of its catalytic subunit by the aberrant cytosolic pool of the Src Family Kinase Lyn and the interaction with its protein inhibitor SET, which is overexpressed in CLL. In this study, we developed a library of compounds, the most potent being the one named CC11, which restores PP2A activity by disrupting the PP2A/SET complex, thereby triggering the mitochondrial pathway of apoptosis. This process involves the recruitment of the pro-apoptotic BH3-only proteins Bad and Bim to mitochondria, the former upon direct dephosphorylation and the latter being newly expressed upon dephosphorylation and activation of its transcription factor FoxO3a. These findings highlight that PP2A antagonizes the prosurvival pathways controlled by Akt, which phosphorylates and thereby suppresses a variety of pro-apoptotic factors and tumour suppressors including Bad and FoxO3a. Furthermore, the PP2A-mediated pro-apoptotic effect of CC11 is synergistically potentiated by the abrogation of Lyn's activity. Our results show that CC11 represents a promising lead compound for a new therapeutic rationale aimed at abrogating the aberrant oncogenic signals in CLL.

Li J, Lu M, Jin J, et al.
miR-449a Suppresses Tamoxifen Resistance in Human Breast Cancer Cells by Targeting ADAM22.
Cell Physiol Biochem. 2018; 50(1):136-149 [PubMed] Related Publications
BACKGROUND/AIMS: Most of estrogen receptor positive breast cancer patients respond well initially to endocrine therapies, but often develop resistance during treatment with selective estrogen receptor modulators (SERMs) such as tamoxifen. Altered expression and functions of microRNAs (miRNAs) have been reportedly associated with tamoxifen resistance. Thus, it is necessary to further elucidate the function and mechanism of miRNAs in tamoxifen resistance.
METHODS: Tamoxifen sensitivity was validated by using Cell Counting Kit-8 in tamoxifen-sensitive breast cancer cells (MCF-7, T47D) and tamoxifen-resistant cells (MCF-7/TAM, T47D/ TAM). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression level of miR-449a in tamoxifen-sensitive/-resistant cells and patient serums. Dual-luciferase assay was used to identify the binding of miR-449a and predicted gene ADAM22. The expression level of ADAM22 was determined by qRT-PCR and western blotting in miR-449a +/- breast cancer cells. Subsequently, rescue experiments were carried out to identify the function of ADAM22 in miR-449a-reduced tamoxifen resistance. Finally, Gene ontology (GO) and Protein-protein interaction analyses were performed to evaluate the potential mechanisms of ADAM22 in regulating tamoxifen resistance.
RESULTS: MiR-449a levels were downregulated significantly in tamoxifen-resistant breast cancer cells when compared with their parental cells, as well as in clinical breast cancer serum samples. Overexpression of miR-449a re-sensitized the tamoxifen-resistant breast cancer cells, while inhibition of miR-449a conferred tamoxifen resistance in parental cells. Luciferase assay identified ADAM22 as a direct target gene of miR-449a. Additionally, silencing of ADAM22 could reverse tamoxifen resistance induced by miR-449a inhibition in ER-positive breast cancer cells. GO analysis results showed ADAM22 was mainly enriched in the biological processes of cell adhesion, cell differentiation, gliogenesis and so on. Protein-protein interaction analyses appeared that ADAM22 might regulate tamoxifen resistance through PPARG, LGI1, KRAS and LYN.
CONCLUSION: Decreased miR-449a causes the upregulation of ADAM22, which induces tamoxifen resistance of breast cancer cells. These results suggest that miR-449a, functioning by targeting ADAM22, contributes to the mechanisms underlying breast cancer endocrine resistance, which may provide a potential therapeutic strategy in ER-positive breast cancers.

Chen YJ, Huang CH, Shi YJ, et al.
The suppressive effect of arsenic trioxide on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 expression induces apoptosis in human leukemia cells.
Toxicol Appl Pharmacol. 2018; 358:43-55 [PubMed] Related Publications
Arsenic trioxide (ATO) has been reported to inhibit the activity of Ten-eleven translocation methylcytosine dioxygenase (TET). TET modulates FOXP3 expression, while dysregulation of FOXP3 expression promotes the malignant progression of leukemia cells. We examined the role of TET-FOXP3 axis in the cytotoxic effects of ATO on the human acute myeloid leukemia cell line, U937. ATO-induced apoptosis in U937 cells was characterized by activation of caspase-3/-9, mitochondrial depolarization, and MCL1 downregulation. In addition, ATO-treated U937 cells showed ROS-mediated inhibition of TET2 transcription, leading to downregulation of FOXP3 expression and in turn, suppression of FOXP3-mediated activation of Lyn and Akt. Overexpression of FOXP3 or Lyn minimized the suppressive effect of ATO on Akt activation and MCL1 expression. Promoter luciferase activity and chromatin immunoprecipitation assays revealed the crucial role of Akt-mediated CREB phosphorylation in MCL1 transcription. Further, ATO-induced Akt inactivation promoted GSK3β-mediated degradation of MCL1. Transfection of constitutively active Akt expression abrogated ATO-induced MCL1 downregulation. MCL1 overexpression lessened the ATO-induced depolarization of mitochondrial membrane and increased the viability of ATO-treated cells. Thus, our data suggest that ATO induces mitochondria-mediated apoptosis in U937 cells through its suppressive effect on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 transcription and protein stabilization. Our findings also indicate that the same pathway underlies ATO-induced death in human leukemia HL-60 cells.

Manley PW, Caravatti G, Furet P, et al.
Comparison of the Kinase Profile of Midostaurin (Rydapt) with That of Its Predominant Metabolites and the Potential Relevance of Some Newly Identified Targets to Leukemia Therapy.
Biochemistry. 2018; 57(38):5576-5590 [PubMed] Related Publications
The multitargeted protein kinase inhibitor midostaurin is approved for the treatment of both newly diagnosed FLT3-mutated acute myeloid leukemia (AML) and KIT-driven advanced systemic mastocytosis. AML is a heterogeneous malignancy, and investigational drugs targeting FLT3 have shown disparate effects in patients with FLT3-mutated AML, probably as a result of their inhibiting different targets and pathways at the administered doses. However, the efficacy and side effects of drugs do not just reflect the biochemical and pharmacodynamic properties of the parent compound but are often comprised of complex cooperative effects between the properties of the parent and active metabolites. Following chronic dosing, two midostaurin metabolites attain steady-state plasma trough levels greater than that of the parent drug. In this study, we characterized these metabolites and determined their profiles as kinase inhibitors using radiometric transphosphorylation assays. Like midostaurin, the metabolites potently inhibit mutant forms of FLT3 and KIT and several additional kinases that either are directly involved in the deregulated signaling pathways or have been implicated as playing a role in AML via stromal support, such as IGF1R, LYN, PDPK1, RET, SYK, TRKA, and VEGFR2. Consequently, a complex interplay between the kinase activities of midostaurin and its metabolites is likely to contribute to the efficacy of midostaurin in AML and helps to engender the distinctive effects of the drug compared to those of other FLT3 inhibitors in this malignancy.

Bozickovic O, Skartveit L, Engelsen AST, et al.
A novel SRC-2-dependent regulation of epithelial-mesenchymal transition in breast cancer cells.
J Steroid Biochem Mol Biol. 2019; 185:57-70 [PubMed] Related Publications
Steroid receptor coactivator 2 (SRC-2) is a nuclear receptor coactivator, important for the regulation of estrogen receptor alpha (ERα)-mediated transcriptional activity in breast cancer cells. However, the transcriptional role of SRC-2 in breast cancer is still ambiguous. Here we aimed to unravel a more precise transcriptional role of SRC-2 and uncover unique target genes in MCF-7 breast cancer cells, as opposed to the known oncogene SRC-3. Gene expression analyses of cells depleted of either SRC-2 or SRC-3 showed that they transcriptionally regulate mostly separate gene sets. However, individual unique gene sets were implicated in some of the same major gene ontology biological processes, such as cellular structure and development. This finding was supported by three-dimensional cell cultures, demonstrating that depletion of SRC-2 and SRC-3 changed the morphology of the cells into epithelial-like hollow acinar structures, indicating that both SRC proteins are involved in maintaining the hybrid E/M phenotype. In clinical ER-positive, HER2-negative breast cancer samples the expression of SRC-2 was negatively correlated with the expression of MCF-7-related luminal, cell cycle and cellular morphogenesis genes. Finally, elucidating SRC-2 unique transcriptional effects, we identified Lyn kinase (an EMT biomarker) to be upregulated exclusively after SRC-2 depletion. In conclusion, we show that both SRC-2 and SRC-3 are essential for the EMT in breast cancer cells, controlling different transcriptional niches.

Xiao Y, Deng WW, Yang LL, et al.
Overexpression of p21-activated kinase 2 is correlated with high-grade oral squamous cell carcinomas.
Future Oncol. 2018; 14(11):1091-1100 [PubMed] Related Publications
AIM: p21-activated kinase 2 (PAK2) is overexpressed in several tumors but the expression of PAK2 in oral squamous cell carcinomas (OSCCs) remains unclear.
MATERIALS & METHODS: Immunohistochemistry was performed on human tissue microarrays containing 165 primary OSCC, 48 oral epithelial dysplasia and 43 normal oral mucosa.
RESULTS: PAK2 expression was increased in primary OSCC compared with normal mucosa and significantly increased in primary OSCC grade III compared with grade I, but independent of overall survival rate. Moreover, the expression of PAK2 was statistically correlated with Lck/Yes novel tyrosine kinase (LYN), zinc finger transcription factor Slug, tumor-associated macrophage marker CD163 and LAG3.
CONCLUSION: Overexpression of PAK2 in OSCC may be associated with an advanced pathology grade.

McKenna MK, Noothi SK, Alhakeem SS, et al.
Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia.
Blood. 2018; 131(26):2943-2954 [PubMed] Free Access to Full Article Related Publications
Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is downregulated in many cancers including renal cell carcinoma, glioblastoma, endometrial, and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL-derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1-to-S cell-cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with US Food and Drug Administration (FDA)-approved drugs caused a decrease in Par-4 messenger RNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase, and Bruton tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel progrowth rather than proapoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR-signaling inhibitors.

Battistello E, Katanayeva N, Dheilly E, et al.
Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma.
Blood. 2018; 131(21):2345-2356 [PubMed] Free Access to Full Article Related Publications
In diffuse large B-cell lymphoma (DLBCL), activation of the B-cell receptor (BCR) promotes multiple oncogenic signals, which are essential for tumor proliferation. Inhibition of the Bruton's tyrosine kinase (BTK), a BCR downstream target, is therapeutically effective only in a subgroup of patients with DLBCL. Here, we used lymphoma cells isolated from patients with DLBCL to measure the effects of targeted therapies on BCR signaling and to anticipate response. In lymphomas resistant to BTK inhibition, we show that blocking BTK activity enhanced tumor dependencies from alternative oncogenic signals downstream of the BCR, converging on MYC upregulation. To completely ablate the activity of the BCR, we genetically and pharmacologically repressed the activity of the SRC kinases LYN, FYN, and BLK, which are responsible for the propagation of the BCR signal. Inhibition of these kinases strongly reduced tumor growth in xenografts and cell lines derived from patients with DLBCL independent of their molecular subtype, advancing the possibility to be relevant therapeutic targets in broad and diverse groups of DLBCL patients.

Aira LE, Villa E, Colosetti P, et al.
The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim.
Oncogene. 2018; 37(16):2122-2136 [PubMed] Related Publications
Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function. Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis. Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic resistance of cancer cells.

Slattery ML, Mullany LE, Sakoda L, et al.
The NF-κB signalling pathway in colorectal cancer: associations between dysregulated gene and miRNA expression.
J Cancer Res Clin Oncol. 2018; 144(2):269-283 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The nuclear factor-kappa B (NF-κB) signalling pathway is a regulator of immune response and inflammation that has been implicated in the carcinogenic process. We examined differentially expressed genes in this pathway and miRNAs to determine associations with colorectal cancer (CRC).
METHODS: We used data from 217 CRC cases to evaluate differences in NF-κB signalling pathway gene expression between paired carcinoma and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analysed. We evaluated genes most strongly associated and differentially expressed (fold change (FC) of > 1.5 or < 0.67) that were statistically significant after adjustment for multiple comparisons.
RESULTS: Of the 92 genes evaluated, 22 were significantly downregulated and nine genes were significantly upregulated in all tumours. Two additional genes (CD14 and CSNK2A1) were dysregulated in MSS tumours and two genes (CARD11 and VCAM1) were downregulated and six genes were upregulated (LYN, TICAM2, ICAM1, IL1B, CCL4 and PTGS2) in MSI tumours. Sixteen of the 21 dysregulated genes were associated with 40 miRNAs. There were 76 miRNA:mRNA associations of which 38 had seed-region matches. Genes were associated with multiple miRNAs, with TNFSRF11A (RANK) being associated with 15 miRNAs. Likewise several miRNAs were associated with multiple genes (miR-150-5p with eight genes, miR-195-5p with four genes, miR-203a with five genes, miR-20b-5p with four genes, miR-650 with six genes and miR-92a-3p with five genes).
CONCLUSIONS: Focusing on the genes and their associated miRNAs within the entire signalling pathway provides a comprehensive understanding of this complex pathway as it relates to CRC and offers insight into potential therapeutic agents.

Ma ESK, Wan TSK, Au CH, et al.
Next-generation sequencing and molecular cytogenetic characterization of ETV6-LYN fusion due to chromosomes 1, 8 and 12 rearrangement in acute myeloid leukemia.
Cancer Genet. 2017; 218-219:15-19 [PubMed] Related Publications
In a newly diagnosed patient with acute myeloid leukemia (AML) and complex cytogenetics and negative for gene mutations associated with myeloid neoplasms, RNA sequencing by next-generation sequencing (NGS) through a large cancer-related gene panel showed ETV6-LYN leukemic fusion transcript. Breakpoint analysis of the NGS reads showed fusion of exon 5 of the ETV6 gene to exon 8 of the LYN gene. Metaphase fluorescence in situ hybridization (FISH) inferred a four-break rearrangement of three chromosomes, namely 1, 8 and 12. First, there was a balanced translocation t(1;12)(p13;p13.2) in which the ETV6 was split between der(1) and der(12). Second, an inverted insertion of 8q12.1~q24.21 into 1p13 occurred, thus bringing ETV6 and LYN into juxtaposition in the correct 5' to 3' orientation to produce an in-frame chimeric fusion gene on der(1). Notwithstanding two previous reports of ETV6-LYN fusion in myeloproliferative neoplasms (MPN), we report the first case of this fusion in AML and hence broaden its disease association. We also illustrate the clinical utility of NGS based detection of gene fusion in the setting of complex karyotype or cryptic aberration, since this method does not require a priori knowledge of the translocation partner and exact breakpoints to guide the application of appropriate primers or probes.

Gladkikh AA, Potashnikova DM, Tatarskiy V, et al.
Comparison of the mRNA expression profile of B-cell receptor components in normal CD5-high B-lymphocytes and chronic lymphocytic leukemia: a key role of ZAP70.
Cancer Med. 2017; 6(12):2984-2997 [PubMed] Free Access to Full Article Related Publications
The B-cell receptor (BCR) signaling pathway is of great importance for B-cell survival and proliferation. The BCR expressed on malignant B-CLL cells contributes to the disease pathogenesis, and its signaling pathway is currently the target of several therapeutic strategies. Although various BCR alterations have been described in B-CLL at the protein level, the mRNA expression levels of tyrosine kinases in B-CLL compared to that in normal CD5-high and CD5-low B-lymphocytes remain unknown. In the current study, we measured the mRNA expression levels of CD79A, CD79B, LYN, SYK, SHP1, and ZAP70 in purified populations of CD5-high B-CLL cells, CD5-low B-cells from the peripheral blood of healthy donors, and CD5-high B-cells from human tonsils. Here, we report a clear separation in the B-CLL dataset between the ZAP70-high and ZAP70-low subgroups. Each subgroup has a unique expression profile of BCR signaling components that might reflect the functional status of the BCR signaling pathway. Moreover, the ZAP70-low subgroup does not resemble either CD5-high B-lymphocytes from the tonsils or CD5-low lymphocytes from PBMC (P < 0.05). We also show that ZAP70 is the only gene that is differentially expressed in CD5-high and CD5-low normal B-lymphocytes, confirming the key role of Zap-70 tyrosine kinase in BCR signaling alterations in B-CLL.

Tasian SK, Loh ML, Hunger SP
Philadelphia chromosome-like acute lymphoblastic leukemia.
Blood. 2017; 130(19):2064-2072 [PubMed] Free Access to Full Article Related Publications
Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL), also referred to as

Shen H, Liang Z, Zheng S, Li X
Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome.
Int J Mol Med. 2017; 40(5):1385-1396 [PubMed] Free Access to Full Article Related Publications
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.

Lin X, Gu Y, Kapoor A, et al.
Overexpression of MUC1 and Genomic Alterations in Its Network Associate with Prostate Cancer Progression.
Neoplasia. 2017; 19(11):857-867 [PubMed] Free Access to Full Article Related Publications
We investigate the association of MUC1 with castration-resistant prostate cancer (CRPC), bone metastasis, and PC recurrence. MUC1 expression was studied in patient-derived bone metastasis and CRPCs produced by prostate-specific PTEN

Park GB, Kim D
Insulin-like growth factor-1 activates different catalytic subunits p110 of PI3K in a cell-type-dependent manner to induce lipogenesis-dependent epithelial-mesenchymal transition through the regulation of ADAM10 and ADAM17.
Mol Cell Biochem. 2018; 439(1-2):199-211 [PubMed] Related Publications
The activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) is critical for the induction of epithelial-mesenchymal transition (EMT) by growth factors, including insulin-like growth factor 1 (IGF-1). The activation of intracellular lipogenesis provides proliferative and survival signals for cancer cells. In this study, we investigated the connection between lipogenesis-related EMT processes and IGF-1-mediated PI3K p110 isoform activation in primary (SW480 cells) and metastatic (SW620) colon carcinoma cells. We also examined the underlying signaling pathway that promotes fatty acid synthesis in IGF-1-activated colon cancer cells. IGF-1 stimulation upregulated the expression of lipogenic enzymes as well as the activation of Nardilysin (N-arginine dibasic convertase, NRD1) and its downstream targets, a disintegrin and metalloproteases 10 (ADAM10) and ADAM17. The upregulation of the Lyn/Syk-mediated PI3K p110δ isoform in SW480 cells and the Lyn-dependent PI3K p110α isoform in SW620 cells triggered fatty acid production and cell motility in IGF-1-activated colon cancer cells. Pharmacological inhibition with A66 (PI3K p110α specific inhibitor) and CAL-101 (PI3K p110δ specific inhibitor) efficiently inhibited EMT in colon cancer cells by blocking the NRD1/ADAM family protein signaling pathway. Gene silencing of NRD1 and ADAM family proteins attenuated the generation of intracellular fatty acid and the migratory activity of colon cancer cells. Our results suggest that the different isoforms of the PI3K p110 subunit could be therapeutic targets for primary and metastatic colon cancer and that regulation of the NRD1/ADAM signaling pathway controls lipogenesis-mediated EMT in IGF-1-stimulated colon cancer cells.

Yang P, Dong F, Zhou Q
Triptonide acts as a novel potent anti-lymphoma agent with low toxicity mainly through inhibition of proto-oncogene Lyn transcription and suppression of Lyn signal pathway.
Toxicol Lett. 2017; 278:9-17 [PubMed] Related Publications
Lyn is a proto-oncogene overexpressed and constitutively activated in lymphoma, and plays an important role in lymphoma initiation and malignant progression. Hence, the oncogenic Lyn has recently been targeted for novel anti-lymphoma drug discovery; however, the effective Lyn-targeted drug for lymphoma treatment with low toxicity is absent in the clinical setting. The goal of this study is to explore powerful and low toxic Lyn-targeted anti-lymphoma agent. Here we show that triptonide, a small molecule purified from the herb Tripterygium wilfordii Hook F, potently inhibits the proliferation of human B-lymphoma Raji and T-lymphoma Jurkat cells with IC50 of 5.7nM and 4.8nM, respectively. Strikingly, triptonide at a dose of 5mg/kg/day almost completely inhibited the lymphoma growth in human lymphoma cells-xenografted mice without obvious side effects, particularly; the tumors in 6 mice among the 8 xenografted mice were completely eradicated in vivo. Cell biological studies showed that triptonide at the doses of 2.5-10nM notably suppressed B-lymphoma cell colony-forming capability, and that triptonide at the dose of 20nM promoted apoptosis through activation of PARP and caspase 3, but reduction of BCL2 protein levels in the lymphoma cells. Molecular studies revealed that triptonide markedly inhibited oncogenic Lyn transcription through suppressing the promoter activity of the gene, and that it remarkably reduced both total and phosphorylated Lyn proteins, and diminished Lyn downstream ERK and ATK signal pathways. Additionally, triptonide significantly enhanced p38 phosphorylation. Together, triptonide exerts potent anti-lymphoma effect with low toxicity mainly through inhibition of proto-oncogene Lyn transcription and suppression of Lyn downstream ERK and ATK signal pathways, providing an attractive drug candidate for development of novel anti-lymphoma therapeutics.

Reshmi SC, Harvey RC, Roberts KG, et al.
Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group.
Blood. 2017; 129(25):3352-3361 [PubMed] Free Access to Full Article Related Publications
Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype characterized by genomic alterations that activate cytokine receptor and kinase signaling. We examined the frequency and spectrum of targetable genetic lesions in a retrospective cohort of 1389 consecutively diagnosed patients with childhood B-lineage ALL with high-risk clinical features and/or elevated minimal residual disease at the end of remission induction therapy. The Ph-like gene expression profile was identified in 341 of 1389 patients, 57 of whom were excluded from additional analyses because of the presence of

Jiang SH, Li J, Dong FY, et al.
Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.
Gastroenterology. 2017; 153(1):277-291.e19 [PubMed] Related Publications
BACKGROUND & AIMS: Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors.
METHODS: We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras
RESULTS: In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B-LYN-p85 complex, which increased PI3K-Akt-mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice.
CONCLUSIONS: Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice.

Hunter ZR, Yang G, Xu L, et al.
Genomics, Signaling, and Treatment of Waldenström Macroglobulinemia.
J Clin Oncol. 2017; 35(9):994-1001 [PubMed] Related Publications
Next-generation sequencing has revealed recurring somatic mutations in Waldenström macroglobulinemia (WM). Commonly recurring mutations include MYD88 (95% to 97%), CXCR4 (30% to 40%), ARID1A (17%), and CD79B (8% to 15%). Diagnostic discrimination of WM from overlapping B-cell malignancies is aided by MYD88 mutation status. Transcription is affected by MYD88 and CXCR4 mutations and includes overexpression of genes involved in VDJ recombination, CXCR4 pathway signaling, and BCL2 family members. Among patients with MYD88 mutations, those with CXCR4 mutations show transcriptional silencing of tumor suppressors associated with acquisition of mutated MYD88. Deletions involving chromosome 6q are common and include genes that modulate nuclear factor-κB, BCL2, BTK, apoptosis, differentiation, and ARID1B. Non-chromosome 6q genes are also frequently deleted and include LYN, a regulator of B-cell receptor signaling. MYD88 and CXCR4 mutations affect WM disease presentation and treatment outcome. Patients with wild-type MYD88 show lower bone marrow disease burden and serum immunoglobulin M levels but show an increased risk of death. Patients with CXCR4 mutations have higher bone marrow disease burden, and those with nonsense CXCR4 mutations have higher serum immunoglobulin M levels and incidence of symptomatic hyperviscosity. Mutated MYD88 triggers BTK, IRAK1/IRAK4, and HCK growth and survival signaling, whereas CXCR4 mutations promote AKT and extracellular regulated kinase-1/2 signaling and drug resistance in the presence of its ligand CXCL12. Ibrutinib is active in patients with WM and is affected by MYD88 and CXCR4 mutation status. Patients with mutated MYD88 and wild-type CXCR4 mutation status exhibit best responses to ibrutinib. Lower response rates and delayed responses to ibrutinib are associated with mutated CXCR4 in patients with WM. MYD88 and CXCR4 mutation status may be helpful in treatment selection for symptomatic patients. Novel therapeutic approaches under investigation include therapeutics targeting MYD88, CXCR4, and BCL2 signaling.

Thaper D, Vahid S, Nip KM, et al.
Targeting Lyn regulates Snail family shuttling and inhibits metastasis.
Oncogene. 2017; 36(28):3964-3975 [PubMed] Related Publications
The acquisition of an invasive phenotype by epithelial cells occurs through a loss of cellular adhesion and polarity, heralding a multistep process that leads to metastatic dissemination. Since its characterization in 1995, epithelial-mesenchymal transition (EMT) has been closely linked to the metastatic process. As a defining aspect of EMT, loss of cell adhesion through downregulation of E-cadherin is carried out by several transcriptional repressors; key among them the SNAI family of transcription factors. Here we identify for the first time that Lyn kinase functions as a key modulator of SNAI family protein localization and stability through control of the Vav-Rac1-PAK1 (Vav-Rac1-p21-activated kinase) pathway. Accordingly, targeting Lyn in vitro reduces EMT and in vivo reduces metastasis of primary tumors. We also demonstrate the clinical relevance of targeting Lyn as a key player controlling EMT; patient samples across many cancers revealed a strong negative correlation between Lyn and E-cadherin, and high Lyn expression in metastatic tumors as well as metastasis-prone primary tumors. This work reveals a novel pancancer mechanism of Lyn-dependent control of EMT and further underscores the role of this kinase in tumor progression.

Xu PP, Zhong HJ, Huang YH, et al.
B-cell Function Gene Mutations in Diffuse Large B-cell Lymphoma: A Retrospective Cohort Study.
EBioMedicine. 2017; 16:106-114 [PubMed] Free Access to Full Article Related Publications
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous subtype of non-Hodgkin lymphoma. In addition to clinical and immunophenotypic characteristics, recurrent gene mutations have recently been identified in patients with DLBCL using next-generation sequencing technologies. The aim of this study is to investigate the clinical relevance of B-cell function gene mutations in DLBCL. Clinical analysis was performed on 680 Chinese DLBCL patients (146 non-CR and 534 CR cases) treated with six cycles of 21-day R-CHOP (Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone), alone or followed by two additional doses of rituximab consolidation on patients' own intention. Somatic mutations of B-cell function genes were further screened on 275 (71 non-CR and 204 CR) cases with available tumor samples by targeted sequencing, including genes involved in B-cell receptors (BCRs) pathway (CARD11, LYN, CD79A, and CD79B), Toll-like receptors (TLRs) pathway (MYD88), and tumor necrotic factor receptor (TNFR) pathway (TRAF2 and TNFAIP3). B-cell function gene mutations occurred in 44.0% (121/275) of DLBCL patients. The TLRs and TNFR related gene mutations were more frequently observed in non-CR patients (p=0.019 and p=0.032, respectively). BCRs related gene mutations, as well as revised IPI (R-IPI) and double BCL-2/MYC expression, were independently related to short progression-free survival in DLBCL after CR. The adverse prognostic effect of BCRs related gene mutations could be overcome by two additional doses of rituximab consolidation. These results highlight the molecular heterogeneity of DLBCL and identify a significant role of B-cell function gene mutations on lymphoma progression and response to rituximab in DLBCL.

Guo A, Lu P, Lee J, et al.
HSP90 stabilizes B-cell receptor kinases in a multi-client interactome: PU-H71 induces CLL apoptosis in a cytoprotective microenvironment.
Oncogene. 2017; 36(24):3441-3449 [PubMed] Free Access to Full Article Related Publications
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of B cells in the hematopoietic system and lymphoid tissues. Although inhibitors targeting the B-cell receptor (BCR) pathway have been successful in the treatment of the disease, the underlying mechanisms leading to BCR over-activity in CLL are not fully understood. In this study, we found that HSP90, a highly conserved molecular chaperone, is overexpressed in CLL compared with resting B cells. HSP90 overexpression is accompanied by the overexpression of several BCR kinases including LYN, spleen tyrosine kinase, Bruton tyrosine kinase and AKT. Chemical and immune-precipitation demonstrated that these BCR constituents are present in a multi-client chaperone complex with HSP90. Inhibition of HSP90 with PU-H71 destabilized the BCR kinases and caused apoptosis of CLL cells through the mitochondrial apoptotic pathway. Further, PU-H71 induced apoptosis in the presence of stromal co-culture or cytoprotective survival signals. Finally, genetic knockdown of HSP90 and its client AKT, but not BTK, reduced CLL viability. Overall, our study suggests that the chaperone function of HSP90 contributes to the over-activity of the BCR signaling in CLL and inhibition of HSP90 has the potential to achieve a multi-targeting effect. Thus, HSP90 inhibition may be explored to prevent or overcome drug resistance to single targeting agents.

Brand TM, Iida M, Corrigan KL, et al.
The receptor tyrosine kinase AXL mediates nuclear translocation of the epidermal growth factor receptor.
Sci Signal. 2017; 10(460) [PubMed] Related Publications
The epidermal growth factor receptor (EGFR) is a therapeutic target in patients with various cancers. Unfortunately, resistance to EGFR-targeted therapeutics is common. Previous studies identified two mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Nuclear translocation of EGFR bypasses the inhibitory effects of cetuximab, and the receptor tyrosine kinase AXL mediates cetuximab resistance by maintaining EGFR activation and downstream signaling. Thus, we hypothesized that AXL mediated the nuclear translocation of EGFR in the setting of cetuximab resistance. Cetuximab-resistant clones of non-small cell lung cancer in culture and patient-derived xenografts in mice had increased abundance of AXL and nuclear EGFR (nEGFR). Cellular fractionation analysis, super-resolution microscopy, and electron microscopy revealed that genetic loss of AXL reduced the accumulation of nEGFR. SRC family kinases (SFKs) and HER family ligands promote the nuclear translocation of EGFR. We found that AXL knockdown reduced the expression of the genes encoding the SFK family members YES and LYN and the ligand neuregulin-1 (NRG1). AXL knockdown also decreased the interaction between EGFR and the related receptor HER3 and accumulation of HER3 in the nucleus. Overexpression of LYN and NRG1 in cells depleted of AXL resulted in accumulation of nEGFR, rescuing the deficit induced by lack of AXL. Collectively, these data uncover a previously unrecognized role for AXL in regulating the nuclear translocation of EGFR and suggest that AXL-mediated SFK and NRG1 expression promote this process.

Mao L, Deng WW, Yu GT, et al.
Inhibition of SRC family kinases reduces myeloid-derived suppressor cells in head and neck cancer.
Int J Cancer. 2017; 140(5):1173-1185 [PubMed] Related Publications
SRC family kinases (SFKs), a group of nonreceptor tyrosine kinases, modulate multiple cellular functions, such as cell proliferation, differentiation and metabolism. SFKs display aberrant activity in progressive stages of human cancers. However, the precise role of SFKs in the head and neck squamous cell carcinoma (HNSCC) signaling network is far from clear. In this study, we found that the inhibition of SFKs activity by dasatinib effectively reduced the tumor size and population of MDSCs in the HNSCC mouse model. Molecular analysis indicates that phosphorylation of LYN, rather than SRC, was inhibited by dasatinib treatment. Next, we analyzed LYN expression by immunostaining and found that it was overexpressed in the human HNSCC specimens. Moreover, LYN expression in stromal cells positively correlated with myeloid-derived suppressor cells (MDSCs) makers CD11b and CD33 in human HNSCC. The dual positive expression of LYN in epithelial and stromal cells (EPI

Nguyen PH, Fedorchenko O, Rosen N, et al.
LYN Kinase in the Tumor Microenvironment Is Essential for the Progression of Chronic Lymphocytic Leukemia.
Cancer Cell. 2016; 30(4):610-622 [PubMed] Related Publications
Survival of chronic lymphocytic leukemia (CLL) cells strictly depends on the support of an appropriate tumor microenvironment. Here, we demonstrate that LYN kinase is essential for CLL progression. Lyn deficiency results in a significantly reduced CLL burden in vivo. Loss of Lyn within leukemic cells reduces B cell receptor (BCR) signaling including BTK phosphorylation, but surprisingly does not affect leukemic cell expansion. Instead, syngeneic CLL transplantation of CLL cells into Lyn- or Btk-deficient recipients results in a strongly delayed leukemic progression and prolonged survival. Moreover, Lyn deficiency in macrophages hinders nursing functions for CLL cells, which is mediated by direct contact rather than secretion of soluble factors. Taken together, LYN and BTK seem essential for the formation of a microenvironment supporting leukemic growth.

Liu S, Hao X, Ouyang X, et al.
Tyrosine kinase LYN is an oncotarget in human cervical cancer: A quantitative proteomic based study.
Oncotarget. 2016; 7(46):75468-75481 [PubMed] Free Access to Full Article Related Publications
Cervical cancer is one of the most common malignant tumor in women. The mechanisms of cervical cancer are intricate and have not been fully understood. Therefore, we employed iTRAQ to obtain novel proteins profile which participates in the tumor oncogenesis of cervical cancer. 3300 proteins were identified aberrantly expressed in cervical cancer, and western bolt was performed to validate the results of iTRAQ. Then, we selected LYN for further study. Immunohistochemistry identified that LYN expression was significantly increased in cervical cancer tissues than that in cancer adjacent normal cervical tissues and normal cervical tissues. The increased LYN expression was significantly correlated with cancer differentiation and FIGO stage. Silencing LYN inhibited cell proliferation, migration and invasion, conversely, overexpression LYN promoted cell proliferation, migration and invasion. In terms of mechanism, LYN could also promote cervical cancer cells metastasis through activating IL-6/STAT3 pathway. In vivo study, overexpression LYN promoted tumor growth, meanwhile knockdown LYN inhibited tumor growth. These results indicate that LYN tyrosine kinase is an oncogenic gene and can serve as a novel target for cervical cancer research and therapy.

Chen YJ, Liu WH, Chang LS
Hydroquinone-induced FOXP3-ADAM17-Lyn-Akt-p21 signaling axis promotes malignant progression of human leukemia U937 cells.
Arch Toxicol. 2017; 91(2):983-997 [PubMed] Related Publications
Hydroquinone (1,4-benzenediol; HQ), a major marrow metabolite of the leukemogen benzene, has been proven to evoke benzene-related hematological disorders and myelotoxicity in vitro and in vivo. The goal of the present study was to explore the role of FOXP3 in HQ-induced malignant progression of U937 human leukemia cells. U937 cells were treated with 5 μM HQ for 24 h, and the cells were re-suspended in serum-containing medium without HQ for 2 days. The same procedure was repeated three times, and the resulting U937/HQ cells were maintained in cultured medium containing 5 μM HQ. Proliferation and colony formation of U937/HQ cells were notably higher than those of U937 cells. Ten-eleven translocation methylcytosine dioxygenase-mediated demethylation of the Treg-specific demethylated region in FOXP3 gene resulted in higher FOXP3 expression in U937/HQ cells than in U937 cells. FOXP3-induced miR-183 expression reduced β-TrCP mRNA stability and suppressed β-TrCP-mediated Sp1 degradation, leading to up-regulation of Sp1 expression in U937/HQ cells. Sp1 up-regulation further increased ADAM17 and Lyn expression, and ADAM17 up-regulation stimulated Lyn activation in U937/HQ cells. Moreover, U937/HQ cells showed higher Lyn-mediated Akt activation and cytoplasmic p21 expression than U937 cells did. Abolishment of Akt activation decreased cytoplasmic p21 expression in U937/HQ cells. Suppression of FOXP3, ADAM17, and Lyn expression, as well as Akt inactivation, repressed proliferation and clonogenicity of U937/HQ cells. Together with the finding that cytoplasmic p21 shows anti-apoptotic and oncogenic activities in cancer cells, the present data suggest a role of FOXP3/ADAM17/Lyn/Akt/p21 signaling axis in HQ-induced hematological disorders.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LYN, Cancer Genetics Web: http://www.cancer-genetics.org/LYN.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999